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Abstract

 

A detailed analysis and examples are presented that show how to enrich the kinematics of 
classical Kirchhoff plate theory by appending them with a set of  continuous piecewise-cubic 
functions. This analysis is used to obtain functions that contain the effects of laminate 
heterogeneity and asymmetry on the variations of the inplane displacements and transverse 
shearing stresses, for use with a {3, 0} plate theory in which these distributions are specified 
apriori. The functions used for the enrichment are based on the improved zig-zag plate theory 
presented recently by Tessler, Di Scuva, and Gherlone. With the approach presented herein, the 
inplane displacements are represented by a set of continuous piecewise-cubic functions, and the 
transverse shearing stresses and strains are represented by a set of piecewise-quadratic functions 
that are discontinuous at the ply interfaces.

 

Introduction

 

Many variants of refined theories for laminated-composite and sandwich plates have 
appeared in the technical literature for many years.
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  Each of these theories generally have a 
different degree of complexity and a corresponding range of validity. Plates that exhibit a 
relatively large amount of transverse shearing flexibility typically require a refined theory in order 
to obtain accurate predictions of their structural response, particularly when the characteristic 
dimension of the response is on the order of the plate thickness. In contrast, for plate-response 
phenomena that consist of deformations with relatively large characteristic dimensions, simpler 
theories that are less complex and computationally expensive can be utilized to obtain useful 
results.

The most basic plate theory that accounts for transverse shearing deformations is known as 
the first-order shear-deformation theory (FSDT). With regards to its origins, it is also commonly 
referred to as the Reissner-Mindlin plate theory.
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 In this theory, the deformation of a plate is 
expressed in terms of three translational displacements and two rotations associated with through-
the-thickness shearing, in contast to the classical plate theory (CLPT) conceived by Kirchhoff that 
uses only the three translational displacements. A drawback associated with the relative simplicity 
of FSDT is that the through-the-thickness distributions of the transverse shearing strains are 
approximated as uniform distributions. These approximate strain distributions correspond to 
transverse shearing stresses that violate the traction boundary conditions on the top and bottom 
bounding surfaces of a plate. As a result, a shear-correction factor must be used to obtain adequate 
results.

One step up from FSDT, is a group of relatively popular plate theories that satisfy the traction 
boundary conditions on the top and bottom bounding surfaces of a plate and avoid the need for a 
shear-correction factor.
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  This boundary-condition problem is mitigated in these theories, at the 
expense of more complexity, by appending the kinematics of CLPT with terms that account for 
transverse shearing by using two additional kinemetic variables and presumed distributions of 
through-the thickness shearing strains. Typically, these distributions are presumed to be 
symmetric over the plate thickness, even for laminated plates with asymmetric ply distributions. 
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Although, variations in actual shape of the transverse-shearing strain distributions for moderately 
thick laminated and sandwich plates may have a relatively small effect on the prediction of global 
response phenomena like buckling loads and fundamental frequencies, the mismatch between the 
distribution symmetry and ply lay-up symmetry is a fundamental issue that should be addressed. 
This issue is addressed in the present paper by enriching the CLPT kinematics with zig-zag 
variations to obtained transverse shearing strain distributions that are based on the actual through-
the-thickness construction of a plate and without introducing any aditional kinematic variables. 
To accomplish this task, the baseline plate kinematics are presented first. Then, the details of the 
procedure used to enrich the kinematics are given. Lastly, examples are presented for an 
unsymmetric laminate and a sandwich plate with an isotropic core and two identical laminated 
face plates.

 

The Baseline Plate Kinematics

 

Consider a uniform-thickness plate and the coordinate system shown in figure 1. Points of the 
plate are located by the orthogonal Cartesian coordinates (x, y, z), where  (x, y, 0),  0 

 

≤

 

 x 

 

≤

 

 a,  and  
0 

 

≤

 

 y 

 

≤

 

 b define points of the rectangular midplane. The plate lengths in the x- and y-directions 
are denoted by  a  and  b, respectively. Points above and below the midplane are given by the 
nonzero z-coordinate values within -h/2 

 

≤

 

 z 

 

≤

 

 h/2, where  h  is the plate thickness dimension. The 
principal material coordinate system at the point (x, y, z) is shown in figure 2. For laminated 
plates, the fiber orientation is denoted by the angle 

 

θ

 

(z) shown in figure 2.

  The baseline plate kinematics used in the present study are defined by 

                               (1a)

                               (1b)

                                                        (1c)

where  U(

 

x, y, z

 

), V(

 

x, y, z

 

),  and  W(

 

x, y, z

 

)  are the displacement-field components in the x-, y-, 
and z-coordinate directions, respectively, of the material point (x, y, z).  The functions  u(

 

x, y

 

)  and  
v(

 

x, y

 

)  are the corresponding inplane displacements of the material point (x, y, 0) of the midplane, 
and  w(

 

x, y

 

)  is the out-of-plane displacements of the material point  (x, y, 0). The functions  

 

Λ

 

x

 

(

 

z

 

)  
and  

 

Λ

 

y

 

(

 

z

 

)  are selected to satisfy the traction-free boundary conditions on the transverse shear 

stresses at the bounding surfaces of the plate given by the coordinates . In addition, 

 

Λ

 

x

 

(

 

z

 

)  and  

 

Λ

 

y

 

(

 

z

 

)  are required to satisfy the conditions  U(

 

x, y, 0

 

) = u(

 

x, y

 

)  and V(

 

x, y, 0

 

) = v(

 

x, y

 

), 
but are otherwise arbitrary. The unknown functions  H

 

xz

 

(

 

x, y

 

)  and  H

 

yz

 

(

 

x, y

 

)  account for the effects 
of transverse shear deformation.  Inspection of equations (1) reveals that CPT is contained as a 
proper, well-defined subset that is obtained by setting  

