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Abstract—This paper presents work on the development and 

implementation of a novel approach to robotic navigation. In 

this system, map-building and localization for obstacle 

avoidance are discarded in favor of moment-by-moment 

behavioral processing of the sonar sensor data. To accomplish 

this, we developed a network of behaviors that communicate 

through the passing of rings, data structures that are similar in 

form to the sonar data itself and express the decisions of each 

behavior. Through the use of these rings, behaviors can 

moderate each other, conflicting impulses can be mediated, and 

designers can easily connect modules to create complex 

emergent navigational techniques. We discuss the development 

of a number of these modules and their successful use as a 

navigation system in the Trinity omnidirectional robot. 

I. INTRODUCTION 

great deal of the work in ranging-based autonomous 

navigation has focused on the dual problems of map-

building and localization. It seems clear that mapping and 

localization are essential to autonomous robotics. However, 

the assumption is often made that these internal maps should 

be the key to the robot‟s moment-by-moment navigational 

decision-making. This places enormous constraints on the 

character of the map, and often requires that they be 

extremely detailed. The majority of the work on obstacle 

avoidance in both static and dynamic situations either 

assumes the existence of a map [1], [3], [6] or assumes that 

the building of a map should be the first task [2], [4], [5]. 

These ideas are based on the assumption that for the 

purposes of obstacle avoidance, the robot should carry a 

highly detailed internal representation of the world. Elfes 

remarks in [4] that for successful autonomous operation, 

 

. . . it is necessary to develop systems . . . able to operate in 

unstructured environments with little a priori information. To 

achieve this degree of independence, the robot system must have 

an understanding of its surroundings, by acquiring and 

manipulating a rich model of its environment of operation.  

    

Similarly, Chang and Song describe in [3] a sensor based 

real-time navigation system which uses global path-planning. 

They assume that the map – updated via sensors when 

possible – is the basis for navigation, and obstacle avoidance 
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routines should be functions that take the map as their input. 

But as early as 1986, Dr. Brooks of the MIT CS/AI Lab was 

creating robots capable of this type of real-time navigation in 

a dynamic environment [7]. In [8], Brooks explains that his 

robot was successful because  

 

. . . it was using the world as its own model. It never referred to 

an internal description of the world that would quickly get out of 

date if anything in the real world moved. 

 

High-level navigation requires an internal map of some kind. 

However, the use of a single-level high resolution spatial 

map in moment-by-moment obstacle avoidance is extremely 

inefficient. Attempts to model the world internally for these 

purposes typically involve gross oversimplifications 

regarding the shape of obstacles [1], [2], or run into serious 

difficulty involving computational complexity [5]. 

Frequently running path-planning algorithms on full high-

resolution maps in real-time is not merely computationally 

difficult, it is unnecessary. In [8], Brooks argues that 

intelligent interaction with the world is generated by 

relatively simple rules running on top of complex perceptual 

processes. He describes the construction of a framework of 

simple systems for simple behaviors, with more complex 

behaviors emergent through the interaction of these systems 

with each other and with higher-level systems. By letting the 

simple systems run on a separate layer below the complex 

ones, the robot can respond intelligently and efficiently to its 

immediate surroundings while simultaneously pursuing 

whatever high-level goals it may have.   

II. OUR SYSTEM 

A. Trinity 

The Trinity robot was designed as a prototype for a 

number of systems that gather and process information, and 

as such makes use of a number of high-level sensors. These 

include a stereoscopic camera, an omnidirectional camera, x-

ray/visible spectrum fluoroscopes, and a thermal imaging 

camera. These sensors can be used to identify and gather 

data on science objectives, as well as serving as a basis for 

broad localization – that is, determining where the robot is. 

For the purposes of obstacle avoidance and moment-to-

moment navigation, the robot is equipped with a ring of 

fifteen ultrasonic ranging sensors, each of which measures 

the distance to the nearest obstacle within a 50-degree arc in 

the direction in which the sensor is pointed. 
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B. Behavioral Navigation 

Tasks such as the identification of dead ends, recognizing 

landmarks and rooms, and the construction of an absolute 

positional map are often combined with the task of low-level 

obstacle avoidance. These high-level tasks, however, are 

different in nature and often quite disconnected from the 

low-level ones – e.g. a person can be completely lost in a 

building and yet be no more likely to walk into a wall than a 

person who knows exactly the layout of the corridors and 

rooms.  

