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Convection in the solar interior is thought to comprise structures
at a continuum of scales, from large to small. This conclusion
emerges from phenomenological studies and numerical simulations
though neither covers the proper range of dynamical parameters
of solar convection. In the present work, imaging techniques of
time-distance helioseismology applied to observational data reveal
no long-range order in the convective motion. We conservatively
bound the associated velocity magnitudes, as a function of depth
and the spherical-harmonic degree `, to be 20-100 times weaker
than prevailing estimates within the wavenumber band ` < 60. The
observationally constrained kinetic energy is approximately a thou-
sandth of the theoretical prediction, suggesting the prevalence of
an intrinsically different paradigm of turbulence. A fundamental
question arises: what mechanism of turbulence transports the heat
flux of a solar luminosity outwards? The Sun is seemingly a much
faster rotator than previously thought, with advection dominated by
Coriolis forces at scales ` < 60, with Rossby numbers smaller than
∼ 10−2 at r/R� = 0.96. The Taylor-Proudman theorem is valid in
this regime, and given that iso-rotation contours in the Sun are not
co-aligned with the axis of rotation, a latitudinal entropy gradient is
necessitated.

The thin photosphere of the Sun, where thermal transport is dom-
inated by free-streaming radiation, shows a spectrum in which granu-
lation and supergranulation are most prominent. Observed properties
of granules, such as spatial scales, radiative intensity and line for-
mation are successfully reproduced by numerical simulations [1, 2].
In contrast, convection in the interior is not directly observable and
likely governed by aspects more difficult to model, such as the in-
tegrity of descending plumes and various instabilities [3]. Further,
solar convection is governed by extreme parameters [4] (Prandtl num-
ber∼ 10−6−10−4, Rayleigh number∼ 1019−1024, and Reynolds
number∼ 1012−1016), which make three-dimensional direct numer-
ical simulations impossible for the foreseeable future. It is likewise
difficult to reproduce them in laboratory experiments.

Turning to phenomenology, mixing-length theory (MLT) is pred-
icated on the assumption that parcels of fluid of a specified velocity
scale transport heat over one length scale (termed the mixing length)
and are then mixed in the new environment. While this picture is sim-
plistic [5], it has been successful in predicting aspects of solar struc-
ture as well as the dominant scale and magnitude of observed surface
velocities. MLT predicts a spatial convective scale that increases with
depth (while velocities reduce) and coherent large scales of convec-
tion, termed giant cells. Simulations of anelastic global convection
[6, 7], more sophisticated than MLT, support the classical picture of
a turbulent cascade. Considerable effort has been spent in attempting
surface [8] and interior detection [9, 10] of giant cells, but evidence
supporting their existence has remained inconclusive.

Here, we image the solar interior using time-distance helioseis-
mology [9, 10, 11]. Raw data in this analysis are line-of-sight pho-
tospheric Doppler velocities measured by Helioseismic and Mag-
netic Imager [12] onboard the Solar Dynamics Observatory. Two-
point correlations from temporal segments of length T of the ob-
served Doppler wavefield velocities are formed and spatially aver-
aged according to a deep-focusing geometry [13] (Figures 1 and 2).
We choose T based on estimates of convective coherence timescales
[14, 15, 6]. These correlations are then fitted to a reference Gabor
wavelet function [16] to obtain travel-time shifts δτ(θ, φ, T ), where
(θ, φ) are co-latitude and longitude on the observed solar disk. By
construction, these time shifts are sensitive to different components

Fig. 1. Line-of-sight Doppler velocities are measured every 45 seconds at

4096 × 4096 pixels on the solar photosphere by the Helioseismic and Magnetic

Imager (background image). We cross correlate wavefield records of temporal length

T at points on opposing quadrants (blue with blue or red with red). These “blue” and

“red” correlations are separately averaged, respectively sensitive to longitudinal and

latitudinal flow at (θ, φ; r/R� = 0.96), where (θ, φ) is the central point marked

by a cross (see Figure 2 for further illustration). The longitudinal measurement is

sensitive to flows in that direction while the latitudinal measurement to flows along

latitude. We create a travel-time maps δτ(θ, φ, T ) by making this measurement at

various points on the surface.

of 3D vector flows, i.e., longitudinal, latitudinal or radial, at specific
depths of the solar interior (r/R� = 0.92, 0.96) and consequently,
we denote individual flow components (longitudinal or latitudinal)
by scalars. Each point (θ, φ) on the travel-time map is constructed
by correlating 10,000 points, .......()NUMBER of correlations + mea-
surements. A sample travel-time map is shown in Figure 3.