 

Λ

 

x

 

(

 

z

 

)  and  

 

Λ

 

y

 

(

 

z

 

) equal to zero.  Several 
choices for  

 

Λ

 

x

 

(

 

z

 

)  and  

 

Λ

 

y

 

(

 

z

 

)  have appeared in the technical literature; for example, see reference 
32. When  

 

Λ

 

x

 

(

 

z

 

)  and  

 

Λ

 

y

 

(

 

z

 

) are specified as cubic polynomials in  z, the plate theory is sometimes 

U x, y, z = u x, y – z
∂w x, y
∂x + Λ x(z) Hxz x, y

V x, y, z = v x, y – z
∂w x, y
∂y + Λ y(z) Hyz x, y

W x, y, z = w x, y

 (x, y, ± h
2)
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referred to as a  {3, 0} theory, which indicates that the inplane displacements  U(

 

x, y, z

 

)  and        
V(

 

x, y, z

 

) are cubic and the out-of-plane displacement  W(

 

x, y, z

 

)  is constant across the plate 
thickness.

The linear strain-displacement relations used in the present study are obtained by substituting 
equations (1) into linear strain-displacement relations of the linear theory of elasticity, given by

                                                          (2a)

                                                          (2b)

                                                          (2c)

                                                     (2d)

                                                      (2e)

                                                     (2f)

First, consider the transverse shearing strains defined by equations (2e) and (2f).  Substituting the 
presumed displacement field, given by equations (1), into these strain-displacement expressions 
gives

                                          (3)

At the plate midplane z = 0, the transverse shearing strains are given by

                            (4)

Using equation (4), the inplane displacement field is expressed as

                               (5a)

                               (5b)

where

εxx x, y, z = ∂U
∂x

εyy x, y, z = ∂V
∂y

εzz x, y, z = ∂W
∂z

γxy x, y, z = ∂U
∂x + ∂V

∂y

γxz x, y, z = ∂U
∂z + ∂W

∂x

γyz x, y, z = ∂V
∂z + ∂W

∂y

γxz x, y, z

γyz x, y, z
=

Λ x′(z) Hxz x, y

Λ y′(z) Hyz x, y

γxz
o x, y

γyz
o x, y

≡
γxz x, y, 0

γyz x, y, 0
=

Λ x′(0) Hxz x, y

Λ y′(0) Hyz x, y

U x, y, z = u x, y – z
∂w x, y
∂x + Fx(z) γxz

o x, y

V x, y, z = v x, y – z
∂w x, y
∂y + Fy(z) γyz

o x, y
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                                                            (5c)

                                                            (5d)

In these equations,   and   are required, and  F

 

x

 

(0)

 

 = F

 

y

 

(0)

 

 = 0  are required 
to obtain U(

 

x, y, 0

 

) = u(

 

x, y

 

)  and V(

 

x, y, 0

 

) = v(

 

x, y

 

).  Substituting equations (1c), (5a), and (5b) into 
the remaining strain-displacement expressions yields the following expressions for the nonzero 
strains

  (6)

and

                                          (7)

Next, to get the complete picture of the plate deformation, as shown in figures 3-7, consider 
the components of the linear rotation vector given by

                                               (8a)

                                               (8b)

                                                (8c)

Substituting equations (1c), (5a), and (5b) into these expressions yields
           

                                   (9a)

                                   (9b)

         (9c)

Fx(z) =
Λ x(z)
Λ x′(0)

Fy(z) =
Λ y(z)
Λ y′(0)

Λ x′(0) ≠ 0 Λ y′(0) ≠ 0

εxx x, y, z
εyy x, y, z
γxy x, y, z

=

∂u x, y

∂x
∂v x, y

∂y
∂v x, y

∂x +
∂u x, y

∂y

− z

∂
2w x, y

∂x2

∂
2w x, y

∂y2

2 ∂
2w x, y
∂x∂y

+

Fx(z)
∂γxz

o
x, y

∂x

Fy(z)
∂γyz

o

∂y x, y

Fy(z)
∂γyz

o
x, y

∂x + Fx(z)
∂γxz

o
x, y

∂y

γxz x, y, z
γyz x, y, z

=
Fx′(z) γxz

o x, y

Fy′(z) γyz
o x, y

ωx x, y, z = 1
2
∂W
∂y – ∂V

∂z

ωy x, y, z = 1
2
∂U
∂z – ∂W

∂x

ωz x, y, z = 1
2
∂V
∂x – ∂U

∂y

ωx x, y, z =
∂w x, y
∂y − 1

2Fy′(z) γyz
o x, y

ωy x, y, z = 1
2Fx′(z) γxz

o x, y −
∂w x, y
∂x

ωz x, y, z = 1
2

∂v x, y
∂x –

∂u x, y
∂y + Fy(z)

∂γyz
o x, y
∂x – Fx(z)

∂γxz
o x, y
∂y
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At the plate midplane,

                             (10a)

                             (10b)

                           (10c)

where  F

 

x

 

(0)

 

 = F

 

y

 

(0)

 

 = 0  have been used and, as shown by equations (5c) and (5d), it is noted that 

.

The constitutive equations used in the present study are those for a plate made of one or more 
layers of linear elastic, specially orthotropic materials that are in a state of plane stress. These 
equations, referred to the plate (x, y, z) coordinate system are given by

                             (11a)

                                  (11b)

where the superscript  (k)  denotes the k

 

th

 

 ply of a laminated plate with a total of  N  plies. The 

 terms are the transformed, reduced (plane stress) stiffnesses of classical laminated-plate 

theory, for the k

 

th

 

 ply, and the  terms are the corresponding stiffnesses of a generally 

orthotropic ply.

