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Results from a numerical study of the buckling response of a thin-walled compression-
loaded isotropic circular cylindrical shell with initial geometric and loading imperfections 
are used to determine a lower bound buckling load estimate suitable for preliminary design. 
The lower bound prediction techniques presented herein include an imperfection caused by 
a lateral perturbation load, an imperfection in the shape of a single stress-free dimple 
(similar to the lateral pertubation imperfection), and a distributed load imperfection that 
induces a nonuniform load in the shell. The ABAQUS finite element code is used for the 
analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection 
types are considered, and the effect of each imperfection is compared to the response of a 
geometrically perfect cylinder. The results indicate that compression-loaded shells subjected 
to a lateral perturbation load or a single dimple imperfection, and a nonuniform load 
imperfection, exhibit similar buckling behavior and lower bound trends and the predicted 
lower bounds are much less conservative than the corresponding design recommendation 
NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation 
technique and the distributed load imperfection produce response characteristics that are 
physically meaningful and can be validated via laboratory testing. 

Nomenclature 
a = amplitude of boundary imperfection 
BL = buckling load 
cp = circumferential position 
F = force, applied in axial direction 
L = cylinder length 
P = perturbation load, applied perpendicular to cylinder axis 
R = cylinder raqdius 
t = cylinder wall thickness 
u = axial displacement / end shortening 
yt = width of boundary imperfection 
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I. Introduction 
HE design of light-weight, thin-walled, circular cylindrical shells used in aerospace applications, is typically 
governed by global buckling constraints. For circular cylinders subjected to axial compression, linear buckling 

analyses predict un-conservative buckling or critical loads when compared to corresponding experimental results. 
This un-conservative prediction and the corresponding uncertainty in the actual buckling load of the as-built 
structure can lead to significant challenges for the designer of these structures. The traditional approach for 
designing a thin-walled, buckling-resistant shell structure is to predict the buckling load of the shell with a 
deterministic, linear bifurcation buckling analysis, and then to reduce this predicted load with an empirical 
'knockdown' factor. The analysis is usually based on nominal structural dimensions and material properties of an 
idealized, geometrically perfect shell. The empirical knockdown factor is intended to account for the difference 
between the predicted buckling load and the actual buckling load for the shell determined from tests. For example, 
the design knockdown factor used in the design of buckling-resistant unstiffened cylindrical shells is often based on 
the `lower-bound' design recommendations reported in NASA SP-8007.1 This design philosophy has been used 
successfully in the design of many launch vehicle structures around the world. However, in recent times new high-
fidelity analysis results and experimental results show that this design recommendation can be overly conservative, 
or can potentially even result in un-conservative designs if the empirical data are not representative of the design of 
interest. 

While it is generally recognized that initial geometric shell-wall imperfections are a major contributor to the 
difference between the predicted shell buckling loads and the experimentally measured loads, the traditional sources 
of design knockdown factors do not include data or information related to the sensitivity of the response of a shell to 
other forms of imperfections. In addition, the traditional sources of design knockdown factors do not include 
information for structures made from state-of-the-art materials and manufacturing processes. Recent studies have 
shown that traditional initial geometric shell-wall imperfections, and other nontraditional forms of imperfections or 
variations in geometric and material parameters, loading conditions, and boundary conditions can significantly affect 
the buckling load of a compression-loaded composite shell structure (see e.g. Refs. 2–5). These studies have shown 
that when structural details such as as-measured shell-wall geometry, shell wall thickness, and non-uniform loading 
are included in a high-fidelity analysis, the buckling load and transient dynamic collapse behavior can be predicted 
accurately. However, these structural details are typically not known a priori and, thus, designers have had to resort 
to other methods in order to predict conservative values of the critical load for design. To this end, analysis-based 
lower bound buckling load predictions have been proposed and two methods will be presented. The first is an 
approach that uses a lateral perturbation load to create a local dimple-shaped imperfection in the shell wall (see Ref. 
3). This dimple is similar to the type of dimple that forms in a compression-loaded shell at the onset of buckling as 
observed in tests and is thus a physically meaningful initial imperfection or perturbation. In this analysis-based 
lower-bound approach, the perturbation load is applied before the axial load is applied and is held constant during 
the application of the axial load. It has been determined that, for unstiffened composite cylinders, there exists a 
range of lateral perturbation loads where the shell buckling load is very sensitive to changes in the magnitude of this 
perturbation load. However, above a certain threshold value of the perturbation load, the buckling load appears to 
reach a minimum value or lower bound and is not sensitive to variations in the perturbation load. The buckling load 
at the threshold value is thought to be a reasonable approximation of a lower bound to the buckling load of the shell. 
Finally, the effects of non-uniform loading on the nonlinear response and buckling load of a compression-loaded 
shell is presented. The non-uniform load is assumed to be in the form of a local perturbation in the axial 
displacement applied to the end of the shell and is intended to simulate the non-uniform loading surface that can 
occur in a test article or fit-up mismatch at the interface surfaces between launch vehicle components. 

