What: Oral presentation

Where: American Meteorological Society annual meeting, New Orleans, Jan 22–26, 2012

When: Thursday, 1/26/12

Talk information:

Title: A New Retrieval Algorithm for OMI NO2: Tropospheric Results and Comparisons with Measurements and Models

Authors:
W. H. Swartz, bill.swartz@jhuapl.edu
E. J. Bucsela, bucsela@ix.netcom.com
L. N. Lamsal, lmsal.lamsal@nasa.gov
E. A. Celarier, edward.a.celarier@nasa.gov
N. A. Krotkov, nickolay.a.krotkov@nasa.gov
P. K. Bhartia, pawan.k.bhartia@nasa.gov
S. E. Strahan, susan.strahan@nasa.gov
J. F. Gleason, james.f.gleason@nasa.gov
J. Herman, jay.r.herman@nasa.gov
K. Pickering, Kenneth.E.Pickering@nasa.gov

Abstract: Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 2005-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes.