



Abstract—This paper presents work on the development and

implementation of a novel approach to robotic navigation. In

this system, map-building and localization for obstacle

avoidance are discarded in favor of moment-by-moment

behavioral processing of the sonar sensor data. To accomplish

this, we developed a network of behaviors that communicate

through the passing of rings, data structures that are similar in

form to the sonar data itself and express the decisions of each

behavior. Through the use of these rings, behaviors can

moderate each other, conflicting impulses can be mediated, and

designers can easily connect modules to create complex

emergent navigational techniques. We discuss the development

of a number of these modules and their successful use as a

navigation system in the Trinity omnidirectional robot.

I. INTRODUCTION

great deal of the work in ranging-based autonomous

navigation has focused on the dual problems of map-

building and localization. It seems clear that mapping and

localization are essential to autonomous robotics. However,

the assumption is often made that these internal maps should

be the key to the robot‟s moment-by-moment navigational

decision-making. This places enormous constraints on the

character of the map, and often requires that they be

extremely detailed. The majority of the work on obstacle

avoidance in both static and dynamic situations either

assumes the existence of a map [1], [3], [6] or assumes that

the building of a map should be the first task [2], [4], [5].

These ideas are based on the assumption that for the

purposes of obstacle avoidance, the robot should carry a

highly detailed internal representation of the world. Elfes

remarks in [4] that for successful autonomous operation,

. . . it is necessary to develop systems . . . able to operate in

unstructured environments with little a priori information. To

achieve this degree of independence, the robot system must have

an understanding of its surroundings, by acquiring and

manipulating a rich model of its environment of operation.

Similarly, Chang and Song describe in [3] a sensor based

real-time navigation system which uses global path-planning.

They assume that the map – updated via sensors when

possible – is the basis for navigation, and obstacle avoidance

Manuscript received September 15, 2012. This work was supported by

NASA Langley Research Center.

R. P. Monroe was with Christopher Newport University, Newport News

VA. He is now with xkcd.com (e-mail: randall@xkcd.com).

S. A. Miller is with NASA Langley Research Center, Hampton, VA (e-

mail: samuel.a.miller@nasa.gov).

A. T. Bradley is with NASA Langley Research Center, Hampton, VA (e-

mail: arthur.t.bradley@nasa.gov).

routines should be functions that take the map as their input.

But as early as 1986, Dr. Brooks of the MIT CS/AI Lab was

creating robots capable of this type of real-time navigation in

a dynamic environment [7]. In [8], Brooks explains that his

robot was successful because

. . . it was using the world as its own model. It never referred to

an internal description of the world that would quickly get out of

date if anything in the real world moved.

High-level navigation requires an internal map of some kind.

However, the use of a single-level high resolution spatial

map in moment-by-moment obstacle avoidance is extremely

inefficient. Attempts to model the world internally for these

purposes typically involve gross oversimplifications

regarding the shape of obstacles [1], [2], or run into serious

difficulty involving computational complexity [5].

Frequently running path-planning algorithms on full high-

resolution maps in real-time is not merely computationally

difficult, it is unnecessary. In [8], Brooks argues that

intelligent interaction with the world is generated by

relatively simple rules running on top of complex perceptual

processes. He describes the construction of a framework of

simple systems for simple behaviors, with more complex

behaviors emergent through the interaction of these systems

with each other and with higher-level systems. By letting the

simple systems run on a separate layer below the complex

ones, the robot can respond intelligently and efficiently to its

immediate surroundings while simultaneously pursuing

whatever high-level goals it may have.

II. OUR SYSTEM

A. Trinity

The Trinity robot was designed as a prototype for a

number of systems that gather and process information, and

as such makes use of a number of high-level sensors. These

include a stereoscopic camera, an omnidirectional camera, x-

ray/visible spectrum fluoroscopes, and a thermal imaging

camera. These sensors can be used to identify and gather

data on science objectives, as well as serving as a basis for

broad localization – that is, determining where the robot is.

For the purposes of obstacle avoidance and moment-to-

moment navigation, the robot is equipped with a ring of

fifteen ultrasonic ranging sensors, each of which measures

the distance to the nearest obstacle within a 50-degree arc in

the direction in which the sensor is pointed.

Behavioral Mapless Navigation Using Rings

Randall P. Monroe, Samuel A. Miller, and Arthur T. Bradley

A

B. Behavioral Navigation

Tasks such as the identification of dead ends, recognizing

landmarks and rooms, and the construction of an absolute

positional map are often combined with the task of low-level

obstacle avoidance. These high-level tasks, however, are

different in nature and often quite disconnected from the

low-level ones – e.g. a person can be completely lost in a

building and yet be no more likely to walk into a wall than a

person who knows exactly the layout of the corridors and

rooms.