 

42

 

  For a heterogeneous, laminated plate with N plies, both the  and the  
terms are functions of the through-the-thickness coordinate  z, as indicated by the superscript (k).  
In particular, the fiber orientation of the kth ply within a laminated plate is given by the angle 

 

θ

 

(z)

 

, 
shown in figure 2, where the values of  z  correspond to points within the thickness of the k

 

th

 

 ply.  
From equation (11b), it follows that the transverse shearing stresses on the top and bottom plate 
surfaces vanish provided that the corresponding transverse shearing strains vanish. Thus, from 
equation (7), it also follows that 

                                                    (12)

is required for the transverse shearing stresses on the top and bottom plate surfaces to vanish.

ωx x, y, 0 ≡ ωx
o x, y =

∂w x, y
∂y – 1

2γyz
o x, y

ωy x, y, 0 ≡ ωy
o x, y = 1

2γxz
o x, y –

∂w x, y
∂x

ωz x, y, 0 ≡ ωz
o x, y = 1

2
∂v x, y
∂x −

∂u x, y
∂y

Fx′(0) = Fy′(0) = 1

σ xx x, y, z
σ yy x, y, z
σ xy x, y, z

=
Q11

k
Q12

k
Q16

k

Q12

k
Q22

k
Q26

k

Q16

k
Q26

k
Q66

k

εxx x, y, z
εyy x, y, z
γxy x, y, z

σ yz x, y, z

σ xz x, y, z
= C44

k
C45

k

C45

k
C55

k

γyz x, y, z
γxz x, y, z

Qij
k

Cij
k

Qij
k

Cij
k

Fx′ ± h
2 = Fy′ ± h

2 = 0
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Equations (1c), (5a), and (5b); the conditions defined by equation (12); and  F

 

x

 

(0)

 

 = F

 

y

 

(0)

 

 = 0  
define completely the kinemetics of the baseline theory used herein. The kinematics of CLPT are 
recovered from these equations by specifying  F

 

x

 

(z)

 

 = F

 

y

 

(z)

 

 = 0.  Likewise, the kinematics of FSDT 
are recovered from these equations by specifying  F

 

x

 

(z)

 

 = F

 

y

 

(z)

 

 = z  such that equations (5a) and 
(5b) become

                                   (13a)

                                   (13b)

The corresponding FSDT kinematics, in the x-z plane, are illustrated in figures 3 and 4. In 
contrast, the kinematics in the x-z plane of the baseline theory presented herein are illustrated in 
figures 5-7.

 

Zig-Zag Enrichment of the Kinematics

 

In the baseline kinematics, the functions  F

 

x

 

(

 

z

 

)  and  F

 

y

 

(

 

z

 

)  are typically specified as 
continuous functions, with continuous derivative, such as those given in reference 32. Moreover, 
for the most part, the functions are specified as antisymmetric functions; that is,  F

 

x

 

(- 

 

z

 

) = - F

 

x

 

(

 

z

 

)  
and  F

 

y

 

(-

 

z

 

) = - F

 

y

 

(

 

z

 

). This antisymmetry with respect to the plate midplane appears to be 
inconsistent with laminates that exhibit a high degree of asymmetry in their ply constitutive 
properties. To obtain expressions for  F

 

x

 

(

 

z

 

)  and  F

 

y

 

(

 

z

 

) that are based on actual laminate 
construction, particularly for asymmetric laminates, these functions are partitioned herein as 
follows

                                                    (14a)

                                                    (14b)

where  H

 

x

 

(

 

z

 

)  and  H

 

y

 

(

 

z

 

)  are continuous functions, with continuous derivatives, such as those given 
in reference 32 which include linear, cubic, trigonometric, hyperbolic, and exponential functions. 

The terms   and    are piecewise linear functions with piecewise constant 
derivatives that are referred to herein as zig-zag functions. In these equations, the superscript (k) 
also denotes the ply number of a laminate composed of  N  plies. Moreover, for the k

 

th

 

 ply, it 
follows that  z

 

(k-1)

 

 

 

≤

 

 z 

 

≤

 

  z

 

(k)

 

, where  z

 

(k-1)

 

  and  z

 

(k)

 

  are the ply coordinates shown in figure 8 for the 
x-z plane. Substituting equations (14) into equations (5a) and (5b) yields the inplane 
displacements

                     (15a)

U x, y, z = u x, y + z γxz
o x, y –

∂w x, y
∂x

V x, y, z = v x, y + z γyz
o x, y –

∂w x, y
∂y

Fx z = Hx z + Φx

k
z

Fy z = Hy z + Φy

k
z

Φx

k
z Φy

k
z

U x, y, z = u x, y – z
∂w x, y
∂x + Hx z + Φx

k
z γxz

o x, y
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                     (15b)

The user-specified functions  Hx(z)  and  Hy(z) define a smooth distribution of displacements 

associated with transverse shearing deformations and    and    are corrections 
associated with laminate heterogeneity and asymmetry.

Following the refined zig-zag theory of Tessler et. al.,43 ply interface displacements    

(see figure 8) and    are defined in terms of the zig-zag functions by 

                                                         (16a)

                                                         (16b)

for  k = 0, 1, ..., N; with .  Within the kth ply, z(k-1) ≤ z ≤  z(k) and linear 
interpolation gives

                                            (17a)

                                            (17b)

where  

                                                        (18a)

                                                        (18b)

and where  h(k) = z(k) - z(k-1)  is thickness of the kth ply, as shown in figure 8.  For  z(k-1) ≤ z ≤  z(k), it 
follows that the piecewise-constant derivatives of the zig-zag functions are given by
 

                                                            (19a)

                                                            (19b)

Thus, differentiating equations (14) gives

                                                      (20a)

V x, y, z = v x, y – z
∂w x, y
∂y + Hy z + Φy

k
z γyz

o x, y

Φx

k
z Φy

k
z

Δx

k

Δy

k

Δx

k
= Φx

k
z k

Δy

k
= Φy

k
z k

Δx

0
= Δy

0
= Δx

N
= Δy

N
≡ 0

Φx

k
z = Δx

k−1
+ β x

k
z − z k−1

Φy

k
z = Δy

k−1
+ β y

k
z − z k−1

β x

k
≡
Δx

k
− Δx

k−1

h
k

β y

k
≡
Δy

k
− Δy

k−1

h
k

Φx

k ′ z = β x

k

Φy

k ′ z = β y

k

Fx′ z = Hx′ z + β x

k
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                                                      (20b)

Substituting these results into equation (7) yields

                                      (21)

for the transverse shearing strains.