Our approach was to split the navigation problem at the 

obstacle-avoidance level – that is, we approached the 

problems of obstacle 

avoidance and low-level 

motion as separate from that 

of high-level goal-based 

navigation. Instead of 

modeling the world internally 

at a high spatial resolution, 

we chose to implement a 

series of perception-based 

behaviors which could run 

independent of a high-level 

map or goal. These behaviors 

– computationally trivial 

when compared with path-

planning and mapping 

algorithms such as A* and 

SLAM [5] – run in parallel, 

processing the sensor data in various ways and interacting 

with each other to decide what the robot‟s motion would be 

at any given moment.  

These lower-level behaviors proved capable of navigating 

the robot smoothly around and between obstacles. They 

allowed it to move quickly through open space, and slow 

down for careful navigation in cluttered space. They 

assumed nothing about the structure of the environment and 

required no warm-up or mapping period to become familiar 

with a region. Through moving these reflexive, sensor-based 

behaviors onto their own computational level, we have made 

the process of navigation more robust and efficient.  

Since these behaviors can handle the moment-to-moment 

problem of obstacle avoidance, the higher-level navigation 

algorithms have far more freedom in the way they handle the 

still-important problems of localization and mapping. The 

behavioral system lays a foundation on which navigation 

systems such as [9], [10], and [11] can be built. These detail 

work on systems that use high-level vision systems that 

perform localization by recognizing and remembering 

regions. As a side project, undertaken in anticipation of the 

utility of these systems to the Trinity project (among others), 

the histogram-based topological localization algorithm 

described in [12] was successfully implemented and tested 

using web cameras in both indoor and outdoor environments. 

These and other techniques provide a robust and accurate 

method of localization and mapping that creates maps well-

suited to established graph-theory navigational techniques. a  

C. Rings 

The low-level behaviors clearly needed to interact with 

and moderate one another, ultimately reconciling their 

varying impulses to arrive at a set of commands to the robot. 

The actual construction of behaviors themselves and a 

pattern of linkage between them would involve simulation 

and experiment, but a prerequisite of any work in this area 

was the development of a basic system for communication 

between the behaviors. The low-level behaviors, or 

„reflexes,‟ were designed to be perceptual rather than 

cognitive – that is, we tried to avoid abstract reasoning about 

the environment. To this end, we considered carefully the 

type of data received from the sensors. The data consists of 

an array of n range values, one from each of the sensor 

directions, which can be thought of as a „ring‟ of distances 

corresponding to the ring of directional sensors. We decided 

to implement behaviors that would use these rings of 

numbers as their means of transferring information. A ring 

consists of a list of values between 0 and 1, one for each 

sensor (that is, each direction). These rings proved effective 

in part because they could be easily combined, compared, 

and manipulated.  

One of the other formats we considered for 

communication was a single vector -- the main output of 

each behavior would be a direction and a speed. This, 

however, did not encourage interaction. If one behavior 

reported that it wanted to go in one direction, and another 

behavior outputted a different direction, there was no 

obvious way to come to a consensus between them. The 

vector average (or any other method for producing a third 

vector distinct from the first two) could conceivably be 

strongly unacceptable to both behaviors. The rings, however, 

rated the acceptability of each direction. We found that they 

could be combined easily through element-by-element 

multiplication, effectively giving each behavior a veto for 

each direction. If either behavior gave a particular direction a 

low rating, the corresponding product for that direction 

would be low. The strengths of the preferences expressed by 

each behavior could also be easily moderated by outputs 

from other behaviors (through a process described later), 

allowing for the possibility of a great variety of interactions 

as the network of behaviors grows.  

The rings also provided a conceptual framework that made 

the development of simple behaviors straightforward, as 

evidenced by the relative ease with which the basic 

navigational system was developed. The primary goals at this 

level of behavior were simple movement and collision 

avoidance. Regardless of whether the robot has a high-level 

goal, it should be capable of simple directional movement 

while avoiding collisions. The design of the initial set of 

behaviors reflects this goal and accomplished it quite 

effectively. 

