
First Keck Nulling Observations of a Young Stellar Object: Probing the 
Circumstellar Environment of the Herbig Ae star MWC 325 

S. RaglandU , K. Ohnaka2
, L. Hillenbrand3

, S. T. Ridgwa/, M. M. Colavita5
, R. L. Akeson6

, W. 
Cotton7

, W. C. Danchi8
, M. Hrynevych9

, R. Millan-Gabet6
, W. A. Traub5 

lW. M. Keck Observatory, 2Max-Planck-Institut fur Radioastronomie, 3California Institute of Technology, 4National Optical 
Astronomy Observatories, 5Jet Propulsion Laboratory, California Institute of Technology, 6NASA Exoplanet Science 
Institute, 7National Radio Astronomy Observatory, 8NASA Goddard Space Flight Center, 9MRO, New Mexico Tech 

ABSTRACT 

We present the first N-band nulling plus K- and L-band V2 observations of a young stellar object, 
MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the 
study of faint dust signatures associated with debris disks, but it also has a unique capability for 
studying the temperature and density distribution of denser disks found around young stellar objects. 
Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and 
thus, especially when spectrally dispersed within each band, enable characterization of the structure of 
the inner disk regions where planets form. Fitting our observations with geometric models such as a 
uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in 
the 2-12 !lm wavelength region, confirming the widely held assumption based on radiative transfer 
models, now with spatially resolved measurements over broad wavelength range, that disks are 
extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the L
band and N-band, respectively, compared to that in the K-band. The existing interferometric 
measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly
shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of 
representative "sub-micron" (0.1 !lm) and "micron" (2 !lm) grains of a 50:50 ratio of silicate and 
graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting 
a wide variety in the disk properties among Herbig Ae/Be stars. 

Keywords: stars: individual (MWC 325); stars: pre-main sequence; stars: circumstellar matter; stars: emission-line, Ae; 
techniques: interferometric; instrumentation: interferometers. 

1. INTRODUCTION 

The study of disks around pre-main sequence (PMS) stars supports a long-term goal of the detection and 
characterization of exoplanets. The initial formation of a circumstellar disk is a consequence of the 
angular momentum distribution during star formation. For the first several million years, a PMS star is 
surrounded by a disk of gas and dust, which is a remnant reservoir left over from the 
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build-up of stellar mass during the early stage of star formation. As the central star ages the disk 
disappears as a consequence of: (1) accretion of disk material on to the central star, (2) ejection of 
material through stellar winds, (3) irradiation by stellar and other energetic photons and (4) formation of 
planets. As circumstellar disks provide the raw material for planet formation, clues to the physical 
conditions of planet formation can be inferred from a detailed characterization, with the terrestrial planet 
zone corresponding to the inner regions of young stellar object (YSO) disks. Improved observations of 
inner disk evolution helps us to form a better model and hence improve our understanding of planet 
formation. 

Herbig Ae/Be (HAeBe) stars are a class of PMS stars of intermediate mass. The spectral types of 

HAeBe range from B to F, and their masses range from 2-8 M0 (Herbig 1960). The lifetime of the 
primordial disks of HAeBe stars is less than ~3 Myr (Hillenbrand et al. 1992; Hernandez et al. 2005). 
These stars may be the progenitors of Vega-type debris stars. 

A large number of HAeBe stars, across the luminosity range, have now been spatially resolved at near
infrared wavelengths using long baseline interferometry (Millan-Gabet et al. 1999, 2001; Danchi et al. 
2001; Eisner et al. 2003, 2004, 2007, 2009, 2010; Leinert et al. 2004; Monnier et al. 2005,2006; Malbet 
et al. 2007; Tatulli et al. 2007; Acke et al. 2008; Isella et al. 2008; Kraus et al. 2008a,b; Tannirkulam et 
al. 2008a,b; Ragland et al. 2009; Benisty et al. 2010a,b). 