At this point in the analysis, it is convenient to use equation (21) to express constitutive 
equations (11b) as

                              (22)

for laminated plates, where   are constant-valued for material points of the kth 
ply located by  z(k-1) ≤ z ≤  z(k). To proceed following the refined theory of Tessler et. al.,43 the 
transverse shearing stresses are partitioned into
 

                   (23a)

where

                                          (23b)

Next, the ply parameters

                                                         (24a)

                                                         (24b)

are introduced to eliminate  and  from equation (23b).  Because  and  appear as 

independent unknowns in the analysis, they can be normalized by requiring  and 

  for  k = 1, 2, ..., N  such that 

Fy′ z = Hy′ z + β y

k

γxz x, y, z
γyz x, y, z

=
Hx′ z + β x

k
γxz

o x, y

Hy′ z + β y

k
γyz

o x, y

σ yz x, y, z

σ xz x, y, z
= C44

k
C45

k

C45

k
C55

k

Hy′ z + β y

k
γyz

o x, y

Hx′ z + β x

k
γxz

o x, y

C44

k
, C45

k
, and C55

k

σ yz x, y, z

σ xz x, y, z
= C44

k
C45

k

C45

k
C55

k

Hy′ z − 1 γyz
o x, y

Hx′ z − 1 γxz
o x, y

+
σ yz

zz

σ xz
zz

σ yz
zz

σ xz
zz = C44

k
C45

k

C45

k
C55

k

1 + β y

k
γyz

o x, y

1 + β x

k
γxz

o x, y

Gx

k = C55

k
1 + β x

k

Gy

k = C44

k
1 + β y

k

β x

k
β y

k
β x

k
β y

k

Gx

k = Gx

Gy

k = Gy
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                                                              (25a)

                                                              (25b)

and

                                               (26a)

                                               (26b)

Following Tessler et. al.,43 the constants  Gx  and  Gy  are found by first noting that 

                                 (27)

Then, using equations (18) gives

                                              (28)

and using   gives the desired result 

                                                       (29)

Therefore, the constants  Gx  and  Gy  are found by integrating equations (25) to get

                   (30a)

β x

k
= Gx

C55

k − 1

β y

k
=

Gy

C44

k − 1

σ xz
zz = Gxγxz

o x, y + Gy
C45

k

C44

k γyz
o x, y

σ yz
zz = Gx

C45

k

C55

k γxz
o x, y + Gyγyz

o x, y

β x

k

β y

k dz
− h

2

+ h
2

= β x

k

β y

k dz
z k−1

z k

Σ
k = 1

N

= β x

k

β y

k h kΣ
k = 1

N

β x

k

β y

k dz
− h

2

+ h
2

= Δx

N

Δy

N − Δx

0

Δy

0

Δx

0
= Δy

0
= Δx

N
= Δy

N
≡ 0

β x

k

β y

k dz
− h

2

+ h
2

= 0
0

Gx = 1
h

dz
C55

k

− h
2

+ h
2

− 1

= 1
h

1
C55

kΣ
k = 1

N

dz
z k−1

z k

− 1

= 1
h

h k

C55

kΣ
k = 1

N
− 1
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                   (30b)

With  Gx  and  Gy  known, equations (20) are written as

                                                   (31a)

                                                   (31b)

and constitutive equations (22) become

                         (32)

The next step in the analysis is to obtain expressions for the zig-zag functions   and  

  in terms of the constants  Gx  and  Gy.  Toward this goal, equations (18) are re-written as 

                                                      (33a)

                                                      (33b)

Examining these equations for successive values of the index  k, starting with  k = 1  and using 

, it is seen by mathematical induction that  

                                                         (33c)

                                                         (33d)

Substituting these expressions into equations (17) gives

                                         (34a)

Gy = 1
h

dz
C44

k

− h
2

+ h
2

− 1

= 1
h

1
C44

kΣ
k = 1

N

dz
z k−1

z k

− 1

= 1
h

h k

C44

kΣ
k = 1

N
− 1

Fx′ z = Hx′ z + Gx

C55

k − 1

Fy′ z = Hy′ z +
Gy

C44

k − 1

σ yz x, y, z

σ xz x, y, z
= C44

k
C45

k

C45

k
C55

k

Hy′ z +
Gy

C44

k − 1 γyz
o x, y

Hx′ z + Gx

C55

k − 1 γxz
o x, y

Φx

k
z

Φy

k
z

Δx

k
= Δx

k−1
+ h

k
β x

k

Δy

k
= Δy

k−1
+ h

k
β y

k

Δx

0
= Δy

0
= 0

Δx

k
= β x

p
h pΣ

p = 1

k

Δy

k
= β y

p
h pΣ

p = 1

k

Φx

k
z = β x

p
h pΣ

p = 1

k − 1

+ β x

k
z − z k−1
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                                         (34b)

Now, consider  h(k) = z(k) - z(k-1)  for successive values of the index  k, starting with  k = 1. Noting 

that , mathematical induction yields 

                                                          (35)

Thus, using equations (25) and (35), equations (34) are expressed as

                            (36a)

                            (36b)

