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Abstract. While carrying out investigations on Ps-He scattering we realized that it would be 
possible to improve the results of a previous work on zero-energy scattering of ortho-positronium 
by helium atoms. The previous work used a model to account for exchange and also attempted to 
include the effect of short-range Coulomb interactions in the close-coupling approximation. The 3 
terms that were then included did not produce a well-converged result but served to give some 
justification to the model. Now we improve the calculation by using a simple variational wave 
function, and derive a much better value of the scattering length. The new result is compared with 
other computed values, and when an approximate correction due to the van der Waals potential is 
included the total is consistent with an earlier conjecture. 
 

 
 
1. Introduction 
  
 The positronium-helium system at low energy has been of interest for a long time, from 
both the experimental and theoretical points of view. Some surprising recent experimental results 
have shown an unexpected similarity between scattering of electrons and Ps from a series of 
different targets [1]. Low- and zero-energy scattering calculations and measurements have been 
quite difficult as documented in Table II of reference [2]. There 17 theoretical and 4 experimental 
values for the Ps-He scattering length are listed, spanning a very wide range from 0.8 to 2.2 in 
units of a0 . Finally, an apparently definitive calculation of the scattering length has appeared, 
giving a value of 1.4046(6) and based on the diffusion Monte Carlo method (DMC) [3]. 
However, this method is relatively complicated, and it is still worthwhile to consider simpler and 
more physical models of this system. 

This is the third in a series of papers examining the consequences of a particular model 
that attempts to describe low-energy scattering of positronium atoms (Ps) by helium atoms (He). 
The basic simplification is to treat the electron in the Ps atom as distinguishable, but to account 
for exchange by adding an empirically determined local, repulsive potential. In the first paper of 
the series [4] it was also assumed that the exchange potential was by far the most important part 
of the Hamiltonian, and effects due to the local Coulomb interaction were omitted. In addition, 
the helium atom was assumed to remain unperturbed in its ground state. Because of this target-
elastic approximation the long-range van der Waals interaction was also neglected, and the 
authors of [4] suggested that the effect of these two interactions might approximately cancel. In 
spite of these approximations the result “shows an uncannily good agreement with the DMC 
estimate” [3].  
 In the second paper [5] we attempted to account for the short-range Coulomb effect with 
a three-term close-coupling approximation. Although the result was not well converged it did 
indicate that the original assumption (or hope) that exchange was dominant could not be 
quantitatively supported. In the present work the program of [5] is more efficiently carried out 
using a short-range correlation function variationally. Although the van der Waals potential is still 



not properly accounted for its effects can be estimated from the early work of Barker and 
Bransden [6], and the two effects do seem to cancel, at least approximately. 
 The model is based on the following Hamiltonian: 
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Here H0 contains the non-relativistic Hamiltonians of the projectile positronium atom and the 
target helium atom, respectively, V is the “exchange potential” and has the form 
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exchange results. The interaction potential between the Ps and helium atoms is 
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The Ps ground-state wave function is ( ) ( ) ( ) 2/18/2/exp πρρφ −= , and we approximate the 

helium wave function as ( ) [ ]( ) ./exp, 32
3

32 πψ rrZZrr +−=  The coordinate xr 
−= 1ρ   is the 

internal coordinate of the Ps atom, whose center of mass position is ( ) .2/1rxR 
+=  (The origin 

of coordinates is at the helium nucleus, taken to be infinitely massive, and x  is the position of the 
positron.) The variational trial scattering function has the same form as in [4]: 
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where 
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Here the bracket notation is defined as ( ) ( )ρφρφ ff ∫≡ ρd .  
 At this point the calculation looks exactly the same as that in [4], but in that case the 
Coulomb interaction potential Vint was omitted. In the next section this omission will be 
corrected, and the details of the calculation will be described. 
 