We have been carrying out a systematic investigation of YSO disks of different luminosity types 
through multi-color interferometry using the Keck Interferometer (KI). With ~3 mas angular resolution 
at 2.2 /lm, the Keck Interferometer can resolve the inner circumstellar regions « 1 AU for distances 
<300 pc) of PMS star disks where terrestrial planets can form. Our first results on MWC 419, based on 
simultaneous K- & L-band measurements, were published in Ragland et al. 2009, where we found that 
MWC 419 exhibits relatively flat disk geometry. Prior to our work, multicolor interferometry results in 
the H- or K- and N-bands were reported for only three other YSO disks, MWC 297 (Acke et al. 2008), 
MWC 147 (Kraus et al. 2008a) and HD 100546 (Benisty et al. 201Ob) from observations with the Very 
Large Telescope Interferometer (VL TI). In this paper we report observations of MWC 325 in K-band 
(2.0-2.4 /lm), L-band (3.5-4.1 /lm) and N-band (8-12 /lm). 

MWC 325 (V1295 Aql; HD 190073; HIP 98719) is classified as A2 IVev (Mora et al. 2001). An 
alternate spectral type of A2IlIpe can also be found in the literature (Schutz et al. 2009). The distance to 
MWC 325 is uncertain. The most commonly adopted distance in the literature has been 290 pc, based 
on the lower limit from Hipparcos measurements (Van der Ancker et al. 1998). However revised 
Hipparcos measurements (van Leeuwen 2007) suggest a lower limit of 340 pc. More recently, 
Montesinos et al. (2009) estimate a distance of 767 =i~9 pc along with other stellar parameters such as 

mass, age and luminosity through an iterative SED fitting process in conjunction with PMS tracks and 
isochrones. Their reported values for mass, luminosity, and age are 5.05 ::;:~~ Me, 470.8+1892Le, and 0.6 

Myr, respectively. These authors adopt an effective temperature and log g of9500K and 3.37 ± 0.08, 



respectively. Catala et al. (2007) adopt an effective temperature, log g, and log(LIL e) of 9250 ± 250K, 

3.5 ± 0.5, and 1.9 ± 0.12, respectively, and obtain stellar mass, stellar radius, and age of 2.85 ± 0.25 Me, 

3.6 ± 0.5 Re, and 1.2 ± 0.6 Myr, respectively, using theoretical evolutionary tracks. In this paper, we 

adopt an effective temperature, luminosity, radius, mass and distance of 9250 K, 83 Le, 3.6 Re, 2.85 Me, 
and 340 pc, respectively, for the central star. The reason for adopting a distance of 340 pc is that our 
Kurucz model fits to BVRI photometric data from literature favors this value over the estimate of 
Montesinos et al. (2009) for a star on the main sequence. We discuss the impact of this choice on our 
results in Section 3.2. 

MWC 325 shows a low projected stellar rotational velocity, reported to be 9 hnls (Acke & Waelkens 
2004) to 12 krnls (Pogo din et al. 2005). The expected rotational velocity for an A2 IV/III star is in the 
range 100-150 krnls (TassouI2000). The observed low velocity suggests that the central star has either a 
low intrinsic rotational velocity or a typical intrinsic velocity but is viewed close to face-on. 

MWC 325 exhibits a classical P Cygni II-type profile for the Balmer lines, Ha to He (Pogodin et al. 
2005). These authors conclude that MWC 325 exhibits a strong stellar wind with an optically thick 
equatorial disk. PAH emission was not detected in MWC 325 from a 3 /-lm survey of HAeBe stars 
(Acke & van den Ancker 2006). 

In this paper we report spectrally resolved K-, L- and N-band interferometric measurements of 
MWC 325. These probe physically different regions of the circumstellar disk having representative 
temperatures ~1400K, ~800K, and ~300K, respectively for simple blackbody grains. Moreover, these 
multi-wavelength observations probe different spatial scales as the fringe spacing on the sky is directly 
proportional to the wavelength. Thus, the N-band observations probe spatial scales roughly 5 times 
larger than that of the K-band observations. Discrete spatial distributions such as dust-rims and 
relatively-smooth spatial distributions such as classical accretion disks are expected to have different 
size-verses-wavelength behaviors, and can be distinguished in such multi-color observations at well 
separated wavelengths. MWC 325 has been spatially resolved previously by interferometers in the H- & 
K-bands (Millan-Gabet et al. 2001; Eisner et al. 2004, 2007, 2009; Monnier et al. 2006). These previous 
measurements enable a check for time variability in inner disk radii, which might be expected given the 
dynamical time scale in this active region of the disk. 