Let  M  denote the ply that corresponds to the plate midplane, z = 0. At  z = 0, equations (36) 
reduce to

                                 (37a)

                                 (37b)

Examination of equations (14) indicates that the constraints  Fx(0) = Fy(0) = 0  require

                                                        (38a)

                                                        (38b)

Similarly, the constraints given by equations (12), which enforce the traction boundary conditions 
on the top and bottom plate surface, yield

                                                    (39a)

                                                   (39b)

Φy

k
z = β y

p
h pΣ

p = 1

k − 1

+ β y

k
z − z k−1

z 0 = − h
2

z k = − h
2 + h pΣ

p = 1

k

Φx

k
z = z + h

2
Gx

C55

k − 1 + Gx
1

C55

p − 1
C55

k h pΣ
p = 1

k − 1

Φy

k
z = z + h

2
Gy

C44

k − 1 + Gy
1

C44

p − 1
C44

k h pΣ
p = 1

k − 1

Φx

M
0 = h

2
Gx

C55

M − 1 + Gx
1

C55

p − 1
C55

M h pΣ
p = 1

M − 1

Φy

M
0 = h

2
Gy

C44

M − 1 + Gy
1

C44

p − 1
C44

M h pΣ
p = 1

M − 1

Hx 0 + Φx

M
0 = 0

Hy 0 + Φy

M
0 = 0

Hx′ − h
2 + Gx

C55

1 − 1 = 0

Hx′ + h
2 + Gx

C55

N − 1 = 0
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                                                    (39c)

                                                   (39d)

where equations (31) have been used. For convenience, let the continuous functions have the form

                                          (40a)

                                          (40b)

which satisfy equations (38) provided  fx(0) = fy(0) = 0. Substituting equations (40) into equations 
(39) gives

                                              (41a)

                                             (41b)

                                               (41c)

                                              (41d)

Solving these equations yields

                                  (42a)

                                   (42b)

                                  (42c)

                                   (42d)

Substituting these results into equations (40) gives

Hy′ − h
2 +

Gy

C44

1 − 1 = 0

Hy′ + h
2 +

Gy

C44

N − 1 = 0

Hx z = fx z − Φx

M
0 + axz + b x

z2

2

Hy z = fy z − Φx

M
0 + ayz + b y

z2

2

ax − h
2 b x = 1 − Gx

C55

1 − fx′ − h
2

ax + h
2 b x = 1 − Gx

C55

N − fx′ + h
2

ay − h
2 b y = 1 −

Gy

C44

1 − fy′ − h
2

ay + h
2 b y = 1 −

Gy

C44

N − fy′ + h
2

ax = 1 − 1
2

Gx

C55

1 + Gx

C55

N + fx′ − h
2 + fx′ + h

2

b x = 1
h

Gx

C55

1 −
Gx

C55

N + fx′ − h
2 − fx′ + h

2

ay = 1 − 1
2

Gy

C44

1 +
Gy

C44

N + fy′ − h
2 + fy′ + h

2

b y = 1
h

Gy

C44

1 −
Gy

C44

N + fy′ − h
2 − fy′ + h

2
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   (43a)

   (43b)

In addition,

      (44a)

      (44b)

In the present study, the functional form of  fx(z)  and  fy(z)  are obtained by requiring  Hx(z)  and  
Hy(z)  to reduce to the distributions expected for a homogenous, orthotropic plate. For this very 

special class of plates,   and  , where  G13 and G23 are the shear moduli. Thus, 

equations (30) give  Gx = G13  and  Gy = G23. In addition,  Equations (43) 
reduce to 

                              (45a)

                              (45b)

and equations (44) reduce to

                         (46a)

                         (46b)

Moreover, the transverse sheaing stresses given by equation (32) become

                                     (47)

For a homogenous plate with traction-free shear-stress boundary conditions on the top and bottom 

Hx z = fx z − Φx

M
0 + z − z

2
Gx

C55

1 + fx′ − h
2 1 − z

h − z
2

Gx

C55

N + fx′ + h
2 1 + z

h

Hy z = fy z − Φy

M
0 + z − z

2
Gy

C44

1 + fy′ − h
2 1 − z

h − z
2

Gy

C44

N + fy′ + h
2 1 + z

h

Hx′ z = fx′ z + 1 − 1
2

Gx

C55

1 + fx′ − h
2 1 − 2z

h − 1
2

Gx

C55

N + fx′ + h
2 1 + 2z

h

Hy′ z = fy′ z + 1 − 1
2

Gy

C44

1 + fy′ − h
2 1 − 2z

h − 1
2

Gy

C44

N + fy′ + h
2 1 + 2z

h

C44

k
= G23 C55

k
= G13

Φx

M
0 = Φy

M
0 = 0.

Hx z = fx z − z
2 fx′ − h

2 1 − z
h + fx′ + h

2 1 + z
h

Hy z = fy z − z
2 fy′ − h

2 1 − z
h + fy′ + h

2 1 + z
h

Hx′ z = fx′ z − 1
2 fx′ − h

2 1 − 2z
h + fx′ + h

2 1 + 2z
h

Hy′ z = fy′ z − 1
2 fy′ − h

2 1 − 2z
h + fy′ + h

2 1 + 2z
h

σ yz x, y, z

σ xz x, y, z
=

G23 0
0 G13

Hy′ z γyz
o x, y

Hx′ z γxz
o x, y
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surfaces, the distributions of transverse-shear stresses are symmetric about the plate midplane. 

