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Abstract 

We present a survey of Ke lvi n-Helmholtz (KH) waves at Mercury 's magnetopause during 

MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well

establ ished sawtooth wave signatures that are associated with non-linear KH vortices at the 

magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the 

magnetosphere where the magnetosheath flow velocity is still sub -sonic, wh ich implies that 

instability growth rates at Mercury's magnetopau~ are much larger than at Earth. We attribute 

these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. 

The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10-

20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events 
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occurred in the post-noon and dusk-side sectors of the magnetopause. Th is asymmetry is like ly 

related to finite Larmor-radius effects and is in agreement with results from particle-in-cell 

s imu lations of the instab ility. The waves were observed almost exclusively during periods when 

the north-south component of the magnetosheath magnetic field was northward, a pattern similar 

to that fo r most terrestrial KH wave events. Accompanying plasma measurements show that the 

waves were associated with the transport of magnetosheath plasma into the magnetosphere. 

I. Introduction 

On 18 March 2011 the MErcury Surface, Space ENvironment, GEochemistry, and Ranging 

(MESSENGER) spacecraft performed a success ful Mercury orbit insertion (MOl) and is now the 

first spacecraft to provide continuous in situ data from the innermost planet. Together with 

measurements from the Mariner 10 and MESSENGER fl ybys of the planet, the collected data 

have revealed a small, yet complex magnetospheric system [Anderson el al., 2008; Zurbuchen et 

01., 2008; Slavin el 01., 2008]. Although it bears resemblance to a scaled-down version of the 

terrestrial case, Mercury's magnetosphere exh ibits several differences that fundamentally affect 

the system's behavior. Mercury's prox imity to the Sun together with the planet 's comparatively 

weak dipole moment create a very dynam ic system, with a reconnect ion rate far greater than 

what is typ ica ll y seen at Earth [Slavin et of., 2009]. The comparat ively strong interp lanetary 

magnetic field (IMF) drives intense substorms with loading-unloading times as short as 2-3 

minutes [Slavin et 01., 20 I 0]. In contrast to the other terrestrial planets, Mercury does not possess 

a substantial coll ision-dominated atmosphere, but rather a very tenuous exosphere of planetary 

atoms and molecules. The high so lar radiation at Mercury's orbit leads to rapid photo-ionization, 
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which c reates an ionized extension of the exosphere (primari ly Na') throughout the 

magnetosphere [Zurbllchen el 01., 2008, 2011 ; Raines er 01., 20 11]. The presence of heavy ions is 

expected to influence the dynamics of many o f the magnetospheric processes, introducing kinetic 

effects into the system as the ion Larmor radii become large compared with the scale of the 

magnetosphere . Addit ionally. there is no conducting ionosphere around the planet, which means 

that any field-aligned current (FAC) system must close through Mercury's resisti ve regolith. 

Possible FAC signatures were observed during the first Mariner 10 flyby [Slavin el aI., 1997], 

but no ev idence support ing the existence of FAC systems has yet been reported from 

MESSENGER observat ions. 

In this paper, we present a survey of the magnetospheric Kelvin·Helmhohz (KH) instability 

during MESSENGER's first Mercury year (88 days) in orb it. Kelvin-He lmho ltz waves are 

known to develop at a planetary magnetopause, where sma ll·scale perturbations ga in energy 

from the velocity s hear between the magnetospheric and magnetosheath plasma and thereby 

grow into large·sca le rolled·up vortices. Eventua lly, as the waves reach a turbul ent state, they 

lead to the transfer o f both plasma and energy from the dense magnetosheath into the more 

rarified magnetosphere . There exists considerable observationa l ev idence for KH waves on both 

the dawn and dusk flank of the terrestrial magnetosphere, spanning approxi mately from the 

dawn-dusk meridian to 30 Earth radii down the magnetotail [e.g., Chen and Kivelson, 1993; 

Chen et af., 1993; Kokublln et 01., 1994; Fairfield et 01., 2000, 2003, 2007; OltO and Fairfield, 

2000; Farrugia et aI. , 2000; Hasegawa el al., 2004]. All of these wave events were reported in 

vic inity of the eq uatoria l plane, where the magneto pause is believed to be susceptible to the KI-I 

instability [e.g. , Hasegawa et al. , 2004; Foullon et al., 2008]. KH wave activ ity has also been 
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observed at both the inner and outer boundaries of Saturn 's low-latitude boundary layer [Masters 

el 01., 2009, 2010; De/amere el 01.,201 1] and at the ionopause of Yen us [Pope ef aJ., 20 10]. A 

majority of the KH observations that have been reponed from Earth cover periods of northward 