In this study, numerically predicted responses of a geometrically perfect and imperfect thin-walled, isotropic 
circular cylinder subjected to an axial compression load are used to compare several lower bound buckling load 
prediction methods. The lateral perturbation load imperfection and nonuniform load or load imperfection described 
above are used for predicting lower bound buckling loads. The response of a geometrically perfect cylinder is also 
determined to serve as a baseline to which the imperfect cylinders can be compared. 

II. Numerical model 
An unstiffened isotropic shell is used for the numerical investigations presented herein and is based on a test 

article that was recently manufactured and tested at NASA Langley Research Center. The shell has a length L = 31 
inches and a radius R = 9 inches, corresponding to an L/R = 3.44, and was fabricated by rolling a flat sheet of 0.040-
in-thick 2024 aluminum into a cylinder and the two longitudinal free edges are attached together by using a double-
overlap riveted splice joint, referred to as a splice joint. This splice joint is approximately 2 inches wide and 0.12 in. 
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thick and is included in the model by adjusting the thickness of the shell wall in the region of this splice (see 
illustration in Figure 1). The geometry and material properties of the shell are listed in Table 1. Both ends of the 
shell are assumed to be clamped and the compression load is applied to the shell by imposing a uniform end-
shortening displacement to one end of the shell. The nonlinear and buckling analyses were conducted using the 
ABAQUS finite element code. Four node shell elements with reduced integration were used (S4R elements). A 
mesh convergence study indicated that a mesh with 110 elements in axial direction and 202 elements in 
circumferential direction provides sufficient accuracy. Clamped boundary conditions are simulated by connecting 
the nodes at the end of the shell to a master node via rigid links and the load is then applied to the master node. 
Geometrically nonlinear quasi-static analyses were conducted under displacement control and linear elastic material 
behavior was assumed. Simulations with an elastic-plastic material model showed that yielding occurs in the 
postbuckling range, but the buckling load was not affected by this yielding and is neglected in this study. 

 
Table 1. Characteristics of the metal cylinder 

Cylinder geometry Splice joint geometry Cylinder and splice joint material properties 

Length:  
L = 31 in = 787.4 mm 

Width: 2 in = 50.8 mm Young’smodulus:  
E = 10.6 ·106psi = 73084.4 N/mm2 

Radius:  
R = 9 in = 228.6 mm 

Thickness:  
3 t = 0.12 in = 3.048 
mm 

Poisson’s ratio: ν = 0.3 

Thickness:  
t = 0.04 in = 1.016 mm 

 Yield stress:  
σY = 50 ksi = 344.7 N/mm2 

  Yield strain: εY = σY/E = 4.72 ·10-3 

 

III. Effects of Initial Imperfections 
The effects of several different types of initial imperfections on the nonlinear and buckling response of a thin-

walled compression-loaded shell are described in this section. The imperfections considered include a local dimple 
caused by applying a small-magnitude lateral perturbation load, and a distributed load imperfection that induces a 
nonuniform load in the shell. In addition, the effects of various combinations of initial imperfections on the buckling 
response will be presented. Some highlights from the numerical study are presented in the following subsections. 

A. Single lateral perturbation load 
The effect of a lateral perturbation load on the buckling response of a compression-loaded shell is presented. The 

axial location is held constant at the shell mid-length. The circumferential location of the lateral perturbation load is 
denoted by cp and can vary from 0.0 to 2πR, where 0.0 corresponds to the location of the splice joint. A sketch of 
the compression-loaded shell with a lateral perturbation load is shown in Figure 1.  

 

 

Figure 1: Sketch of axially compressed shell with lateral perturbation 
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Typical load (F) versus end-shortening (u) curves for a compression-loaded cylinder with a lateral perturbation 

load imperfection are shown in Figure 2.  
 