Our approach was to split the navigation problem at the

obstacle-avoidance level – that is, we approached the

problems of obstacle

avoidance and low-level

motion as separate from that

of high-level goal-based

navigation. Instead of

modeling the world internally

at a high spatial resolution,

we chose to implement a

series of perception-based

behaviors which could run

independent of a high-level

map or goal. These behaviors

– computationally trivial

when compared with path-

planning and mapping

algorithms such as A* and

SLAM [5] – run in parallel,

processing the sensor data in various ways and interacting

with each other to decide what the robot‟s motion would be

at any given moment.

These lower-level behaviors proved capable of navigating

the robot smoothly around and between obstacles. They

allowed it to move quickly through open space, and slow

down for careful navigation in cluttered space. They

assumed nothing about the structure of the environment and

required no warm-up or mapping period to become familiar

with a region. Through moving these reflexive, sensor-based

behaviors onto their own computational level, we have made

the process of navigation more robust and efficient.

Since these behaviors can handle the moment-to-moment

problem of obstacle avoidance, the higher-level navigation

algorithms have far more freedom in the way they handle the

still-important problems of localization and mapping. The

behavioral system lays a foundation on which navigation

systems such as [9], [10], and [11] can be built. These detail

work on systems that use high-level vision systems that

perform localization by recognizing and remembering

regions. As a side project, undertaken in anticipation of the

utility of these systems to the Trinity project (among others),

the histogram-based topological localization algorithm

described in [12] was successfully implemented and tested

using web cameras in both indoor and outdoor environments.

These and other techniques provide a robust and accurate

method of localization and mapping that creates maps well-

suited to established graph-theory navigational techniques. a

C. Rings

The low-level behaviors clearly needed to interact with

and moderate one another, ultimately reconciling their

varying impulses to arrive at a set of commands to the robot.

The actual construction of behaviors themselves and a

pattern of linkage between them would involve simulation

and experiment, but a prerequisite of any work in this area

was the development of a basic system for communication

between the behaviors. The low-level behaviors, or

„reflexes,‟ were designed to be perceptual rather than

cognitive – that is, we tried to avoid abstract reasoning about

the environment. To this end, we considered carefully the

type of data received from the sensors. The data consists of

an array of n range values, one from each of the sensor

directions, which can be thought of as a „ring‟ of distances

corresponding to the ring of directional sensors. We decided

to implement behaviors that would use these rings of

numbers as their means of transferring information. A ring

consists of a list of values between 0 and 1, one for each

sensor (that is, each direction). These rings proved effective

in part because they could be easily combined, compared,

and manipulated.

One of the other formats we considered for

communication was a single vector -- the main output of

each behavior would be a direction and a speed. This,

however, did not encourage interaction. If one behavior

reported that it wanted to go in one direction, and another

behavior outputted a different direction, there was no

obvious way to come to a consensus between them. The

vector average (or any other method for producing a third

vector distinct from the first two) could conceivably be

strongly unacceptable to both behaviors. The rings, however,

rated the acceptability of each direction. We found that they

could be combined easily through element-by-element

multiplication, effectively giving each behavior a veto for

each direction. If either behavior gave a particular direction a

low rating, the corresponding product for that direction

would be low. The strengths of the preferences expressed by

each behavior could also be easily moderated by outputs

from other behaviors (through a process described later),

allowing for the possibility of a great variety of interactions

as the network of behaviors grows.

The rings also provided a conceptual framework that made

the development of simple behaviors straightforward, as

evidenced by the relative ease with which the basic

navigational system was developed. The primary goals at this

level of behavior were simple movement and collision

avoidance. Regardless of whether the robot has a high-level

goal, it should be capable of simple directional movement

while avoiding collisions. The design of the initial set of

behaviors reflects this goal and accomplished it quite

effectively.

Fig. 1. Trinity: an

omnidirectional robot.

III. SAMPLE BEHAVIORS AND MODULES

We developed a number of behaviors and modules for the

simple navigational framework. Several of these sample

behaviors are detailed here, along with polar plots of

example ring values. In addition to the examples discussed

here, modules we developed included behaviors for light-

seeking, wall-following, and finding open spaces.

A. Weak Avoid

The Weak Avoid

behavior biases the robot

toward open spaces. We

wanted the value of each

element in the ring (values

of a sample ring are

graphed on a polar plot in

Fig. 1) to reflect the

„openness‟ of the space.