Waves are stochastically excited in the Sun, because of which the
above correlation and travel-time measurements include components
of incoherent wave noise, whose variance [17] diminishes as T−1.
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Fig. 2. The cross-correlation measurement geometry (upper panel; arrowheads -

horizontal: longitude, and vertical: latitude) used to image the layer r/R� = 0.96
(dot-dashed line). Doppler velocities of temporal length T measured at the solar

surface are cross correlated between point pairs at opposite ends of annular discs

(coloured red and blue); e.g., points on the innermost blue sector on the left are

correlated with diagonally opposite points on the outermost blue sector on the right.

Travel times of waves that propagate along paths in the direction of the horizontal

and vertical arrows are primarily sensitive to longitudinal and latitudinal flows, vφ
and vθ , respectively. The focus point of these waves is at r/R� = 0.96 (lower

panel) and the measured travel-time shift δτ(θ, φ, T ) is linearly related to the flow

component v(r/R� = 0.96, θ, φ) with a contribution from the incoherent wave

noise. We are thus able to map the flow field at specific depths v(r, θ, φ) through

appropriate measurements of δτ(θ, φ, T ).

Fig. 3. A travel-time map spanning a 60◦ × 60◦ region around the solar disk

center, obtained by analyzing one day’s worth of data taken by the Helioseismic and

Magnetic Imager instrument [12] onboard the Solar Dynamics Observatory satellite.

These times are so chosen as to be sensitive to flow systems in the solar interior. The

spectrum of these travel times shows no interesting or anomalous peaks.

The variance of time shifts induced by convective structures that re-
tain their coherence over timescale T does not diminish as T−1, al-
lowing us to distinguish them from noise. We may therefore describe
the total travel-time variance σ2(T ) ≡

∑
θ,φ〈δτ

2(θ, φ, T )〉 as the
sum of variances of signal S2 and noise N2/T , assuming that S and
N are statistically independent. Angled brackets denote ensemble
averaging over measurements of δτ(θ, φ, T ) from many independent
segments of temporal length T . Given a coherence time Tcoh, we fit
σ2(T ) = S2 + N2/T over T < Tcoh to obtain the integral upper
limit S. The fraction of the observed travel-time variance that can-
not be modeled as uncorrelated noise is therefore S2/σ2(Tcoh). For
averaging lengths Tcoh (= 24 and 96 hours) considered here, we find

this signal to be small, i.e., S2 � N2/Tcoh, which leads us to con-
clude that large-scale convective flows are weak in magnitude. Fur-
ther, since surface supergranulation contributes to S, our estimates
form an upper bound on ordered convective motions.

Some details are in order. Spatial scales on spherical surfaces
are well characterised in spherical harmonic space: δτ `m(T ) =∫ π
0

sin θ dθ
∫ 2π

0
dφ δτ(θ, φ, T )Y ∗`m(θ, φ), where Y`m are spherical

harmonics, (`,m) are spherical harmonic degree and order, respec-
tively, and δτ `m(T ) are spherical harmonic coefficients. Here, we
specifically define the term “scale” to denote 2πR�/`, which im-
plies that small scales correspond to large ` and vice versa. Note that
a spatial ensemble of small convective structures such as a granules
or inter-granular lanes (e.g., as observed on the solar photosphere)
can lead to a broad power spectrum that has both small scales and
large scales. The power spectrum of an ensemble of small structures,
such as granulation patterns seen at the photosphere, leads to a broad
distribution in `, which we term here as scales. Travel-time shifts
δS`m, induced by a convective flow component v`m(r), are given
in the single-scattering limit by δS`m =

∫
� r

2 drK`(r) v`m(r),
where K` is the sensitivity of the measurement to that flow com-
ponent. The variance of flow-induced time shifts at every scale is
bounded by the variance of the signal in observed travel times, i.e.,
〈δS2

`m〉 ≤ S2/σ2(Tcoh) 〈δτ2`m(Tcoh)〉. To complete the analysis, we
derive sensitivity kernels K`(r) that allow us to deduce flow compo-
nents in the interior, given the associated travel-time shifts (i.e., the
inverse problem).