IMF. Such a condition is believed most favorable fo r the development of the instability. The 

northward direction of the field minimizes the fie ld line tension in the direction of the streaming, 

which otherwise can have an inhibiting effect on the instability [Chandrasekhar, 196 1]. The 

northward component also prevents reconnection at the dayside magnetopause, which in turn 

makes the closed dayside surface direct ly accessible to the imp inging so lar wind plasma and 

thereby increases the size of the viscous interaction region [Bun::h et 01., 1985]. For southward 

IMF, flux transfer events generated by dayside reconnect ion may also disrupt the evo lution of 

KH vortices [Hwang et al., 2011]. 

A series of KH waves was observed during MESSENGER's third Mercury flyby (M3) on 29 

September 2009 [Boardsen et al. , 20 I 0] as the spacecraft crossed the equatorial dusk-side 

magnetosphere. During that event, observed large-scale features in the magnetic fie ld data were 

similar to those during many terrestrial events, including both abrupt inbound/outbound 

crossings of the magnetopause (as determined by the magnetic field magnitude) and sawtooth 

oscillations in the equatorial components of the field . Unfortunate ly, no high-resolution plasma 

measurements were available for this event. By appl ying a minimum variance analysis to the 

attributed magnetopause crossings, Boardsen et af. [20 10] determined the magnetopause 

orientat ion at each wave encounter and showed that the measurements could be interpreted as a 

train of highly steepened surface waves propagat ing past the spacecraft with a period of about 16 

s and a wave length of - 2800 km. In a furthe r analys is of the event, Sundberg et al. [2011] 
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showed that by taking advantage of MESSENGER's rapid cross ing oflhe magnetopause region, 

a quasi-steady rolled-up vortex structure could be reconstructed from the magnetic field 

measurements . 

2. Coordinate System 

With the extended coverage of Mercury's magnetic field available from the orbital phase of the 

MESSENGER mission, Anderson et al. [2011b] were ab le to specify the planetary dipole 

moment with high precision. They concluded that the magnetic fie ld can be represented by a 

dipole of mament 195± IO nT RM3 (where RM is Mercury's radius, 2440 km ) centered 484± 11 km 

north oflhe planet 's equatorial plane. An upper limit on the dipole tilt angle of 3° relative to the 

planet's rolational ax is was also detennined. 

In analogy with the geocentric so lar magnetic (GSM) and geocentric so lar ecliptic (GSE) 

coordinate systems freq uently used for the terrestrial magnetosphere, a Mercury so lar 

magnetospheric (MSM) coordinate system centered at the orig in of the planetary dipole moment 

is now avai lab le. In MSM coordinates, the X-axis is directed outward from the magnetic dipole 

toward the Sun . The Y-axis is perpendicular to X and is positi ve in the direction opposite to the 

orbita l motion of the planet. The Z-axis is in the direction of magnetic north (i.e., nonnal to the 

planet 's orbita l plane and positive toward thc north ce lestial pole), and completes the right

handed system. The MSM coordinate system thus corresponds to a northward shift of 484 km 

from Mercury solar orb ita l (MSO) coordinates. 

3. Observations 
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In this study we primarily utilize data from the MESSENGER Magnetometer instrument 

[Anderson et aJ., 2007] to identify and classify KH waves at the magnetopause. Following MOl, 

MESSENGER has been in an eccentric orbit around the planet, with an 82.5° inclination to the 

orbital plane, an apoapsis of -7 RM from the planet center, and a peri apsis of - \.1 RM. The 

apoapsis, initially located at - 15:00 magnetic local time (MLT), progresses during the mission 

and makes a full revolution around Mercury's equatorial plane over the Mercury year. A fier an 

initial verification period, the Magnetometer instrument became fully operational on 22 March 

2011. To avoid introducing any bias in the statistics connected to the spacecraft trajectory, we 

have limited our analysis to one complete Mercury year (88 Earth days), starting on 23 March 

and ending on 20 June 2011. 