Thus,   and    Enforcing these symmetry requirements yields 

                                      (48a)

                                      (48b)

for all values of  -h/2 ≤ z ≤ h/2. Therefore, the functions fx(z)  and  fy(z)  are required to satisfy:

fx(0) = fy(0) = 0                                                                 (49a)

                                                                 (49b)

                                                                 (49c)

for all values of  -h/2 ≤ z ≤ h/2. Additional simplifications are obtained by specifying
 

                                                           (50)

Enforcing these conditions in equations (43) and (44) yields, without a loss in generality,

                         (51a)

                         (51b)

and

                            (52a)

                            (52b)

Using these expressions with equations (36), equations (14) are expressed as

                                                    (53a)

                                                    (53b)

Hx′ − z = Hx′ z Hy′ − z = Hy′ z .

fx′ z − fx′ − z − 2z
h fx′ + h

2 − fx′ − h
2 = 0

fy′ z − fy′ − z − 2z
h fy′ + h

2 − fy′ − h
2 = 0

fx′ − z = fx′ z

fy′ − z = fy′ z

fx′ ± h
2 = fy′ ± h

2 = 0

Hx z = fx z + z
2 2 − Gx

C55

1 1 − z
h −

Gx

C55

N 1 + z
h − Φx

M
0

Hy z = fy z + z
2 2 −

Gy

C44

1 1 − z
h −

Gy

C44

N 1 + z
h − Φy

M
0

Hx′ z = fx′ z + 1
2 2 − Gx

C55

1 1 − 2z
h −

Gx

C55

N 1 + 2z
h

Hy′ z = fy′ z + 1
2 2 −

Gy

C44

1 1 − 2z
h −

Gy

C44

N 1 + 2z
h

Fx z = fx z + Ψx

k
z

Fy z = fy z + Ψy

k
z
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where  fx(z)  and  fy(z)  are continuous functions with continuous derivatives that satisfy equations 

(47) and (48). The functions   and    are the zig-zag enrichment functions given by

                (54a)

                (54b)

where    and    are given by equations (36),   and     are given by 
equations (37), and  Gx  and  Gy  are given by equations (30). The derivatives of  Fx(z)  and  Fy(z) 
are obtained by substituing equations (52) into equations (31); which yields,

                                                   (55a)

                                                   (55b)

where

                              (56a)

                              (56b)

For the parabolic distribution of transverse shearing stresses commonly found in the technical 
literature for homogeneous plates,

                                                (57a)

                                                   (57b)

These functions are illustrated in figure 9.

Ψx

k
z Ψy

k
z

Ψx

k
z = Φx

k
z − Φx

M
0 + z

2 2 − Gx

C55

1 1 − z
h −

Gx

C55

N 1 + z
h

Ψy

k
z = Φy

k
z − Φy

M
0 + z

2 2 −
Gy

C44

1 1 − z
h −

Gy

C44

N 1 + z
h

Φx

k
z Φy

k
z Φx

M
0 Φy

M
0

Fx′ z = fx′ z + Ψx

k ′ z

Fy′ z = fy′ z + Ψy

k ′ z

Ψx

k ′ z = Gx

C55

k − 1
2

Gx

C55

1 1 − 2z
h + Gx

C55

N 1 + 2z
h

Ψx

k ′ z =
Gy

C44

k − 1
2

Gy

C44

1 1 − 2z
h +

Gy

C44

N 1 + 2z
h

fx z = fy z = z 1 − 1
3

2z
h

2

fx′ z = fy′ z = 1 − 2z
h

2
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Examples

Results obtained from equations (53) and (55), based on equations (57), are presented for two 
examples in this section. The first example is a [-15/30/0/90]T laminated composite plate that 
exhibits the full extent of plate anisotropy. The second example is a sandwich plate with a 0.42-
inch-thick isotropic core and identical [±454] laminated composite face plates, denoted by [±454/
core]S. For both examples, the principal  transverse-shear moduli of a ply are given by  G13 = 0.864 
x 106 psi  and  G23 = 0.368 x 106 psi, and the thickness of each ply is 0.005 in. For the core of the 
sandwich plate,  G13 = G23 = Gcore = 0.100 x 106 psi.

For the [-15/30/0/90]T laminated composite plate, equations (30) yield  Gx/G13 = 0.72  and  

Gy/G23 = 1.29. In addition,    and    defined by equations (37) are given by  -0.0021 
and  0.0008 in., respectively, where  M = 2 and  3 contain the plate midplane and give identical 
results. Graphs of  Fx(z) and  Fy(z)  given by equation (53a) and (53b) are shown in figures 10 and 
11, respectively. These graphs clearly show the effects of laminate asymmetry and inplane-
coordinate direction on the inplane-displacement distributions. Moreover, both graphs depict 
piecewise-cubic curves that are continuous at the ply interfaces. Similarly, graphs of the 
derivatives of  Fx(z) and  Fy(z)  given by equation (55a) and (55b) are also shown in figures 10 and 
11, respectively. These two derivative graphs depict piecewise-quadratic curves that are 
discontinuous at the ply interfaces, consistent with the refined zig-zag theory of Tessler et. al.43 

For the seventeen-ply [±454/core]S  sandwich plate, the core comprises  84% of the plate 

thickness.  Equations (30) yield  Gx/Gcore = Gy/Gcore = 1.16. In addition,    and    
defined by equations (37) are equal to zero, where  M = 9 corresponds to the plate midplane.  For 
this plate,  Fx(z) and  Fy(z)  given by equation (53a) and (53b) are identical, and a graph of  Fx(z) is 
shown in figure 12. This graph which clearly shows the presence of laminate symmetry is 
composed piecewise-cubic curves that are also continuous at the ply interfaces, with the most 
variation occurring in the more flexible core, as expected. Note that no variation in Fx(z) is shown 

across the faceplates, consistent with the fact that the  and   are identical for two 
adjacent +45 and - 45 degree plies. The corresponding graph of the derivatives of  Fx(z) is also 
shown in figure 12. This derivative graph also depicts piecewise-quadratic curves that are 
discontinuous at the ply interfaces. Moreover, the distribution of the curves is symmetric across 
the plate thickness.

