Analysis of the relationship between climate and NDVI variability at global scales
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1. Introduction: interannual variability in modeled (CASA) C flux is in part caused by
interannual variability in NDVI (FPAR) (Fig. 1).
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2. Justification: Is interannual variability in NDVI explained by climate? Here we
examine the sensitivity of NDVI to interannual variability in precipitation and temperature.

3. Data:

Table 1. Data sets used.
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« Data sets used: long record; global coverage; consistent with data sets of higher quality (Fig. 2);
* Use of TRMM precipitation (40°N-40°S, 0.25°, semimonthly, 1998-2010)7 gives the same result.

Fig. 4 Averaged r values of the whole time series vs. lags for different land cover types in different regions (error bars: 10).
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 Higher herbaceous cover (forests -> woody savannas -> savannas -> closed+open shrublands & grasslands):

4. Methods:
4.1. Conducted Pearson’ s correlation analyses at pixel level with varying lags (of NDVI
response to climate) on:

-1982-2009 NDVI — precipitation anomaly time series (monthly, 1°x1°);

-1982-2010 NDVI — temperature anomaly time series (monthly, 0.5°x0.5°);
4.2. Accounted for first-order temporal autocorrelation following Dawdy and Matalas
(1964)8. Only significant correlation coefficients (r values with corrected p values <0.05,
two-tailed t-test) are shown.

stronger correlations and clearer 1-month peak lag pattern.
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* Early growing season (May):

NDVI most sensitive to

precipitation during winter

and spring;

© «End of growing season
(August): NDVI most sensitive
to more recent precipitation.
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5. Results:
5.1. NDVI — precipitation anomaly correlations:

Fig. 3 NDVI — precipitation correlations for
the whole time series (1 month lag).

s (Results using monthly precipitation here
were consistent with those using
accumulative precipitation (not shown).)

‘e Strongest for 1-month
preceding precipitation;

s ® Significant in 36% of land pixels;

,., * Positive in arid and semiarid

., areas where grasslands and

.5 shrublands are the dominant

land cover types.

5.2. NDVI - temperature anomaly correlations:
Fig. 6 For the whole time series (no lag). Fig. 7 Averaged r values vs. lags for different regions.
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« Strongest for current month temperature (Fig. 6&7);
« Significantly positive in 40% of total land pixels, and 77% of these pixels are north of 35°N (Fig. 6);
* Not associated with land cover types.
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6. Conclusion:
* This study confirms a mechanism producing
variability in modeled NPP:

- NDVI (FPAR) interannual variability is
strongly driven by climate;

- The climate driven variability in NDVI
(FPAR) can lead to much larger fluctuation in
NPP vs. the NPP computed from FPAR
climatology (Fig. 8).

Fig. 8 Annual NPP modeled from variable FPAR vs. from FPAR climatology.

5 T T T T T T T T T T T T

——Variable FPAR
~——FPAR Climatology

NPP, Pg C yr”!

L L L L L L L
2003 2004 2005 2006 2007 2008 2009 2010

Year

L I 1 L
1999 2000 2001 2002