On the basis of terrestrial KH wave signatures, together with the KH wave observations during 

M3, we anticipate two dominant features in the wave patterns: sawtooth wave oscillations and/or 

periodic inbound and outbound magnetopause crossings. The sawtooth-like wave pattern, which 

is frequently observed in both the plasma and magnetic field data at Earth's magnetopause [e.g., 

Fairfield et 01., 2007; Hasegawa et aI., 2009], has been interpreted as a gradual transition 

through a mixing region on the leading edge of a rolled-up KH vortex, followed by an abrupt 

transition at the stable trailing edge [Fairfield e/ aI., 2007]. Large-scale boundary oscillations due 

to a KH wave train in the linear stage of the instability are more difficult to separate from non

KH phenomena, such as boundary motions due to variations in solar wind pressure. In order to 

adequately determine the KH nature of these types of waves, a full minimum variance analysis of 

a series of consecut ive boundary layer crossings is required [e.g. , Fairfield et 01., 2000]. 
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During the 23 March - 20 June 20 1 t time peri od, we found ev idence for six large-amplitude 

sawtooth -shaped wave trai ns, all of them in the post-noon and evening sectors of the 

magnetosphere. The spacecraft trajectory for each wave observation is given in Figure I. The 

detai ls of two examples are given in sections 3.1 and 3.2, and a statist ica l study of all six events 

is given in section 3.3. 

3.1. Example 1 - 15 May 2011 

On 15 May 2011, MESSENGER's periaps is was located on the post-noon side of the planet, 

inside the days ide magnetosphere, at approximately 14:50 MLT. as shown in Figure 2. An 

overview of the magnet ic field measurements is given in Figure 3. The spacecraft approached the 

equatoria l plane from the north. Soon after the spacecraft 's c losest approach (CA) to the planet at 

09: II :50 UTC, the Magnetometer recorded an extended interval of strong osci llations in the 

magnet ic field, B, with a periodicity of 30-40 s. The amplitude of the perturbations was at its 

strongest nearest CA, starting at 45° magnetic latitude, approximately I RM from the dipole 

center, with a peak· to-peak value of -20 nT, and th en decreased smoothly as MESSENGER 

traveled toward the post-noon side of the magnetosphere. The oscillat ions died out for an interval 

of - 2 minutes in the middle of the dayside magnetosphere, """()9:20:30-09:22:30 UTC, although 

an approximate wave pattern could still be di scerned in By and HI. during this period. 

As the spacecraft approached the magnetopause, the osci llations reappeared, first as small

ampl itude fluctuations in all components of the magnetic fie ld, and soon thereafter as large· 

amplitude oscillat io ns with variat ions up to nearly 40 nT peak to peak in the Bx component 
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together with a sawtooth-like wave pattern in By. All wave activ ity stopped about 1 mi n before 

the magnetopause crossing (encountered at -09:31 :20) at the same time that the plasma count 

rate increased toward magnetosheath values. No further wave act ivity was seen afte r that ti me. 

The magnetic field remai ned strongly northward th roughout the magnetosheath and in the solar 

wind fo r more than an hour after the wave encounters. 

A close-up view of the magnetic fie ld signatures of the KH waves is shown in Figure 3, together 

with supporting plasma data from MESSENGER's Fast Imag ing Plasma Spectrometer (FIPS) 

[Andrews el al., 2007]. The pattern ind icates that large, non-linear (plausibly rolled-up) plasma 

waves were present inside the days ide magnetopause, penetrating on the order of 0.25 RM (-600 

km) into the magnetosphere, or almost a th ird of the distance to the planetary surface. The 

spatial extent of the waves was thus simi lar to that for the KI-I event secn during the third flyby, 

but the full spatial structure is in thi s case difficult to determ ine as the spacecraft trajectory was 

not confined to th e planet's equatorial plane. The plasma measurements a lso showed clear 

periodic signatures of magnetos heath plasma at each wave encounter. The repeated pattern of the 

particle observations ins ide the magnetopause indicates that magnetosheath plasma was already 

being merged into the magnetosphere by KH waves in the post-noon sector of the magnetopause. 

Although no magnetic field perturbations are visible on the magnetosheath side of the 

magnetopause, periodic variations in the proton count ratc by up to a factor of 2 arc present in 

the plasma data. T here is a lso a periodic pattern in the density of sod ium ions that is consistent 

with the magnet ic fie ld oscillat ions. Notable Na + count rates are vi sible throughout most of the 

boundary layer when the plasma and magnetic field are magnetospheric, but no clear signature o f 

Na + is seen when the magnctoshcath plasma is present. These observations im ply that the 
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increased H+ count rates are actual encounters with magnetosheath plasma, and not the signature 

of compressional waves propagating inwards from the KH-unstab le boundary [e.g., Pu and 

Kivelson. 1983a, b]. 