 

CONCLUDING REMARKS

A detailed anaylsis has been presented that shows how to enrich the kinematics of classical 
Kirchhoff plate theory by using a set of continuous piecewise-cubic functions referred to in the 
technical literature as zig-zag functions. This work was motivated by the desire to obtain realistic 
estimates of the effects of laminate heterogeneity and asymmetry on the variations of the inplane 
displacements and transverse shearing stresses, for use with a {3, 0} plate theory in which these 

Φx

M
0 Φy

M
0

Φx

M
0 Φy

M
0

C44

k
, C45

k
, C55

k
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distributions are specified apriori. The enrichment is based on the improved zig-zag functions, 
and the corresponding analysis methodology, presented recently by Tessler, Di Scuva, and 
Gherlone. With the approach that has been presented herein, the inplane displacements are 
represented by a set of continuous piecewise-cubic functions. In contrast, the transverse shearing 
stresses and strains are represented by a set of piecewise-quadratic curves that are discontinuous 
at the ply interfaces. Corresponding results have also been presented for a general asymmetric 
laminate and a sandwich plate with identical laminated composite face plates and an isotropic 
core. These results demonstrate clearly that the zig-zag enrichment captures the expected effects 
of laminate heterogeneity and asymmetry.

References

1. Kreja, I.: A Literature Review on Computational Models for Laminated Composite and 
Sandwich Panels.  Central European Journal of Engineering, vol. 1, no. 1, 2011, pp. 59-80.

2. Ghugal, Y. M. and Shimpi, R. P.: A Review of Refined Shear Deformation Theories of 
Isotropic and Anisotropic Laminated Plates.  Journal of Reinforced Plastics and Composites, 
vol. 21, no. 9, 2002, pp. 775-813.

3. Carrera, E.: Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and 
Shells.  Archives of Computational Methods in Engineering, vol. 9, no. 2, 2002, pp. 87-140.

4. Kant, T. and Swaminathan, K.: Estimation of Transverse/Interlaminar Stresses in Laminated 
Composites - a Selective Review and Survey of Current Developments. Composite Structures, 
vol. 49, 2000, pp. 65-75.

5. Altenbach, H.: Theories for Laminated and Sandwich Plates. Mechanics of Composite 
Materials, vol. 34, no. 3, 1998, pp. 243-252. 

6. Reddy, J. N.: Mechanics of Laminated Composite Plates - Theory and Analysis. CRC Press, 
1997.

7. Liu, D. and Li, X.: An Overall View of Laminate Theories Based on Displacement Hypothesis. 
Journal of Composite Materials, vol. 30, no. 14, 1996, pp. 1539-1561.

8. Burton, W. S. and Noor, A. K.: Assessment of Computational Models for Sandwich Panels and 
Shells. Computer Methods in Applied Mechanics and Engineering, vol. 124, 1995, pp. 125-
151.

9. Reddy, J. N. and Robbins, D. H.; Jr.: Theories and Computational Models for Composite 
Laminates. ASME Applied Mechanics Reviews, vol. 47, no. 6, part 1, 1994, pp. 147-169.

10. Reddy, J. N.: A General Non-Linear Third-Order Theory of Plates with Moderate Thickness. 
International Journal of Non-Linear Mechanics, vol. 25, no. 6, 1990, pp. 677-686.



18

11. Reissner, E.: On the Theory of Bending of Elastic Plates. Journal of Mathematics and Physics, 
vol. 23, 1944, pp. 184-191.

12. Reissner, E.:  The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. 
ASME Journal of Applied Mechanics, vol. 12, 1945, pp. 69-77.

13. Mindlin, R. D.: Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, 
Elastic Plates. ASME Journal of Applied Mechanics, vol. 18, 1951, pp. 31-38.

14. Stein, M.: Nonlinear Theory of Plates and Shells Including the Effects of Transverse Shearing. 
AIAA Journal, vol. 24, no. 9, 1986, pp. 1537-1544. 

15. Soldatos, K. P.: On Certain Refined Theories for Plate Bending. ASME Journal of Applied 
Mechanics, vol. 55, December, 1988, pp. 994-995. 

16. Sun, L. X. and Hsu, T. R.: Thermal Buckling of Laminated Composite Plates with Transverse 
Shear Deformation. Computers and Structures, vol. 36, no. 5, 1990, pp. 883-889.

17. Touratier, M.: An Efficient Standard Plate Theory. International Journal of Engineering 
Science, vol. 29, no. 8, 1991, pp. 901-916.

18. Soldatos, K. P.: Nonlinear Analysis of Transverse Shear Deformable Laminated Composite 
Cylindrical Shells - Part I: Derivation of Governing Equations. ASME Journal of Pressure 
Vessel Technology, vol. 114, no. 1, 1992, pp. 105-109. 

19. Soldatos, K. P.: Nonlinear Analysis of Transverse Shear Deformable Laminated Composite 
Cylindrical Shells - Part II: Buckling of Axially Compressed Cross-Ply Circular and Oval 
Cylinders. ASME Journal of Pressure Vessel Technology, vol. 114, no. 1, 1992, pp. 110-114. 

20. Hadian, J. and Nayfeh, A. H.: Free Vibration and Buckling of Shear-Deformable Cross-Ply 
Laminated Plates Using the State-Space Concept. Computers and Structures, vol. 48, no. 4, 
1993, pp. 677-693.

21. Shu, X. and Sun, L.: Thermomechanical Buckling of Laminated Composite Plates with 
Higher-Order Transverse Shear Deformation. Computers and Structures, vol. 53, no. 1, 1994, 
pp. 1-7.