The time-distance deep-focusing measurement [13] is calibrated
by linearly simulating waves propagating through spatially small flow
perturbations, implanted at 500 randomly distributed (known) loca-
tions, on a spherical shell at a given interior depth (Figure 4). This
delta-populated flow system contains a full spectrum and has power
up to high spherical harmonic degrees. The simulated data are then
filtered both spatially and temporally in order to isolate waves that

Fig. 4. Because wavelengths of helioseismic waves may be comparable to or larger

than convective features through which they propagate, the ray approximation is

inaccurate and finite-frequency effects must be accounted for when modeling wave

propagation in the Sun [19]. In order to derive the 3D finite-frequency sensitivity

function (kernel) associated with a travel-time measurement [20], we simulate waves

propagating through a randomly scattered set of 500 east-west-flow ‘delta’ functions,

each of which is assigned a random sign so as not to induce a net flow signal [18] (up-

per panel). We place these flow deltas in a latitudinal band of extent 120◦ centered

about the equator, because the quality of observational data degrades outside of this

region. We perform six simulations, with these deltas placed at a different depth in

each instance, so as to sample the kernel at these radii. The bottom four panels show

slices at various radii of the sensitivity function for the measurement which attempts

to resolve flows at r/R� = 0.96. Measurement sensitivity is seen to peak at the

focus depth, a desirable quality, but contains near-surface lobes as well. Note that

the volume integral of flows in the solar interior with this kernel function gives rise to

the associated travel-time shift, which explains the units.
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propagate to the specific depth of interest (termed phase-speed filter-
ing). Travel times of these waves are then measured for focus depths
the same as the depths of the features, and subsequently corrected for
stochastic excitation noise [18]. Note that these corrections may only
be applied to simulated data - this is because we have full knowledge
of the realization of sources that we put in. Longitudinal and radial
flow perturbations are analyzed through separate simulations, giving
us access to the full vector sensitivity of this measurement to flows.
Travel-time maps from the simulations appear as a low-resolution
version of the input perturbation map because of diffraction asso-
ciated with finite wavelengths of acoustic waves excited in the Sun
and in the simulations. The connection between the two maps is pri-
marily a function of spherical-harmonic degree `. To quantify the
connection, both images are transformed and a linear regression is
performed between coefficients of the two transforms at each ` sepa-
rately. The slope of this linear regression is the calibration factor for
degree `.

We apply similar analyses to 27 days of data (one solar rota-
tion) taken by the Helioseismic and Magnetic Imager from June-July
2010. These images are tracked at the Carrington rotation rate, inter-
polated onto a fine latitude-longitude grid, smoothed with a Gaussian,
and resampled at the same resolution as the simulations (0.46875
deg/pixel). The data are transformed to spherical harmonic space
and temporal Fourier domain, phase-speed filtered (as described ear-
lier) and transformed back to the real domain. Cross correlations and
travel times are computed with the same programs as used on the sim-
ulations. Strips of 13 deg of longitude and the full latitude range are
extracted from each of 27 days’ results and combined into a synop-
tic map covering a solar rotation. The coefficients from the spherical
harmonic transform of this map are converted, at each degree `, by
the calibration slope mentioned above, and a resultant flow spectrum
is derived, as shown in Figure 5. These form observational upper
bounds on the magnitude of turbulent flows in the convection zone.

It is seen that constraints in Figure 5 become poorer with greater
imaging depth. This may be attributed to diffraction, which lim-

Fig. 5. Panels a, b: solid curves with 1-σ error bars show observational con-

straints on lateral flows averaged over m at radial depths, r/R� = 0.92, 0.96;

dot-dash lines are spectra from ASH convection simulations [6]. Colours differentiate

between the focus depth of the measurement and coherence times. At a depth of

r/R� = 0.96, simulations of convection [6] show a coherence time of Tcoh = 24
hours (panel a) while MLT [14] gives Tcoh = 96 hours (panel b), the latter obtained

by dividing the mixing length by the predicted velocity. Both MLT and simulations

[21, 22] indicate a convective depth coherence over 1.8 pressure scale heights, an

input to our inversion. At r/R� = 0.96, MLT predicts a 60 m s−1, ` = 61
convective flow and for r/R� = 0.92, an ` = 33, 45 m s−1 flow (upon apply-

ing continuity considerations [21]). Panel c shows upper bounds on Rossby number,