 

Figure 2: Axial load versus end-shortening curves with cp = πR 

 
The load versus end-shortening results indicate that the shell exhibits a linear pre-buckling response up to the 

first buckling point and there is no noticeable change in effective prebuckling axial stiffness for different values of 
the perturbation load. For relatively small-magnitude perturbation loads, e.g., loads equal to 30N and 50N, the first 
buckling point corresponds to the overall global collapse of the shell. In contrast, for larger magnitude perturbation 
loads, the first buckling point corresponds to a stable local buckling event in which an ellipse-shaped inward buckle 
forms in the shell wall. The shell exhibits a slight reduction in axial stiffness as indicated by the slope of load-end-
shortening response curves and can then sustain additional axial load until global collapse occurs.  

Typical shell wall displacements during the response of a compression-loaded shell with a lateral perturbation 
load P = 110N located diametrically opposite of the splice joint (cp = πR)are shown in Figure 3 (note: the positive 
displacements in the contour plots correspond to inward radial deformation of the shell wall).The load level that 
corresponds to a given displacement contour is marked on the load-shortening curve with a red open circle. For 
small magnitude perturbation loads, a small ellipse-shaped dimple appears in the pre-buckling region similar to that 
shown in Figure 3a. The size and magnitude of the dimple does not grow significantly until global buckling is 
initiated. In contrast, for sufficiently large magnitude perturbation loads, the small dimple caused by the lateral 
perturbation load grows in magnitude abruptly as the first point of local instability is passed. This first buckling 
point corresponds to a local buckling event and causes a drop in axial load (Figure 3b). The buckle then grows in 
magnitude until global buckling occurs (Figure 3c). 

Shell buckling load (BL) versus lateral perturbation load (P) curves for three different circumferential positions 
of the perturbation load are shown in Figure 4. The open circles connected by solid lines correspond to global 
buckling loads and the open circles connected by dashed lines correspond to local buckling loads for cases with cp 
equal to πR/2 and πR, in which a local buckling response precedes the global buckling. The results indicate that the 
global buckling load is sensitive to variations in the lateral perturbation load if the perturbation load is between 0.0 
and 70N as shown by the significant reduction in buckling load as the perturbation load is increased. However, if the 
perturbation load exceeds 70N, then the global buckling load is no longer sensitive to variations in the magnitude of 
the perturbation load and a lower bound of approximately 176N is obtained. The results also indicate that, as long as 
the perturbation load is not located on the splice joint, the circumferential location of the perturbation does not 
appear to influence the buckling behavior significantly. Finally, it is observed that the buckling load of the shell is 
only slightly affected by the lateral perturbation loads considered herein when applied to the splice joint. 
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Figure 3: Displacement response of a shell with single perturbation load, P = 110N at cp = 0.5 2πR 

 

(a) 

(b) 

(c) 
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Figure 4: Buckling load versus lateral perturbation load 

 

B. Distributed loading imperfection 
In this section, the influence of an axial loading or boundary imperfection is presented. Such a boundary 

imperfection can come about in an as-built structure due to manufacturing tolerances or irregularities and can cause 
nonunifom loading in the structure when joined to adjacent structure. Geier et al.6 used a shim layer to apply such a 
boundary imperfection in experimental tests on composite shells. Hühne et al.7 showed that also for this type of 
imperfection a lower bound of buckling load can be found. In the present study, these findings shall be put into 
context with the influence of a lateral perturbation load, discussed in the previous section. Therefore, a loading 
imperfection is simulated in the shell by including an axial perturbation or imperfection in the geometry of one of 
the loaded edges of the shell as shown in Figure 5. This geometric imperfection in the axial direction is defined by 
its location y0, width yt, amplitude a and the length yd of the transition region (see Figure 6). For the study 
considered herein, the loading imperfection is located diametrically opposite to the slice joint corresponding to y* = 
πR. 
 

  

Figure 5: Sketch of cylinder with an imperfection on 
the loaded edge 

 

Figure 6: Shape function of shim layer boundary 
imperfection 

 
Results from the corresponding geometrically perfect shell indicated that the circumferential wavelength of the 

displacement pattern at the onset of buckling is about 55mm and the circumferential wavelength of post buckling 
pattern is approximately 205mm.Based on the characteristic dimensions of the pre-buckling and post-buckling 
displacements, load imperfection widths between 20mm and 100mm were studied with the assumption that this 
range of widths would be the most detrimental to the buckling load of the shell. Similarly, the amplitude of the 
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loading imperfection was chosen to be between 0 and 20% of the critical end-shortening value for the geometrically 
perfect shell. 

 
 

Figure 7: Load versus end shortening for three 
different loading imperfection amplitudes. 