The ring value was

calculated from the sonar

value by a simple logistic

transform:

 









 


dK

inringInpK

e

iringOut
][197225.2

1
][(1)

In equation (1), Kp and Kd are parameters determining the

radius and „strength‟ of the perimeter and 2.20 is a constant

chosen to scale the parameters conveniently so that they

represent 50% and 10% points on the logistic curve. Because

of the wide field-of-view of the sonar sensors used in this

implementation, this behavior can use the sensor data

directly. If the sensors are more directional (i.e. laser

rangefinders), this behavior should first transform the data to

get a better measure of „openness.‟

B. Manual Direction

The Manual Direction

behavior takes a direction

as input and outputs a ring

with preference for that

direction. The ring has the

value 1 in the direction, 0

in the opposite direction,

and some gradient (often

linear) in between.

In the simplest case, this

gradient value for an angle

can be made proportional to the linear distance from the

angle to the desired direction:

        


 2mod,2modmin
][2 dd

iringOut ii 
 (2)

In equation (2), d is the desired direction, and θi is the

angle to ith sensor. With this behavior – which is used as a

component of several other behaviors – the robot can be

easily biased to move toward or away from something. If the

desired direction is „vetoed‟ by another behavior, the

directions nearest to the desired one become the robot‟s next

choices.

C. Strong Avoid

The behavior outputs a

near-zero value for

headings that, if followed,

would result in an

immediate collision. It

establishes a virtual

perimeter around the robot

with a range of roughly 20

centimeters. If an object is

detected within that

perimeter, it prohibits all

directions less than 90

degrees from that object. It does this by replacing each value

range[i] with the minimum value within 90 degrees angle of

angle[i], and then taking the logistic transform of the data (as

described in Equation (1) with constants Fp = 35 cm and Fd =

10 cm.

This prevents the robot from driving straight toward the

obstacle and from driving in a manner which would cause it

to sideswipe the object. This behavior interacts

constructively with the Manual Direction behavior – if a

direction is selected that would lead to collision, the nearest

direction parallel to the obstacle will have the largest value

after the two are multiplied. That is, if a user tries to drive

the robot into a wall, the robot will simply slide along the

wall as if blocked by an invisible barrier.

D. Inhibitor Module

The inhibitor module takes as input a ring and a parameter

X (with value on [0,1]) and it outputs a ring with uniformly

weaker preferences (closer to 1). The inhibitor does this by

scaling the input ring‟s values such that they fall between X

and 1. If X is 0, the ring is output unchanged. If X is 1, the

output ring is 1 everywhere – that is, the ring has been

inhibited completely from having an effect.

The inhibitor transforms the input as follows:

   XXiringIniringOut n  1][][(3)

In equation (3), X is the mitigation factor.

Each behavioral module can be paired with an inhibitor,

and any module can output a value which can be used to

inhibit another. For example, when the robot is closing in on

a waypoint, it is moving slowly and there is less concern of

hitting more distant walls, so the Weak Avoid behavior is

more strongly inhibited the closer the robot gets to the

waypoint (via a module that responds to a nearby waypoint

Fig. 2. Sample Weak Avoid ring

plot.

Fig. 4. Sample Manual Direction

ring plot.

Fig. 3. Sample Strong Avoid

ring plot.

by outputting a higher X to the Weak Avoid inhibitor). This

allows it to reach a waypoint that is near an obstacle even if

the Weak Avoid behavior would normally prohibit this.

E. Mediation Module

The final outputs from the various behaviors are combined

with a mediation module. This module creates a ring whose

elements are given by the products of the corresponding

elements in each of the n input rings:


n

n iringIniringOut][][(4)

This simple behavior arbitrator easily aggregates many

behaviors into one ring graph. The largest value of the ring

corresponds to the travel direction compatible with all the

behaviors. Unlike other behavioral aggregation techniques,

were the effect of individual behaviors is frequently hard to

determine, a cursor inspection of each behavior‟s rings, in

the context of the aggregated ring, readily give human

observers intuition into the interactions among all the

behavior.

IV. EMERGENT DYNAMIC NAVIGATION

As implemented, the robot is capable of efficiently

navigating through dynamic environments. Its performance

is not affected by quasi-static obstacles such as doors (as in

[2]), and it is capable of maneuvering through a field of

moving objects. This is notable, because this capability was

in no way programmed explicitly into our system. Dynamic

obstacle avoidance, often treated as a very different problem

from static avoidance [1], was an emergent behavior of the

static system.

V. FUTURE WORK

With the basic point-to-point navigation system described

in this paper as a framework, we are free to develop higher-

level navigational systems using topological methods making

use of other sensors. In addition, we will be developing a

version of the system using laser rangefinders as a

replacement for the somewhat unreliable sonar sensors, and

further exploring the way that these behaviors can be

developed and connected to optimize navigation and

intuitively avoid dead ends and other such pitfalls.