2. Details of the calculation 
 
 The variational principle to be employed is the following: 
                                  ( )Ψ−Ψ== ∫ EHJJ 32 rdrdρdRd where,0 

δ ,                                     (5) 

and the variation is with respect to the two functions, .and Fχ Since the coordinates of the 
helium wave function appear in Eq.(3) in separable form the integration over them can be 
performed immediately. Integration of Vint over 32dd rr 

 gives rise to the following simple 
potential: 
                                                           ( ) ( )1rUxUU −=  .                                                           (6) 

where ( ) ( ) .Zand,4 16
2712 =+= − ZyU y

Zye Following the work in [4] we obtain the two zero-
energy coupled differential equations for Fandχ  : 
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The definitions of the various quantities appearing in (7) are almost the same as in [4], with the 
addition of the direct potential U where appropriate: 
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(Notice that U does not appear in the definition of U 1 due to its odd symmetry.) Some of the 
integrals appearing in (8) involve only the electron coordinate r1, and they can be easily 
integrated using the Fourier technique described in Appendix B of [5]. Others involve mixed 
coordinates (r1   and x), and we have treated these numerically.  
 In the conventional way, we rewrite the coupled differential equations in (8) by using the 
definitions RvFRu /and/ ==χ : 
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Two linearly independent solutions, [ ] [ ]2211 ,and, vuvu , are obtained numerically by starting 
the integration with either zero or finite slope. Choosing a linear combination of these two 
solutions that gives a vanishing value for v as ∞→R  leads to the appropriate form for u from 
which the scattering length a can be obtained: ( ).aRu −∝  
 
2. Results and discussion 
 
 We first repeated the static-exchange calculation by solving the first equation in (9) 
without including U2 and checked the calculation of [4]. Then we omitted the potential U from 
(8), solved equations (9), and recovered the correlated result given in [4]. Finally, with U 
included, we obtained the variationally correct consequences of the target-elastic model. All these 
results are displayed in Table 1. 
 It turns out that including the short-range Coulomb potential, which leads to the inclusion 
of U, does indeed partially cancel the effect of including correlation. What happens is the 
following. Without correlation the short-range potential U vanishes because of symmetry (as 
discussed above), and the repulsive exchange potential gives a large value of the scattering 
length. When the correlation function G is added, as was done in [4], the Ps wave function is 
distorted to keep the electron further from the target atom than the positron and to allow the Ps to 
approach closer with a resultant decrease in the scattering length. Finally, when the full model is 
treated, this distortion allows the short-range Coulomb force to come into play. Since the positron 
is closer and the electron is further away from the attractive atomic potential the net effect is now 
repulsive, and the scattering length now increases. All this was qualitatively apparent in [5], but it 
was necessary in that work to make some fairly large extrapolations; the present calculation 
makes that unnecessary. From internal considerations of the calculations in [4], we estimate that 
the present scattering length lies no more than 0.03 above the exact value determined by the 
model. 
 To make a realistic estimate of the scattering length of the physical Ps-He system, 
however, it would be necessary to relax the target-elastic characteristic of the model. The 
principal effect of allowing distortion of the helium target would be inclusion of the van der 
Waals potential (vdW) whose long-range asymptotic form is –C6 /R6 . An early work [6] 
attempted to do just that in an adiabatic approximation and found a lowering of the scattering 
length by 0.19. We may assume that adding the van der Waals potential would lower our result 
by the same amount, and the total is also shown in the Table. But the value of C6=19.3 derived in 



[6] is apparently about 27% low, compared with the more recent result [7,8] C6=26.7.  If the 
change in the scattering length is taken to be proportional to this coefficient (which overlooks the 
short-range parts of the potential) then the scattering length would be lowered by about 0.26. All 
these estimates are shown in Table 1 with those that are variationally correct upper bounds (for a 
particular model) indicated. 
 
Table 1.  Positronium-helium scattering lengths in units of a0 in different approximations. 
Asterisks indicate variational upper bounds. Parentheses contain variant results due to differing 
treatments of the target wave function in the static-exchange approximation. The “adjusted vdW” 
entry refers to the more accurate value [7,8] of  C6. 

 
Reference Scattering length Description 

[9], [4] (1.80)*, 1.72* Static exchange 
[5] 1.695* 3-state close-coupling 
[6] (1.61), 1.53 Exchange + vdW 

 1.573* Present work 
[4] 1.42  
[3] 1.405 DMC  “exact” 

 1.38 Present + vdW 
. 1.31 Present + adjusted vdW 
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