Figure 8: Buckling load versus loading imperfection 
amplitude. 

 
Typical load versus end-shortening curves for a shell with three different load imperfection amplitudes, a = 

0.1mm, 0.15mm, and 0.2mm, and a yt of 55mm are shown in Figure 7. Buckling load BL versus imperfection 
amplitude for three different values of imperfection width yt are shown in figure 8.Buckling loads are indicted in 
Figure 8 by open circle symbols. Global buckling loads are connected by solid lines and local buckling loads are 
connected by dashed lines. The results indicate that a shell with this type of loading imperfection exhibits similar 
behavior to the corresponding shell with a lateral perturbation load presented in the previous section. More 
specifically, as the amplitude of the loading imperfection increases from 0.025mm to 0.15mm, the global buckling 
load decreases significantly. However, an additional increase in the amplitude of the imperfection beyond 0.15mm 
has only a slight effect on the global buckling load and the shell obtains a lower bound buckling load value of 
approximately 170kN (see Figure 8), 3% less than the lower bound predicted for the shell with a lateral perturbation 
load. In addition, the results indicate that the reduction in global buckling load is, for the most part, insensitive to the 
width of the loading imperfection considered. 

Typical shell wall displacements during the response of a compression-loaded shell with a 100mm wide loading 
imperfection with an amplitude of 0.2mm are shown in Figure 9 (note: the positive displacements in the contour 
plots correspond to inward radial deformation of the shell wall). The load level that corresponds to a given 
displacement contour is marked on the load-shortening curve with a red open circle. During initial loading of the 
shell a local ellipse-shaped dimple forms in the shell wall near the imperfect boundary (see Figure 9a). This dimple 
causes a local buckling event to occur near the boundary and is associated with a slight drop in axial load (see Figure 
9b).Upon further loading, this local buckle moves towards the mid-length of the shell until global buckling occurs 
(see Figure 9c). 

Thus, it is significant to note that while the loading imperfection is physically very different from the lateral 
perturbation and single dimple imperfection, they both cause the compression-loaded shell to exhibit similar 
nonlinear response and buckling characteristics. Furthermore this may enable the development of a unified theory of 
imperfection sensitivity that can be used as the basis for new design criteria for buckling-critical shells. 
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Figure 9: Displacement pattern of shell with shim layer boundary imperfection, a = 0.2mm, yt = 100mm 

 

C. Combined lateral perturbation load and loading imperfection 
In this section the effect of combining a single perturbation load with a distributed loading imperfection is 

presented. Perturbation load and the loading imperfection are located diametrically opposite the splice joint as 
shown in Figure 10. The axial position of the perturbation load is located at the mid length of the shell. The width of 
the loading imperfection is held fixed at 80mm and the amplitudes of the lateral perturbation and loading 
imperfection are varied independently. 
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Figure 10: Lateral perturbation load and concentrated boundary imperfction 

Typical buckling-load versus perturbation-load and buckling-load versus load-imperfection-amplitude curves are 
shown in Figure 11 and Figure 12, respectively. The open circles connected by solid lines correspond to global 
buckling loads and the open circles connected by dashed lines correspond to local buckling loads for cases in which 
a local buckling response precedes global buckling. In general, these buckling-load trends are similar to the previous 
results presented for a compression loaded cylinder subjected to a lateral perturbation load (Figure 4) or load 
imperfection (Figure 8). In addition, the results show that the buckling load lower bound is equal to 170kN and is 
about 3.4% lower than the corresponding lower bound obtained by applying only a single perturbation load or 
loading imperfection.  

 

Figure 11: Buckling load versus perturbation load 
for different boundary imperfection amplitudes 

Figure 12: Buckling load versus boundary 
imperfection amplitude for different perturbation 

loads 

IV. Summary 
The results presented suggest that, regardless of the type of imperfection, whether alone or in combination, the 

lower bound buckling load for the compression-loaded shell considered herein is approximately 170kN. 
Furthermore, it appears that the primary mechanism associated with the buckling response is the formation of a 
single buckle and that this singe buckle can form directly, in the case of the lateral perturbation load, or indirectly, as 
in the case of the applied loading imperfection. 

What is more compelling is the fact that, while the loading imperfection is physically different from the lateral 
perturbation imperfection and single dimple imperfection, they both cause the compression-loaded shell to exhibit 
similar nonlinear response and buckling characteristics. It is hoped that this may enable the development of a simple 
unified theory of imperfection sensitivity that can be used as the basis for new design criteria for buckling-critical 
shells. 
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