Often left unclear in Brooks‟ work [7] [8] is the

methodology for choosing the way in which these reflexes

are to be connected. In some cases, it is fairly obvious what

connections will create the desired overall behaviors, but in

others it is not. We have shown that even a few behaviors

joined by primitive linkages chosen somewhat intuitively can

create impressive functionality after only slight refining by

experiment. There does not seem to be an easy way to

determine, without simulation, what behaviors will emerge

from a particular linked reflex system. However, these

reflexes and their linkages can be quantified into a fairly

restricted search space – a series of parameters representing

inhibitions and individual behavior variables. If a metric is

chosen that measure the robot‟s success at exhibiting a

desired overall behavior – such as how quickly and/or

frequently the robot reaches a randomly chosen waypoint –

the parameters can be tuned using techniques borrowed from

neural networks and mathematical optimization. These

techniques, including simulated annealing [12], Tabu search,

genetic algorithms, and reactive search [13], are extremely

powerful and can be used to finely adjust parameters when a

full mathematical description of the system is absent.

As a preliminary exercise toward demonstrating the

feasibility of this parameter-tuning, we varied several

parameters and measured the time the robot took to complete

a simple obstacle course. The experiment was not intended

for data gathering, but merely to demonstrate that completion

times could serve as a useful measure of a particular choice

of settings. Each set of parameters can be mapped as a point

in an n-dimensional parameter space. Therefore, through use

of a simulation or automated obstacle course, the parameters

could be tuned by the mathematical optimization algorithms

mentioned above. These algorithms can attempt to find the

set of parameters that minimized the metric – in this case, the

time taken to complete the course.

The techniques can be applied not only to the reflex

parameters and ways in which the reflexes are connected, but

to the very structure of the reflexes themselves. If the system

can be simulated at a high enough rate, it is conceivable that

entirely new reflex blocks could be developed and optimized

solely through genetic algorithms. These self-developed

reflexes could be phased in gradually, built first as small

modifications of existing reflexes designed to augment a

functioning system. As the techniques are refined, behavioral

networks could be built entirely via these automated

optimization routines. The reflex-ring behavior structure can

serve as an excellent framework for the development of more

sophisticated navigational algorithms while retaining the

simplicity and characteristics that are the reason for their

effectiveness.

REFERENCES

[1] K. Fujimura and H. Samet, "A hierarchical strategy for path

planning among moving obstacles," IEEE Trans. on Robotics

and Auto., Vol. 5, No. 1, 1989, pp. 61-69.

[2] W. D. Rencken, "Autonomous sonar navigation in indoor,

unknown and unstructured environments," Intelligent Robots

and Systems, Munich, Sept. 1994.

[3] C. C. Chang and Kai-Tai Song, "Sensor-based motion

planning of a mobile robot in a dynamic environment," in

Proc. of IEEE Int. Conf. on Indust. Elec., Vol. 2, 5-10 Aug.

1996.

[4] A. Elfes, "Sonar-based real-world mapping and navigation," in

IEEE J. of Robotics and Auto., Vol. RA-3, No. 3, June 1987.

[5] J. E. Guivant and E. M. Nebot, “Optimization of the

simultaneous localization and map-building algorithm for real-

time implementation,” in IEEETrans. on Robotics and Auto.,

Vol. 17, No. 3, June 2001.

[6] J. O. Kim and P. K. Khosla, "Real-time obstacle avoidance

using harmonic potential functions," in IEEE Trans. on

Robotics and Automation, Vol. 8, No. 3, June 1992.

[7] R. A. Brooks, “A robust layered control system for a mobile

robot,” in IEEE J. of Robotics and Auto., Vol. RA-2, No. 1,

Mar. 1986.

[8] R. A. Brooks, Flesh and Machines, Pantheon Books, New

York, 2002.

[9] J. Gaspar, N. Winters, and J. Santos-Victor, “Vision-based

navigation and environmental representations with an

omnidirectional camera,” in IEEE Trans. On Robotics and

Auto., Vol. 16, No. 6, Dec. 2000.

[10] N. Aihara, H. Iwasa, N. Yokoya, “Memory-based self-

localization using omnidirectional images,” in Proc.

Fourteenth Int. Conf. on Pattern Recognition, Vol. 2, 16-20,

Aug. 1998.

[11] I. Ulrich and I. Nourbakhsh, “Appearance-based place

recognition for topological localization,” in Proc. of IEEE Int.

Conf. on Robotics and Auto., Vol. 2, 24-38, Apr. 2000.

[12] W. Jackson and M. McDowell, “Simulated annealing with

dynamic perturbations: a methodology for optimization,” in

Aerospace Applications Conference Digest, pp. 181-191, Feb.

1990.

[13] R. Battiti and M. Protasi, “Reactive search, a history-sensitive

heuristic for MAX-SAT,” in ACM J. of Experimental

Algorithms, 2, 1997.