In Section 2, we present our observations and data reduction. In Section 3, we describe the data analysis 
where we fit the visibility-squared (V2) data with various YSO disk models. In Section 4, we discuss our 
results in conjunction with previous interferometric observations and in Section 5, we provide a brief 
summary. 



2. OBSERVATIONS AND DATA REDUCTION 

The KI is a near- and mid-infrared long-baseline interferometer consisting of two 10m diameter 
telescopes separated by an 85 m baseline at a position angle of ~38° east of north, with the ability to null 
a central point source using phase control of the interfering beams. Both Keck telescopes are equipped 
with adaptive optics systems designed to compensate for atmospheric-induced wavefront aberrations, a 
crucial mitigation element for large-aperture long-baseline optical interferometry. The spatial resolution 
of our KI observations ('A/2B) is ~ 2.7 mas, ~4.5 mas and ~12 mas in the K-, L-, and N-band 
respectively. The spectral resolution is R ~ 24, 56, and 21 over the K-, L-, and N-bands, respectively. 

The observable in the K, and L-bands is visibility-squared V2 (the squared modulus of the visibility 
containing information about the spatial extent of the source) as a function of wavelength. The V2 data 
in the K- and L-bands are collected simultaneously in the dual-band mode described by Ragland et al. 
2008,2009, and we refer to these as KlL data, below. In this mode, the Keck telescope pupils are split 
into halves, each with a separate beam train (this is an adaptation of the nuller configuration, described 
next) over the 85 m baseline. One beam train feeds a K-band V2 system, which was the first KI science 
instrument, while the other feeds a more recently commissioned L-band V2 system. Both systems 
operate similarly, with the observational scenario incorporating interleaved scans of calibrators, in 
addition to per-scan calibrations of the background and the flux ratio between the two apertures. The 
only significant difference between them is that, for L-band, because of the higher thermal background, 
nods to dark sky are required for the background measurement in order to achieve an accurate 
photometric calibration. 

The N-band data are collected with the Keck Interferometer Nuller (KIN) described by Colavita et al. 
2008, 2009. The KIN operates differently than an ordinary V2 instrument, with a different observable: 
the null leakage I. However, for relatively compact objects of angular extent small compared to the 
short baseline fringes (400 mas), the leakage is simply transformed to V2 using the following equation 
(Koresko et al. 2006; Colavita et al. 2009) for comparison with the KlL data. 

=[~+~r (1) 

4l (I-I) j51 
(1+// 

Equation 1 assumes that the entire disk is much smaller than the KIN cross fringe, which has fringe 
spacing of 400 mas, and is a good approximation for these data. 

The KIN uses the split pupil mode with two nulling beam combiners on the long 85 m baselines. In the 
data collection configuration, these two combiners are stabilized on a destructive fringe, ideally 
canceling all on-axis (point source) light, and only transmitting the extended emission. The leakage 



from these two nulling beam combiners is combined in a third beam combiner, which uses fast fringe 
scanning to measure the leakage flux in the presence of the large N-band background. By changing the 
track point on the nulling beam combiners from destructive interference to constructive interference, a 
"photometric" measurement can made to normalize the leakage flux, producing the main observable, the 
(normalized) null leakage I. Because the achievable control bandwidth using just the N-band light is 
lower than needed to compensate for atmospheric turbulence, the KIN also uses two K-band systems on 
the long baselines for fringe stabilization. However, as these systems provide K-band V2 (with a 
resolution of 4 channels across the K-band) as an auxiliary data product, both K- and N-band data can be 
collected simultaneously, and we refer to these as KIN data, below. The observational scenario for the 
KIN is similar to other modes, using interleaved calibrators to measure the system leakage, in the same 
way interleaved calibrators measure the system visibility for V2 observations. 

The field-of-view of the K- and L-band instruments is defined by the single mode fibers that couple light 
to the HAW All (K-band) and PICNIC (L-band) infrared detectors, and that of the KIN is defined by the 
pinhole used in the N-band camera. The resultant field-of-view (FWHM) is ~60 mas for K-band, ~ 1 00 
mas for the L-band and ~ 500 mas for N-band measurements. These field restrictions were used in our 
modeling work. 

The observations reported here were taken on the nights of UT 19 August 2008 (K- and N-band 
measurements) and UT 27 October 2009 (K- andL-band measurements). We observed five calibrators 
HD 188310, HD 193579, HD 206445, HD 190007 and HD187691 - under similar observing conditions 
as the science target. We performed bracketed calibration - meaning that our observing sequence 
consisted of calibrator-target-calibrator measurements. The adopted angular diameters of the calibrators 
are 2.0 ± 0.2,2.0 ± 0.2, 1.8 ± 0.2,0.5 ± 0.1 and 0.6 ± 0.1 mas respectively (van Belle 1999). We cross
checked these diameters through SED model fits to photometric data available in the literature. Table 1 
lists the calibrated visibility-squared measurements (~(;Ial ). 

The measurements presented in this paper were taken over a narrow range of position angles (39-41 ° 
and 17-19° East of North) and projected baselines (83.9-84.9 m and 71.6-72.1 m) for the KIN and KlL 
measurements respectively. 

We also carried out follow-up broadband observations of MWC 325 with the CHARA array in the K
band using the Classic beam-combiner and the E2-El (65.917m) baseline at position angle 65° on 16 
July 2010. The calibrators used for these observations are HD 1881 07, HD 192343 and HD 188953, and 
the adopted angular diameters are 0.186 ± 0.005, 0.206 ± 0.005 and 0.287 ± 0.004 mas, respectively. 
We used these observations (Table 1), in conjunction with our KI broadband (K-band) observations 
(Table 1) and K-band measurements in the literature (Table 2), to determine the inner-rim diameter and 
the inclination angle of the disk in the later part of Section 3.1. 



Wavelength (J.l.m) u (m) v (m) ~(~tal ~(~tal error 

Spectrally dispersed KlN measurements (UT 19 August 2008) 
2.004 54.548 64.593 0.1610 0.0419 
2.102 54.548 64.593 0.1519 0.0414 
2.169 54.548 64.593 0.1469 0.0411 
2.288 54.548 64.593 0.1445 0.0409 
2.377 54.548 64.593 0.1448 0.0407 
8.209 54.548 64.593 0.4389 0.0073 
8.765 54.548 64.593 0.4784 0.0104 
9.186 54.548 64.593 0.5038 0.0068 
9.730 54.548 64.593 0.5234 0.0083 

10.270 54.548 64.593 0.5359 0.0108 
10.726 54.548 64.593 0.5579 0.0098 
11.232 54.548 64.593 0.5728 0.0142 
11.741 54.548 64.593 0.5747 0.0219 
12.223 54.548 64.593 0.6096 0.0390 
12.713 54.548 64.593 0.6294 0.0859 

Spectrally dispersed Kl measurements (UT 27 October 2009) 
2.004 22.261 68.356 0.1720 0.0408 
2.102 22.261 68.356 0.1686 0.0400 
2.169 22.261 68.356 0.1664 0.0400 
2.288 22.261 68.356 0.1622 0.0400 
2.377 22.261 68.356 0.1597 0.0400 
3.487 22.014 68.367 0.2512 0.0400 
3.568 22.014 68.367 0.2645 0.0400 
3.629 22.014 68.367 0.2761 0.0401 
3.734 22.014 68.367 0.2833 0.0401 
3.808 22.014 68.367 0.2931 0.0401 
3.846 22.014 68.367 0.3041 0.0401 
3.978 22.014 68.367 0.3163 0.0401 
4.029 22.014 68.367 0.3291 0.0402 

Broadband KI measurements (UT 19 August 2008) 
2.180 55.239 64.337 0.1435 0.0412 

Broadband Kl measurements (UT 27 October 2009) 
2.180 22.261 68.356 0.1735 0.0412 

Broadband CHARA measurements (UT 16 July 2010) 
2.130 58.888 28.609 0.2303 0.0398 

Table 1: Calibrated is presented along with the wavelength, uv points and measurement errors. 



UT Date u (m) V(m) ~(:ta/ Vt~tal Calibrators Calibrator 

error dia. (mas) 

PTI Archive 
13 Oct 2003 -77.805 -24.805 0.1833 0.0313 HD174160 0.38 ± 0.01 

HD187923 0.80 ± 0.21 
HDI93556 0.73 ± 0.09 

14 Oct 2003 -48.412 65.934 0.1815 0.0333 HD187923 0.80 ± 0.21 
HD193556 0.73± 0.09 

KI Archive 
02 Jul2007 40.935 67.021 0.1539 0.0313 HD 183324 0.26 ± 0.01 

HD 183385 0.64 ± 0.01 
32.564 67.769 0.1861 0.0318 " " 
25.758 68.181 0.2046 0.0350 " " 
20.092 68.438 0.2179 0.0344 " " 

16 Jul2009 55.361 63.159 0.1040 0.0312 HD 183926 0.35 ± 0.04 
HD 187182 0.33 ± 0.04 
HD 194244 0.30 ± 0.10 
HD 190067 0.36 ± 0.01 

Table 2: Calibrated K-band (broadband) VI~lal is presented along with uv points and measurement errors for KI and 

PTI archive data. 

As the KIN and KJL observations were taken at different epochs - separated by ~ 14 months variability 
is an obvious concern when we combine these two sets of data. Since K-band measurements were taken 
on both occasions, we use this data to investigate possible variability. The mean K-band squared 
visibility was 0.14 ± 0.04 and 0.17 ± 0.04 for the epochs UT 19 August 2008 and UT 27 October 2009, 
respectively. These K-band V2 measurements for the two epochs are comparable to within the one-sigma 
measurement errors. However, the baselines for these two epochs are somewhat different complicating 
direct comparison of these two measurements. Comparing these measurements with the K-band 
measurements in the literature (Table 2), taken during 2003 to 2010, show no evidence of size 
variability. Eisner et al. (2007), who were specifically looking for interferometric variability evidence 
in a small sample ofYSOs, did not find any detectable size variations over time. We conclude, given the 
precision of our present observations, that there is no detectable size variability between these two 
epochs. 

3. ANALYSIS 

The measured includes contributions from the central star ( ) and the circumstellar disk ( ). 

For the modeling analysis presented in this section, the visibility-squared of the circumstellar disk of 



MWC 325 is obtained from the measured data by removing the contributions from the central star as 
follows. As the light from the central star and the circumstellar disk is incoherent, the total complex 
visibility is the sum of the complex visibilities of the star and the disk, i.e., 

F.V. + 
VIOl 

F. + FdiSk 
(2) 

where F* and Fdisk are the stellar and disk fluxes, respectively. The squared modulus of this equation can 

be written in quadratic form as 
V~sk + 2rV,VdiSk cos 8 + r 2 V} (1 + r)2 ~;I = 0, (3) 

where r=F*IFdisk , V. =1 V. I. V
disk 

=1 V
diSk 

I, and e is the phase difference between the star and disk 

complex visibilities. The phase shift e includes both the effective photocenter shift measured at the 

spatial frequency sampled by the interferometer, as well as the difference in the sign of the visibilities 

between the two components (for example, if one object were sampled on a negative lobe of its 

visibility function). If the disk and star are symmetric, and they are sampled on the main lobe of their 

visibility functions (i.e., they're reasonably compact), then e = 2n:B'(5/A, where (5 is the angular 

photocenter separation of the disk and star; this is the case in this paper. The solutions of this quadratic 

equation are 
I 

V. = -rV cos 8 + [(1 + r)2 V 2 
- r 2V 2 sin 28]2 (4) 

dIsk * - tot * 

If the star and disk share the same effective photo center, and they are both sampled on the main lobe of 
their visibility functions, then this can be written in terms of fringe amplitudes as 

VLk = [(1 + r)~ol - rV. y (5) 

The stellar flux contribution in the K, Land N bands is estimated by fitting the Kurucz stellar 
atmospheric model (Kurucz 1970) for an A2-type star of solar metallicity (TefF 9250K, log g = 3.5) to 
dereddened BVR photometric fluxes (see below for the adopted interstellar extinction) and extrapolating 
the stellar atmospheric model at desired infrared wavelengths. The derived star-to-disk flux ratio, r is 
0.2419, 0.0677 and 0.0086 in the K, L, and N bands. We use Equation 5 for the modeling work 
presented in Section 3.1 and 3.2, and for the initial modeling of Section 3.3. When the star and the disk 
do not share the same photo-center, and assuming symmetric, reasonably-compact objects, Equation 5 
will overcorrect for the effect of the star, resulting in a lower estimated VLk' For the final radiative 

transfer models presented in Section 3.3, we account for the photo-center effect (see Section 3.3 for the 
details). 

The central star is assumed to be unresolved for our observations (i.e., 11.2 1.0; the expected angular 
diameter of the central star is 0.12 mas for the assumed stellar radius and the distance, resulting in 



visibility-squared of> 0.999 for our instrument configurations). These central star corrections yield V~sk 
values that are smaller than the total V2 by 0.09 (~60%), 0.03 (~12%) and 0.003 (~0.6%) in K, Land N 
bands respectively. Such corrections are most important at the shortest wavelengths where the star is the 
brightest and the disk-to-star ratio is the smallest. 

For our SED analysis, photometric measurements from the literature (2MASS All-Sky Catalog of Point 
Sources (Skrutskie et aI., 2006); The Hipparcos and Tycho Catalogues (ESA 1997); IRAS catalogue of 
Point Sources, Version 2.0 (IPAC 1986); AKARI/IRC mid-IR all-sky Survey and AKARI/FIS All-Sky 
Survey Point Source Catalogues (ISAS/JAXA, 2010); Tannirkulam (2008» are corrected for interstellar 
extinction using the extinction law of Cardelli et ai. (1989). The extinction for MWC 325 in the V-band 
is assumed to be Av = 0.19 (Van den Ancker et al. 1998). We also used ISO-SWS (ISO Short
Wavelength Spectrometer) in the 2.36-4.1 11m wavelength region (Vandenbussche et al. 2002) and 
Spitzer spectra from the Spitzer Space Telescope in our SED modeling. 

Our K-band V2 measurements are consistent with earlier broadband K measurements, and provide 
additional spectrally-resolved information at different position angles enabling the determination of disk 
inclination angle. Our L-band and N-band measurements are unique and are also spectrally resolved. 

3.1. SIMPLE WAVELENGTH-DEPENDENT GEOMETRICAL MODELS 

In this section, we use our spectrally dispersed data within the K-, L- and N-band wavelength regions to 
investigate wavelength dependency of the source size and broadband (K-band) measurements to 
constrain the inclination angle of the disk. We chose three geometrical models, namely, uniform-disk, 
Gaussian distribution, and ring models to fit our spectrally dispersed measurements. The equations for 
these geometric models are given Ragland et al. (2009), where it was shown that the wavelength 
variation of the object size over the K- and L-bands was needed to fit the visibilities for MWC 419. 
However, we begin here for the current case, MWC 325, with the simplest possible wavelength
independent geometrical model and then motivate the need for a more complex model. 

For wavelength-independent models, the derived uniform-disk, Gaussian, and ring angular sizes from 
simultaneous fits to our multi-wavelength measurements are 11.4 mas, 6.9 mas and 12.7 mas 
respectively. The corresponding reduced-chi-square (X~) values are 39, 28 and 45 respectively. As 

indicated by the very poor X~ values, the wavelength-independent uniform disk, Gaussian, and ring 
models all fail to fit multi-wavelength visibilities in the K, L, and N bands. 

Next we fit the data with wavelength-dependent sizes, taking advantage of the spectrally dispersed data 
across each of our bands. The resulting size-wavelength dependence for the uniform disk model in the 
2-12 11m regions can be fit with a simple linear relationship, tPuD(mas) 4.594+0.736Jc, with ax~of 

3.0. Increasing the complexity of the model even further, a log-quadratic fit of the form, 



rPuD(mas) 3.431+5.392x log(/L)+3.297 x[log(/L)]2, to the derived apparent wavelength-dependent 

diameters (Figure 1; left) gives a X~ of 0.3. The purpose of using an arbitrary function here is to get a 
rough knowledge of the size dependence as a function of wavelength. For comparisonn, size
wavelength dependence for a ring disk model is also shown in Figure 1 (right). 

The models presented above assume face-on geometry for the disk consistent with the low v sinO) 
measured for the star if the star and disk angular momentum axes are aligned. A disk with an inclination 
angle, i could have different properties, notably a larger inner disk radius, depending on the inclination 
angle and the position angle ofthe disk relative to the direction of the projected baseline, hence fringes. 
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Figure 1: Wavelength-dependent fits to the observed data. The estimated stellar contribution has been subtracted 
from the measurements. Left: Observed uniform-disk angular diameters as a function of wavelength are shown along 

1 ? 
with error bars. Linear (dotted, Xi? = 3.0) and log-quadratic (dashed, Xi? =0.3) fits to these diameters are also 

) 

shown. Right: Same, except for ring model. The Xi? value for linear and log-quadratic model fits are 3.7 and 0.3 

respectively. 

While multi-wavelength observations in the near- and mid-infrared wavelengths are effective in probing 
the extended disk, single wavelength measurements as a function of position angle could be used to 
determine the inclination angle of the disk. We used interferometric measurements in the K-band for this 
purpose to define the geometry of the inner-rim of the disk. We adopted an elliptical ring to represent 
the inner-rim and carried out model fit to our broadband K-band measurements from Kl and CHARA 
(Table 1). We also included archived K-band interferometric measurements from Kl (Keck 
Interferometer Archive, NExScI) on 02 July 2007 (PA: 31.42, 25.67, 21.92, 19.89°; Baseline: 78.53, 



75.19, 73.38, 72.50m) and 16 July 2009 (PA: 41.24°; Baseline: 83.99m), and from PTI (Palomar 
Testbed Interferometer Archive, NExScI) on 13 Oct 2003 (PA: 72.32°; Baseline: 81.66m) and 14 Oct 
2003 (PA: 143.71°; Baseline: 81.80m) in Table 2. The best-fit model is shown in Figure 2. The derived 
ring diameter, inclination angle and position angle of the major axis of the disk (East of North) are 5.85 
± 0.2 x 5.56 ± 0.2 mas, 18 :~~deg and 142 :;~ deg respectively. In the following section we explore more 
detailed disk models to explain our observations. 
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Figure 2: Elliptical ring model fit to K-band interferometric data. 

3.2. GEOMETRICALLY THIN, OPTICALLY THICK DISK MODELS 

Moving from simple geometric to more physically realistic models, we consider first a face-on accretion 

disk model (Hillenbrand et al. 1992) with a radial temperature distribution of the forrnT(r) ex r 

where r is the radial distance from the central star. The visibilities are computed by numerically 
summing the contributions from annular rings of infinitesimally small widths and weighting them by 
their respective flux contributions. We fit visibility and SED data simultaneously by treating the inner 
disk (hole) radius and the accretion rate as freely varying model parameters. 

The best fit model parameters are given in Table 3 and the fits are shown in Figure 2. Even though the 
model itself is axisymmetric, since the effective projected baselines and position angles of the two 
epoch observations are different, two corresponding model curves are shown in Figure 2 through 4 (left 
panels). Notably, the classical accretion disk model fails to fit simultaneously the interferometric and the 
SED data. As illustrated in Figure 3, the fit to the interferometric data vastly under-predicts thc amount 



of flux needed between 2-11 !lm in the SED (iF =2.6'~ED 9.8&irota' =8.0). Specifically, the 
derived inner disk temperature is 628 K while the SED requires hotter dust. The derived inner angular 
diameter of the face-on disk is 4.02 ± 0.04 mas. The fit to the interferometric data points could be 
improved (iF = 1.1) by changing the inclination angle of the accretion disk to 70° and the mass 

accretion rate to 8 x 10-7 M@ yr-1
• However, such a model highly underestimates SED flux 

X~ED = 28.3 &Xiota' 21.5, particularly in the near- to mid-infrared from about 1 to 10 microns. Xiota' IS 

computed combining both squared-visibilities and SED data with their measurements errors. 