The abso lute magnitude o f the field showed a two-peak feature similar to that reported by 

Sundberg el al. (2011] and was particularly visible during the time period 09:26-09:28. Th is 

pattern is indicative of the increase in the magnetic pressure at the edge of a vortex that is 

requ ired to ba lance the centrifugal fo rce acting on the plasma (Miura, 1997; Hasegawa el 01., 

2009; Nishino el 01., 2011] and can be interpreted as a sign ofthe rolled-up nature of the waves. 

A closer analysis of the wave pattern in the low-altitude region (09: 14:00-09: 17:40) shows an 

extremely stable wave pattern, primarily transverse a lbe it with a compressional component. The 

pulsations in min imum variance coordinates [Sonnerllp and Schieble, 1998] and the associated 

magnetic hodogram are given in Figures 4 and 5, respective ly. We have here appl ied a quadratic 

detrending of the data in order to remove the in fluence of the overa ll changes in the magnetic 

fi e ld magnitude and direction over the time peri od analyzed. The waves were e lliptically 

polarized with an e llipticity of 0.6, and the approximate directions of maximum, intermediate, 

and minimum variance in MSM coordinates were (·0.9, 0.3, 0), (0.3, 0.8, 0.5), and (-0.2, -0.5, 

0.9), respecti ve ly. The direct ion of min imum variance was clearly defined, with a ratio between 

the minimum- and intermediate· variance eigenva lues of 9.2, and the ratio of maximum to 

intenned iate eigenva lue was 2.5. As the spacecraft MLT was steady at - 15:00 throughout the 

observations, and the pulsation frequency was relatively constant, it is a reasonable assumption 

that the high· and low- latitude wave oscil lat ions are on near-conjugate fie ld lines. The low· 



10 

altitude oscillation would thus be the signature o f field-aligned waves propagating downward 

from the KH- instab ility reg ion toward the planetary surface. 

3.1. Example 2 - 17 JUlie 2011 

Another KH event was recorded on 17 June 20 11. As shown in Figure 1, MESSENGER was in 

an inbound trajectory on the dusk side at around 17:00 MLT and crossed the magnetopause at 

- 00: 50 UTe, 1 RM north of the orbital plane. The magnetic field measurements for thi s event are 

given in Figure 6. T he magnetopause transition is characterized by a change in the magnetic field 

properties from the high-frequency fluctuations typical of the magnetosheath to the smoother 

magnetospheric field components [e.g., Sundberg e l al. , 20 11]. There is also an increase in the 

average X-component of the field , but otherwise the fie ld propert ies were continuous across the 

boundary. 

In contrast to the 15 May event, the main wave activity is seen on the magnetosheath s ide of the 

magnetopause (as determined from the overall magnetic fie ld propert ies), where sawtooth 

osc illat ions with amplitudes close to 150 nT show clear signs o f a KH wavetrain propagating 

along the magnetopause boundary. Once inside the magnetosphere, the wave properties changed 

to a more sinuso idal character, with smoother variations in the field . In this event, the 

magnetospheric wave pattern is observable deep into the magnetosphere, on the order of 0.4 RM 

from the magnetopause. The oscillations were visible until the spacecraft reached 570 magnetic 

latitude, approximately 1. 13 RM from the dipo le center. Although the oscillation period was 

relatively stable, the waves did not show the same clear wave structure as the low-altitude 

pulsations on 15 May. This difference is poss ibly a result o f variabi lity in the solar w ind 
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properties during tne wave observations, as the 15 May observations showed an unusually stable 

northward-d irected magnetic field in both the magnetosheath and the so lar wind. Periodic 

variations in the ~ density are also visible during th is wave event, but they arc not as clearly 

correlated with the magnetic field as during the J 5 May event because the wave and sampling 

frequencies are simi lar in magnitude. An increase in the prolon flux is seen in the low-altitude 

portion of the wave pattern (- 00:55 - 00:59 UTC). This increase may be the signature of 

magnetosheath ions that have been introduced into the magnetosphere at the magnetopause 

through the KH waves and then consequent ly guided by the magnetospheric field toward lower 

latitudes. Verification of this inference requires a thorough analysis of the plasma data, however, 

and is beyond the scope of the present study. 

