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Further Analysis on the Mystery of the

Surveyor 111 Dust Deposits
Background

* The Apollo 12 lunar module (LM) landing near the Surveyor |
spacecraft at the end of 1969 has remained the primary experimental
verification of the predicted physics of plume ejecta effects from a
rocket engine interacting with the surface of the moon.

* This was made possible by the return of the Surveyor Il camera
housing by the Apollo 12 astronauts, allowing detailed analysis of the
composition of dust deposited by the LM plume.

* |t was soon realized after the initial analysis of the camera housing
that the LM plume tended to remove more dust than it had deposited.

* In the present study, coupons from the camera housing have been
reexamined.

* In addition, plume effects recorded in landing videos from each
Apollo mission have been studied for possible clues.



Alan Bean examining Surveyor Ill.
Note that the Apollo 12 LM is in
the background.
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X-Ray Photoelectron Spectroscopy (XPS)
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Shear stress along the surface for five cases generated
by Fluent CFD: h =5, 10, 20, 25 [ft] and 45 [m].
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Dynamic Pressure along the surface for five cases
generated by Fluent CFD: h =5, 10, 20, 25 [ft] and 45 [m].
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LM Flyby simulation at h = 45 [m]. Left axis: (blue line) radial distance

traveled by particle from ground track position. Right axis: (green and

brown lines) region where shear stress is greater than threshold shear

stress, resulting in particle lift for zero cohesion force (green line) and
for Sagan’s cohesion force (brown line).
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Micron-Scale Particles”, Powder and Particle Journal, 26,
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Radial distance traveled by particle from ground track position
as a function of particle diameter for h = 45 m. Circles
represent different starting points, both x and y. Solid line is
the average maximum value of the individual trajectories.
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Apollo 12 After Touchdown
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Apollo 12 After Touchdown
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Apollo 12 After Touchdown
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Pixels:

Luminosity measurements of Apollo 14 landing
videos following engine cutoff
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Apollo 15: Descent
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Apollo 15: Ascent
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Notes:

1. Data is luminosity at 1 s intervals to the end of the video.

2. Descent is the luminosity of a dark crater in the background, starting with touchdown.

3. Ascent is the luminosity of the sky between the left two stars, starting as the LM is lifting off.
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Further Analysis on the Mystery of the

Surveyor 111 Dust Deposits
summary

* Several likely scenarios are proposed to explain the Surveyor Il|
dust observations.

* These include electrostatic levitation of the dust from the surface of
the Moon as a result of periodic passing of the day-night terminator;
dust blown by the Apollo 12 LM flyby while on its descent trajectory;
dust ejected from the lunar surface due to gas forced into the soil by
the Surveyor |11 rocket nozzle, based on Darcy’s law; and mechanical
movement of dust during the Surveyor landing.

* Even though an absolute answer may not be possible based on
available data and theory, various computational models are employed
to estimate the feasibility of each of these proposed mechanisms.

* Scenarios can then be tested which combine multiple mechanisms to
produce results consistent with observations.
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