Ro = U/(2ΩL), L = 2πr/
√
`(`+ 1), r = 0.92, 0.96R�. Interior con-

vection appears to be strongly geostrophically balanced on these scales. By construc-

tion, these measurements are sensitive to lateral flows i.e., longitudinal and latitudinal

at these specific depths (r/R� = 0.92, 0.96) and consequently, we denote these

flows components (longitudinal or latitudinal) by scalars.

its seismic spatial resolution to a wavelength. In turn, the acous-
tic wavelength, proportional to sound speed, increases with depth.
Since density also grows rapidly with depth, the velocity required
to transport the heat flux of a solar luminosity decreases, a predic-
tion echoed by all theories of solar convection. Thus we may rea-
sonably conclude that the r/R� = 0.96 curve is also the upper
bound for convective velocities at deeper layers in the convective
zone (although the constraint at r/R� = 0.92 curve is weaker due
to a coarser diffraction limit). Less restrictive constraints obtained at
depths r/R� = 0.79, 0.86 (whose quality is made worse by the poor
signal-to-noise ratio) are not displayed here.

Implications
Convective transport.An ensemble of structures in the Sun of
sizes small and large will result in a broad spectrum of flows as
viewed in the space of spherical harmonics. Thus the large scales
which we image here (i.e., power at low `) contain contributions from
small and large structures alike, and represent, albeit in a complicated
manner, some features of the transport mechanism. Our constraints
show that the kinetic energy associated with such an ensemble (at
r/R� = 0.96) is at most a thousandth of that of current models.
Deeper within, i.e., r/R� < 0.96, flows are likely to be even weaker
due to the increasing density of the plasma. This represents a chal-
lenge to the mechanism of convective transport as discussed by e.g.,
[6]. We may further state, based on these observations, that we do not
definitively know what the energy-carrying scales in the convection
zone are. On a related front, how would this paradigm of turbulence
in the convection zone affect extant theories of dynamo action?

For example, consider the scenario discussed by [23], who en-
visaged very weak upflows, which, seeded at the base of the convec-
tion zone, grow to ever larger scales due to the decreasing density as
they buoyantly rise. These flows are in mass balance with cool inter-
granular plumes which, formed at the photosphere, are squeezed ever
more so as they plunge into the interior. Such a mechanism presup-
poses that these descending plumes fall nearly ballistically through
the convection zone, almost as if a cold sleet, amid warm upwardly
diffusing plasma. In this schema, individual structures associated
with the transport process would elude detection because the upflows
would be too weak and the downflows of too small a structural size
(M. Schüssler, private communication). When viewed in terms of
spherical harmonics, the associated velocities at large scales (i.e., low
`), which contain contributions from both upflows and descending
plumes, would also be small.

Differential Rotation. Differential Rotation, both a large-scale fea-
ture (` ∼ 2) and large-sized structure since it is one individual global
flow system, is easily detected in our travel-time maps. The stability
and amplitude of this feature induces travel-time shifts whose vari-
ance does not change with the amount of temporal averaging T . The
same is not true at related scales (i.e., ` < 60), where the average
variance of time shifts falls roughly like T−1. Consequently, we may
assert that we do not see evidence for a “classical” inverse cascade
that results in the production of a smooth distribution of scales.

Further, the low Rossby numbers in our observations indicate that
turbulence is geostrophically arranged on these scales at the depth
r/R� = 0.96. Because flow velocities are likely to become weaker
deeper in the convection zone, the Rossby numbers will decrease cor-
respondingly. At scales of ` < 60, the Taylor-Proudman theorem de-
scribing geostrophic turbulence likely holds within most of the con-
vection zone:

Ω0
∂Ω

∂z
=

g

2Cpr2 sin θ

∂S

∂θ
, [1]

where Ω0 is the mean solar rotation rate, Ω is the differential rota-
tion, z is the axis of rotation, θ is the latitude, g is gravity, S is the
azimuthally and temporally averaged entropy gradient and Cp is the
heat capacity at constant pressure. The rotation rate of the Sun is
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helioseismically well constrained, i.e., the left side of equation (1) is
accurately known. The iso-rotation contours are not co-aligned with
the axis of rotation, implying a non-zero left side of equation (1). We
may reasonably infer that the Sun does indeed possess a latitudinal
entropy gradient, of a suitable form so as to sustain solar differential
rotation. We do not speculate on the mechanism that may result in
such a gradient.
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