3.3. Event Selection and Statistics 

Six large-amplitude KH wave trains were identified in the Magnetometer data over the selected 

time period. The events were identified on the bas is of large-amp litude fl uctuat ions (>50 nn in 

the magnet ic field showing that a continuous series of sawtooth waves are present at the 

magnetopause. A few events during which minor KH -wave structures were observed but the KI-l 

wave motion was not the main source of the measured magnetic fiel d fluctuations are not 

included fu rther here. MESSENGER also measured a few consecutive inbound/outbound 

magnetopause crossings. Although these may be related to the KH instabi lity (as shown by 

Fairfield et 01. [2000J and 0110 and Fairfield [2000]), they require a long period of continuous 

observat ions for the KH structure to be adequate ly dctermined. As we cannot ascertain that this 

magnetopause motion is not due to compression and expans ion of thc magnetosphere driven by 

pressure fluctuations in the so lar w ind, we have chosen not to include such events in the analysis. 
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The detail s of the identified events are given in Table I. Data from the th ird Mercury flyby are 

also included as a comparison. The spacecraft trajectory fo r each wave observat ion is shown in 

Figure 1. 

Histograms of the measured wave periods are shown in Figure 7. All events show a re latively 

stable wave period in the approximate range 10-40 s, with a typical variation within ± IO s of 

their mean va lue (except fo r a few outliers in the data). The third Mercury flyby is not included 

here as the wave s ignature diffe rs greatly from those fo r the other events; see Boardsen el 01. 

[20 10] and Sundberg el 01. [20 11 ] fo r details. All events apart from M3 were accompanied by a 

northward magnetic fie ld in the magnetosheath and a re latively smooth trans ition in the magnetic 

fie ld properties from the magnetosheath to the magnetosphere. 

A majori ty of the e vents were observed during a time interval 8 days in length during which 

MESSENGER was crossing the dusk-side magnetopause in the 17:00- 19:00 MLT sect ion of the 

magnetosphere. The events that were farthest tail ward were marked by sawtooth oscillations that 

appeared to be primarily located in the magnetosheath, but the magnetospheric fie ld was less 

affected by the waves than fo r the dayside events. 

4. Discussion 

The observations presented here show clear ev idence that KH waves are frequently present at 

Mercury's post-noon and dusk-side magnetopause and that they can g ive rise to plasma transfer 

on the dayside magnetosphere and cause global magnetic field osci llations as the fie ld lines are 

distorted by the plasma wave motion. In contrast at Earth, to the best of our knowledge, there 
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are no fully reliable KH observations on the dayside of the terrestrial magnetosphere. Only a few 

wave observations possibly linked to the KH instability have previously been reported from this 

region [A ubry ef al., 197 1; Kawano el 01., 1994], but these may well have been the signature of a 

series of pressure pulses or flux transfer events propagating over the dayside rather than fully 

grown KH waves. The magnetic field oscillations observed here arc larger in amplitude, 70- 150 

nT, than the typ ical 30-50 nT oscillations reported at Earth [e.g., Chen et al., 1993; Foul/on el 

al., 2008; Fairfield el al., 2007], although the wave amplitude relative to the total local field is of 

the same order ofmagnilUde. The wave period is also much shorter, - 10- 20 s compared with -3-

5 min at Earth. It is thus evident that the KH growth rates are substantially higher at Mercury's 

magnetopause than at Earth. In addition, given the high pressures exerted by the sod ium ion 

group over the days ide magnetosphere (in some regions dominant over that of K"' (Raines el al., 

2011; Zurbuchen e/ al., 2011]) and the clear presence ofNa+ ions during the 15 May event, we 

expect a strong effect of the heavy ions on the instabi lity. 

4.1. Kelvin-Helmholtz Contributions to the Low-latitude Boundary Layer 

One of the discoveries reported by MESSENGER is the identification ora boundary layer in the 

equatorial dayside assoc iated with a reduced magnetic field pressure, but with no marked change 

in the magnetic field direction [e.g., Anderson el 01., 2008; Slavin et al., 2008, 2009J. Anderson 

et oj. [20 II a] showed that this boundary layer is associated with enhanced fluxes of K"' ions. This 

region, which by analogy to Earth has been termed the low-lat itude boundary layer (LLBL), was 

observed during both the first and second Mercury flybys (M I and M2), despite the different 

IMF cond itions for the two encounters. The M l observations showed a northward IMF and a 

relatively quiet magnetosphere, whereas the magnetosphere was strongly driven by southward 
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IMF during M2, with a high rate of magneti c reconnection ongoing at the dayside magnetopause. 

Raines el aJ. [20 II] derived LLBL H'" densities and temperatures from the FIPS measurements 

and reported that the measured W thermal pressure was not sufficient to account fully for the 

pressure balance at the inner boundary of the layer, falling short by up to 1.6 nPa and 0.6 oPa 

during M I and M2, respecti ve ly. For M 1, this figure corresponds to three times the estimated 

proton pressure in the layer. The LLBL must therefore contain an add itional plasma population 

not with in the instrument's fie ld of view. Suggested exp lanations include heavy pick-up ions 

from the exosphere that have been accelerated by the magnetosheath flow [e.g., Slavin e/ al., 

2008; Saran/os et 01., 2009] and so lar wind protons that entered through the cusp and 

experienced gradient and curvature drift into the closed fi eld line reg ion of the LLBL [Anderson 

ef al., 20 1I a]. 

Until now, the Kelvin-Helmholtz instab ility has not been considered as a likely source for the 

LLBL plasma, as the instability was expected to be act ive on ly at the nanks of the magnetotail 

rather than along the days ide regions of the magnetopause. However, as the present set of 

observati ons show that the KH instability can be responsible for the transfer of magnetosheath 

plasma into the magnetosphere even within the dayside section of the magnetosphere, the 

instabi lity therefore becomes a potential sou rce of the LLBL plasma. The est imated surface 

penetration of the KH waves is somewhat lower than the LLBL thickness reported by Anderson 

ef al. [20 1I a] HOOO-II OO km and -1000- 1400 during M I and M2, respectively, or 0.4-0.6 RM) , 

but they are of the same order of magnitude. It should be noted that the LLBL measurements 

were taken near the equatorial plane on the dawn side of the planet, whereas the measurements 

here are made off the equatoria l plane on the dusk side of the planet. It is still possible that KH 
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waves are frequently present in the equatorial region on the dawn side of the magnetosphere, 

although such waves can be expected to be less marked than those on the dusk side. 

4.2. Dawn-dusk Asymmetry and Finite Lormor-radius Effects 

The exclus ive observation of KH waves at the post-noon and dusk-side flank of the 

magnetopause gives strong evidence of a dawn-dusk asymmetry in the instability growth rate, 

although we cannot ascerta in that all KH unstable regions have been probed. The Z value of 

MESSENGER's magnetopause crossings varied with MLT, and in general the spacecraft crossed 

the magnetopause off the magnetic equatorial plane, where we expect the main wave acti vity to 

occur. However, the data do give nearly symmetric coverage of dawn and dusk crossings (and in 

equal number), which helps to establish the asymmetry in the growth rates. Nonetheless, effects 

re lated to IMF direction during the time period of the observations cannot be fully ruled out. 

Both analytica l estimates [e.g. , Nagano , 1979; Sanghv; and Chhajlani, 1994] and s imulations 

[Huba, 1996; Nakamura et al., 2010] pred ict that finite Larmor-radius effects should affect the 

instabil ity, and that the difference in the orientation of the ve locity shear versus the vorticity on 

the dawn and dusk flanks should lead to asymmetries in the growth rates [e.g., Sundberg eJ al., 

20 I 0]. By the use of part icle-in-cell simulations, Nakamura el 01. [2010] quantified the effects 

of the ion gyrations and showed that the introduction of finite gyro radi i in the KH simulations 

gave ri se to an increased width of the velocity shear layer, which in turn reduced the growth rate 

of the instability. The difference in the direction of the ve locity shear on the dawn and the dusk 

fl anks leads to an increase in the ion gyro rad ii on the dawn-side magnetopause and a decrease 

on the dusk side. T his d ifference was shown to have a not iceable effect on the growth rates on 
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the two sides, with the dusk-side magnetopause being much more unstable than the dawn side. 

These d ifferences should be visible in both the linear and non-l inear evolution of KH waves at 

Mercury's magnetopause. Contrary results were presented by Delamere et 0/. [20 11]. With a 

hybrid simulat ion code, they investigated the effect of water group ions on the KH instab ility at 

Saturn and showed that the inclusion of heavy ions had only minor infl uence on wave growth. 

As the observations here are of wave activity so lely on the dusk s ide, they are in agreement with 

the Nakamura el al. [20 I 0] resu lts. It is worth noti ng that th is effect leads to red uced growth 

rates on both flanks compared with the magnetohydrodynamic wave so lutions, and the 

simulations can therefore explain only the dawn-dusk asymmetry in the measurements and not 

the high growth rates in the post-noon sector of the magnetopause. 

The analytical solutions show a somewhat d ifferent picture. Here, the fi nite Larmor radii are 

found to have a stabilizing or de-stabili zing effect for wave lengths near that of the max imum 

growth rate, dependent on the orientation of the velocity shear. Nagano [19791 showed that this 

effect leads to an increased maximum growth rate on the dawn side and a red uction in the growth 

rate on the dusk side at both Earth and Mercury. Sanghvi and Chhajlani [1 994] and Sundberg et 

al. [20 I 0] also reached the same conclusions, whereas Glassmeier and Espley (2006] reported 

the opposite effect. Although these resu lts in principle predict an increase in the growth rate, they 

are generall y contrary to the results presented here and therefore do not adequately explain the 

observed dusk-side growth rates. 

4.3. Growth-rate Dependence on Solar Wind Properties 

Mercury's proximity to the Sun leads to very different so lar wind conditions at Mercury's orbit 
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than at Earth. By the so lar wind scaling given by Slavin and Holzer [1981), the solar wind 

number density varies as r -2, where r is the distance from the Sun in AU, and the magnetic field 

magnitude as r -l(r -2+1)1I2 . T hi s scal ing also leads to generally a lower value for plasma beta, the 

ratio of the plasma pressure to magnetic pressure, in the innermost solar system. As the 

instability is driven by the plasma motion and in hi bited by the magnetic field tension, this sca ling 

shou ld give less favorable so lar wind properties for the Ke lvin -Helmholtz instability at 

Mercury's orbit. Additiona lly, due to the Parker spiral effect, the re lative magnetic field increase 

is primarily in the radial component of the field , which leads to an additi onal depression of the 

instability [Chandrasekhar, 196 1]. The effects of the sonic and Alfven Mach numbers (MA and 

Ms) on the growth rate were investigated by Miura and PrilChelt [1982] and Miura [1992]. They 

found that both parameters had an effect on the instabi lity, and the highest growth rates were for 

low Ms and high M A • For the wave mode with propagation transverse to the magnetic field , shear 

flows below a critical Alfven Mach number - 2 were found to be stable. The soni c Mach number 

has an opposite effect, with hi gher growth rates fo r low Ms. According to linear theory, flow 

shears with Ms ~ 2 should in principle be stable [e.g., Miura and Pri/chell, 1982], but 

simulations by Miura [1990] and Kobayashi e/ 01., [2008] have shown that KH waves can 

develop no matter how large the sonic Mach number. Although the Mach numbers in the solar 

wind should be slightly lower at Mercury's orbit, the magnetosheath profile should follow a 

behavior similar to that given by Spreiter el al. [1966], and the relative effect on the KH growth 

rates shou ld be limited. We therefore find no reason to be lieve that the high growth rates implied 

by the observations reported here are direct ly related to the solar wind properties at Mercury's 

orbit. 
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4.4. Growth-rate Dependence on Planetary Conductivity 

In a simulation performed by Miura and Kan [1992], it was shown that the ionospheric 

conductance has an important limiting effect on the KH instability. The line-tying effect of the 

ionosphere stabilizes the wave mot ion of the fie ld line and provides energy dissipation in the 

fo rm of ionospheric joule heating. Similar results were presented by Keskinen et 01. [1 988]. 

Miura [1996] al so reported that an infinite ionospheri c conductivity, which prevents any fi eld

line slipping, wou ld completely stabilize the field lines and prevent KH waves from developing 

at the magnetopause. These results can be app lied to the MESSENGER observations. The large

amplitude osc illat io ns observed near the planetary surface during the 15 May event show that 

energy dissipation in the exosphere and rego lith is low. This inference is also supported by the 

lack of evidence fo r fie ld~aligned currents in the low~a ltitude polar region o f the planet. 

Mercury's lack of a conducting ionosphere and the low conductivity of the planet's rego lith may 

we ll contribute to the high growth rates observed. 

s. Summary 

Although Mercury's magnetospheric dynamics are dominated by magnetic reconnection, we 

have shown that the KH instabi lity plays a key role in driv ing the magnetosphere. Sawtooth 

osci llations of the magnetic field assoc iated with the KH instability hav ing a peak-te-peak 

amplitude of 100 nT or more are frequently present on the dusk side of Mercury's dayside 

magnetosphere. These waves in vo lve plasma transfer into the magnetosphere, even in the 

dayside regions of the magnetosphere, and they are thus a potential source fo r the thick LLBL 

observed at the p lanet [e.g., Anderson el al., 20 11a; Raines et al., 20 11 ]. The sawtooth 

oscillations are primari ly present in the ncar~magnetosheath region, with lower~ampl itude 
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osci llations visib le far into the magnetosphere . One event, recorded on [5 May 2011, shows that 

the wave perturbations are present all along the affected field lines, down to the low·altitude foot 

point of the field. 