 
Fig. 1. Trinity: an 

omnidirectional robot. 

 



  

III. SAMPLE BEHAVIORS AND MODULES 

We developed a number of behaviors and modules for the 

simple navigational framework. Several of these sample 

behaviors are detailed here, along with polar plots of 

example ring values. In addition to the examples discussed 

here, modules we developed included behaviors for light-

seeking, wall-following, and finding open spaces. 

A.  Weak Avoid 

The Weak Avoid 

behavior biases the robot 

toward open spaces. We 

wanted the value of each 

element in the ring (values 

of a sample ring are 

graphed on a polar plot in 

Fig. 1) to reflect the 

„openness‟ of the space.  

The ring value was 

calculated from the sonar 

value by a simple logistic 

transform: 
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In equation (1), Kp and Kd are parameters determining the 

radius and „strength‟ of the perimeter and 2.20 is a constant 

chosen to scale the parameters conveniently so that they 

represent 50% and 10% points on the logistic curve. Because 

of the wide field-of-view of the sonar sensors used in this 

implementation, this behavior can use the sensor data 

directly. If the sensors are more directional (i.e. laser 

rangefinders), this behavior should first transform the data to 

get a better measure of „openness.‟ 

B. Manual Direction 

The Manual Direction 

behavior takes a direction 

as input and outputs a ring 

with preference for that 

direction. The ring has the 

value 1 in the direction, 0 

in the opposite direction, 

and some gradient (often 

linear) in between.  

In the simplest case, this 

gradient value for an angle 

can be made proportional to the linear distance from the 

angle to the desired direction: 
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In equation (2), d is the desired direction, and θi is the 

angle to ith sensor. With this behavior – which is used as a 

component of several other behaviors – the robot can be 

easily biased to move toward or away from something. If the 

desired direction is „vetoed‟ by another behavior, the 

directions nearest to the desired one become the robot‟s next 

choices. 

C. Strong Avoid 

The behavior outputs a 

near-zero value for 

headings that, if followed, 

would result in an 

immediate collision. It 

establishes a virtual 

perimeter around the robot 

with a range of roughly 20 

centimeters. If an object is 

detected within that 

perimeter, it prohibits all 

directions less than 90 

degrees from that object. It does this by replacing each value 

range[i] with the minimum value within 90 degrees angle of 

angle[i], and then taking the logistic transform of the data (as 

described in Equation (1) with constants Fp = 35 cm and Fd = 

10 cm.  

This prevents the robot from driving straight toward the 

obstacle and from driving in a manner which would cause it 

to sideswipe the object. This behavior interacts 

constructively with the Manual Direction behavior – if a 

direction is selected that would lead to collision, the nearest 

direction parallel to the obstacle will have the largest value 

after the two are multiplied. That is, if a user tries to drive 

the robot into a wall, the robot will simply slide along the 

wall as if blocked by an invisible barrier. 

D. Inhibitor Module 

The inhibitor module takes as input a ring and a parameter 

X (with value on [0,1]) and it outputs a ring with uniformly 

weaker preferences (closer to 1). The inhibitor does this by 

scaling the input ring‟s values such that they fall between X 

and 1. If X is 0, the ring is output unchanged. If X is 1, the 

output ring is 1 everywhere – that is, the ring has been 

inhibited completely from having an effect.  

The inhibitor transforms the input as follows: 
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In equation (3), X is the mitigation factor.  

Each behavioral module can be paired with an inhibitor, 

and any module can output a value which can be used to 

inhibit another. For example, when the robot is closing in on 

a waypoint, it is moving slowly and there is less concern of 

hitting more distant walls, so the Weak Avoid behavior is 

more strongly inhibited the closer the robot gets to the 

waypoint (via a module that responds to a nearby waypoint 

 
Fig. 2. Sample  Weak Avoid ring 

plot. 

 

 
Fig. 4. Sample Manual Direction 

ring plot. 

 

 
Fig. 3. Sample  Strong Avoid 

ring plot. 