22. Touratier, M. and Faye, J.-P.: On a Refined Model in Structural Mechanics: Finite Element 
Approximation and Edge Effect Analysis for Axisymmetric Shells. Computers and 
Structures, vol. 54, no. 5, 1995, pp. 897-920.

23. Shu, X.: An Improved Simple Higher-Order Theory for Laminated Composite Shells. 
Computers and Structures, vol. 60, no. 3, 1996, pp. 343-350.

24. Ziyaeifar, M. and Elwi, A. E.: Degenerate Plate-Shell Elements with Refined Transverse 
Shear Strains. Computers and Structures, vol. 60, no. 6, 1996, pp. 1079-1091.



19

25. Cheng, Z.-Q. and Kitipornchai, S.: Exact Connection Between Deflections of the Classical 
and Shear Deformation Laminated Plate Theories. ASME Journal of Applied Mechanics, vol. 
66, March, 1999, pp. 260-262. 

26. Aydogdu, M. and Timarci, T.: Vibration Analysis of Cross-Ply Laminated Square Plates with 
General Boundary Conditions. Composites Science and Technology, vol. 63, 2003, pp. 1061-
1070.

27. Karama, M. and Mistou, S.: Experimental Validation of Refined Models of Composite Plates. 
Science and Engineering of Composite Materials, vol. 11, no. 1, 2004, pp. 1-7.

28. Zenkour, A. M.: Buckling of Fiber-Reinforced Viscoelastic Composite Plates Using Various 
Plate Theories. Journal of Engineering Mathematics, vol. 50, 2004, pp. 75-93.

29. Zenkour, A. M.: Analytical Solution for Bending of Cross-Ply Laminated Plates Under 
Thermo-Mechanical Loading. Composite Structures, vol. 65, 2004, pp. 367-379.

30. Zenkour, A. M.: Thermal Effects on the Bending Response of Fiber-Reinforced Viscoelastic 
Composite Plates Using a Sinusoidal Shear Deformation Theory. Acta Mechanica, vol. 171, 
2004, pp. 171-187.

31. Kim, J.-S..: Reconstruction of First-Order Shear Deformation Theory for Laminated and 
Sandwich Shells. AIAA Journal, vol. 42, no. 8, 2004, pp. 1685-1697.

32. Timarci, T. and Aydogdu, M.: Buckling of Symmetric Cross-Ply Square Plates with Various 
Boundary Conditions. Composite Structures, vol. 68, 2005, pp. 381-389.

33. Aydogdu, M.: Comparison of Various Shear Deformation Theories for Bending, Buckling, 
and Vibration of Rectangular Symmetric Cross-Ply Plate with Simply Supported Edges. 
Journal of Composite Materials, vol. 40, no. 23, 2006, pp. 2143-2155.

34. Girish, J. and Ramachandra, L. S.: Thermomechanical Postbuckling Analysis of Cross-Ply 
Laminated Cylindrical Shell Panels. ASCE Journal of Engineering Mechanics, vol. 132, no. 
2, 2006, pp. 133-140.

35. Shi, G.: A New Simple Third-Order Shear Deformation Theory of Plates. International 
Journal of Solids and Structures, vol. 44, 2007, pp. 4399-4417.

36. Akavci, S. S. and Tanrikulu, A. H..: Buckling and Free Vibration Analyses of Laminated 
Composite Plates by Using Two New Hyperbolic Shear-Deformation Theories. Mechanics of 
Composite Materials, vol. 44, no. 2, 2008, pp. 145-154.

37. Aydogdu, M.: A New Shear Deformation Theory for Laminated Composite Plates. 
CompositeStructures, vol. 89, 2009, pp. 94-101.



20

38. Fu, Y.; Li, S.; and Jiang, Y.: Nonlinear Free Vibration Analysis of Piezoelastic Laminated 
Plates with Interface Damage. Applied Mathematics and Mechanics (English Edition), vol. 
30, no. 2, 2009, pp. 129-144.

39. Xiang S. and Wang, K.: Free Vibration Analysis of Symmetric Laminated Composite Plates 
by Trigonometric Shear Deformation Theory and Inverse Multiquadric RBF. Thin-Walled 
Structures, vol. 47, 2009, pp. 304-310.

40. Panda, S. K. and Ramachandra, L. S.: Buckling and Postbuckling Behavior of Cross-Ply 
Composite Plate Subjected to Nonuniform In-Plane Loads. ASCE Journal of Engineering 
Mechanics, vol. 137, no. 9, 2011, pp. 589-597.

41. Barut, A.; Madenci, E.; and Nemeth, M. P.: Stress and Buckling Analyses of Laminates with 
a Cutout Using a {3, 0}-Plate Theory. Journal of Mechanics of Materials and Structures, vol. 
6, no. 6, 2011, pp. 827-868.

42. Jones, R. M.: Mechanics of Composite Materials. Second ed., Taylor & Francis, 1999.

43. Tessler, A.; Di Sciuva, M.; and Gherlone, M.: A Consistent Refinement of First-Order Shear 
Deformation Theory for Laminated Composite and Sandwich Plates Using Improved Zigzag 
Kinematics. Journal of Mechanics of Materials and Structures, vol. 5, no. 2, 2010, pp. 341-
367.

a

y-axis

z-axis

x-axis

b

h
2 h
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Fig. 2  Principal material coordinate system at  z = constant. 
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Fig. 3  Kinematics of first-order shear-deformation plate theory in the x-z plane. 
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Fig. 5  Deformation of plate cross-section, based on the kinematics used in the
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            on the kinematics of the present study. 
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Fig. 10  Graphs of the function  Fx(z)  and its derivative for [-15/30/0/90]T laminate. 
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Fig. 11  Graphs of the function  Fy(z)  and its derivative for [-15/30/0/90]T laminate. 
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Fig. 12  Graphs of the function  Fx(z)  and its derivative for [±454/core]S sandwich plate. 
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