A clear dawn-dusk asymmetry is seen in the data, with all the events recorded during 

MESSENGER's first Mercury year in orb it observed on the post-noon and dusk-s ide sections of 

the magnetosphere. These results are panly in agreement with those expected from finite 

Lannar-rad ius effects on the instabi lity; s imulat ions performed by Nakamura el al. [2010] have 

shown a clear dawn-dusk asymmetry in growth rates, with the dusk side being morc prone to the 

instability. The greater growth rates at Mercury than at Earth cannot presently be explained by 

finite Larmor-rad ius effects . Allhough an abundance or heavy ions will affect the instability, 

heavy ions should primari ly dampen the growth rates as they lead to a substantially broadened 

ve loc ity shear region. The high growth rates are better explained, as predicted by the 

magnetohydrodynamic s imulations or Miura and Kan [ 1992] and Miura [1 996], by the lack of a 

conducting layer at the surface of the planet that can diss ipate wave energy. 
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Table 1. Times and locations of KH waves observed at Mercury. 

Date DOV Time interval MLT,h MSHB, Mean Maximum 

period amplitude 

29 Sep 2009 272 21:27 -2 1:29 21 Variable 17 sl 40nT 

15 May 2011 135 09: 13 - 09:30 15.5 North 365 100 nT 

II Jun 2011 162 12:36-12:37 19 North 125 135 nT 

12 Jun 2011 163 00:28 - 00:36 19 North 205 70 nT 

15 Jun 2011 166 13:10 - 13:20 18 North 155 120 nT 

17 Jun 2011 168 00:45 - 00:58 17 North 175 150 nT 

19Jun2011 170 23:33 - 23:43 16 Nonh 24 s 75 nT 

Notes: For each event, the time interval, approximate MLT, direction of the magnetosheath Bz 

component, mean periodicity, and approximate maximum wave amplitude are given. DOYand 

MSH denote day of year and magnetosheath, respectively. lWe here use the time estimate from 

Boardsen el al. [2010]. The wave interpretation given by Sundberg el al. [2011] specifies a stable 

wave period af20 s. 

Figure I. Overview of MESSENGER's trajectory for the observed wave events. The trajectories 

in MSM coordinates for the full duration of the wave observat ions are shown by black lines, and 

the spacecraft position at the end of each event is given by a colored circle. The dashed lines 

show approximate locations of the magnetopause and the bow shock in the Z=O (top left), X=O 



33 

(top right), and Y=Q (bottom left) planes. The bottom-right panel is given in the X-R plane, where 

n - ..fer .... y3) is the radial di stance from the X-axis. Data from MESSENGER's third Mercury 

flyby are included o n a ll panel s for comparison. 

Figure 2. Overview of the KH wave observation on 15 May 2011. The panels show, from top to 

bottom, the X, Y, and Z components in MSM coordinates and the absolute magnitude of the 

magnetic field. The dashed line marks the approximate position o f the magnetopause (MP) 

crossing. 

Figu re 3. A closer view of the KH waves of 15 May 20 II. The top t\vo panels show the FIPS 

spectrogram of energy E per charge Q for the measured proton flux and the sodium ion count 

rate, respectively. Panels 3-6 follow the same format as in Figure 2. 

Figure 4. Close-up of the low-altitude pulsat ions. The figure shows, from top to bottom, the 

maximum (81), intermediate (B2), and minimum (B3) variance components and the absolute 

magnitude of the magnetic field after a quadratic detrending of the data. A 1-s smoothing filter 

has been app lied to the data. 

Figure S. Hodogram of the magnetic fie ld components in Figure 4 . 

Figure 6. KH observations on 17 June 20 II , in the same format as in Figure 3. 
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Figure 7. Histograms of the observed wave periods for the six events observed during 

MESSENGER's first Mercury year in orbit. The median and mean values of the periods for each 

wave event are marked by dotted and dashed~dotted lines, respectively. 
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