 



  

by outputting a higher X to the Weak Avoid inhibitor). This 

allows it to reach a waypoint that is near an obstacle even if 

the Weak Avoid behavior would normally prohibit this. 

E. Mediation Module 

The final outputs from the various behaviors are combined 

with a mediation module. This module creates a ring whose 

elements are given by the products of the corresponding 

elements in each of the n input rings: 
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This simple behavior arbitrator easily aggregates many 

behaviors into one ring graph. The largest value of the ring 

corresponds to the travel direction compatible with all the 

behaviors. Unlike other behavioral aggregation techniques, 

were the effect of individual behaviors is frequently hard to 

determine, a cursor inspection of each behavior‟s rings, in 

the context of the aggregated ring, readily give human 

observers intuition into the interactions among all the 

behavior. 

IV. EMERGENT DYNAMIC NAVIGATION 

As implemented, the robot is capable of efficiently 

navigating through dynamic environments. Its performance 

is not affected by quasi-static obstacles such as doors (as in 

[2]), and it is capable of maneuvering through a field of 

moving objects. This is notable, because this capability was 

in no way programmed explicitly into our system. Dynamic 

obstacle avoidance, often treated as a very different problem 

from static avoidance [1], was an emergent behavior of the 

static system. 

V. FUTURE WORK 

With the basic point-to-point navigation system described 

in this paper as a framework, we are free to develop higher-

level navigational systems using topological methods making 

use of other sensors. In addition, we will be developing a 

version of the system using laser rangefinders as a 

replacement for the somewhat unreliable sonar sensors, and 

further exploring the way that these behaviors can be 

developed and connected to optimize navigation and 

intuitively avoid dead ends and other such pitfalls.  

Often left unclear in Brooks‟ work [7] [8] is the 

methodology for choosing the way in which these reflexes 

are to be connected. In some cases, it is fairly obvious what 

connections will create the desired overall behaviors, but in 

others it is not. We have shown that even a few behaviors 

joined by primitive linkages chosen somewhat intuitively can 

create impressive functionality after only slight refining by 

experiment. There does not seem to be an easy way to 

determine, without simulation, what behaviors will emerge 

from a particular linked reflex system. However, these 

reflexes and their linkages can be quantified into a fairly 

restricted search space – a series of parameters representing 

inhibitions and individual behavior variables. If a metric is 

chosen that measure the robot‟s success at exhibiting a 

desired overall behavior – such as how quickly and/or 

frequently the robot reaches a randomly chosen waypoint – 

the parameters can be tuned using techniques borrowed from 

neural networks and mathematical optimization. These 

techniques, including simulated annealing [12], Tabu search, 

genetic algorithms, and reactive search [13], are extremely 

powerful and can be used to finely adjust parameters when a 

full mathematical description of the system is absent.  

As a preliminary exercise toward demonstrating the 

feasibility of this parameter-tuning, we varied several 

parameters and measured the time the robot took to complete 

a simple obstacle course. The experiment was not intended 

for data gathering, but merely to demonstrate that completion 

times could serve as a useful measure of a particular choice 

of settings. Each set of parameters can be mapped as a point 

in an n-dimensional parameter space. Therefore, through use 

of a simulation or automated obstacle course, the parameters 

could be tuned by the mathematical optimization algorithms 

mentioned above. These algorithms can attempt to find the 

set of parameters that minimized the metric – in this case, the 

time taken to complete the course.  

The techniques can be applied not only to the reflex 

parameters and ways in which the reflexes are connected, but 

to the very structure of the reflexes themselves. If the system 

can be simulated at a high enough rate, it is conceivable that 

entirely new reflex blocks could be developed and optimized 

solely through genetic algorithms. These self-developed 

reflexes could be phased in gradually, built first as small 

modifications of existing reflexes designed to augment a 

functioning system. As the techniques are refined, behavioral 

networks could be built entirely via these automated 

optimization routines. The reflex-ring behavior structure can 

serve as an excellent framework for the development of more 

sophisticated navigational algorithms while retaining the 

simplicity and characteristics that are the reason for their 

effectiveness. 
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