Figure 3: Face-on classical accretion disk model fits. Left: Interferometric data points are shown, in square and 
triangle symbols for observations taken at UT 19 August 2008 and UT 27 October 2009 respectively, along with error 
bars. The estimated stellar contribution has been subtracted from the measurements. The dotted and dashed lines 
represent an accretion disk model for the baseline orientation of the two epochs. The inner radius of the disk (hole 
size) is treated as a free model parameter and the outer radius ofthe disk is fixed at 100 AU. Right: Photometric data 
taken from the literature (see text) are shown along with the SED model for the same accretion disk model. The dash
dot, dash-dot-dot-dot, and solid lines are model SEDs ofthe star, disk, and star-plus-disk respectively. 

One way to get hotter dust with only small changes to the size of the inner hole is to steepen the disk 
temperature gradient. We thus fit our data with a power-law temperature gradient model of functional 
form T(r) cx:r-a

, where r is the radial distance from the central star and a is the power-law parameter 
(0.75 for the classical accretion disk). The temperature of the inner edge of the dust disk is fixed at 
I500K, corresponding to a notional dust destruction radius. The inner radius and a are treated as free 
model parameters. The inclination angle of the disk is fixed to zero in the case of face-on power-law 
disk, but varied as a free parameter in the case of inclined power-law disk. 

The resultant model fit (in the case of inclined power-law disk) is shown in Figure 4 and the model 
parameters are given in Table 3. The derived angular diameter of the inner dust edge along the major 



axis and the power-law exponent are 3.86 ± 0.10 mas and 1.12 ± 0.02 for the face-on disk, and 4.47 ± 
0.20 mas and 1.26 ± 0.05 for the inclined-disk respectively. Thc inclination angle of the disk is ~ 72 ± 4° 
and the position angle of major-axis of the disk is ~ 49 ± 4°. While our model fit to the interferometric 
and SED data is improved over the classical accretion disk model, the SED fit under-predicts the 1-
3 /lm and 10-60 /lm flux, and over-predicts the 3-9 /lm flux. This parameterized disk model is meant to 
approximate the emission near the "inner dust rim" disk component, which dominates the infrared 
emission, and which for this type of star has been found to often be required in order to explain the 
spatially resolved IR observations (see e.g. the recent review by Dullemond & Monnier 2010). The 
seemingly steep temperature gradients derived from these power-law models are discussed in Section 4. 

As we mentioned before, the distance to MWC 325 is uncertain. We adopted a distance of340 pc as the 
blackbody model fits to BVRI photometric data favors this value. Ifwe were to use 767 pc (Montesinos 
et al. 2009), the inner radius of the disk would have a larger value for the accretion disk and the power
law models. The inner radius of the face-on accretion disk, face-on power-law and inclined power-law 
models are 1.51 ± 0.01 AU, 1.48 ± 0.02 AU and 1.71 ± 0.05 AU respectively. While the other 
parameters of the power-law models are not affected, some parameters of the face-on accretion disk 
model changed; the temperature of the inner edge decreased to 645 K and the mass accretion rate 

increased to 4 x 10-5 M@ y(l. The parameters of the disk models presented in this section should be 
treated with some caution especially the inclination angle (and hence position angle) and mass accretion 
rate that are arbitrarily used to scale the disk flux in order to match the overall flux level of the SED 
data. However, they do not fit the SED data satisfactorily. In the following section, we present a more 
complex physical model based on radiative transfer calculations to improve fit to our interferometric 
measurements and SED data. 



Figure 4: Power-law disk model fits. Left: Symbols are as in Figure 2. The dotted and dashed lines represent a power
law temperature gradient disk model for the baseline orientation of the two epochs. The power-law parameter, the 
inner disk radius, and the inclination angle and the position angle of the disk are free parameters. The dust 
temperature at the inner edge, and the outer radius, are fixed at 1500 K and 100AU respectively. Right: Symbols as 
in Figure 3 are shown along with the SED model for the same power-law model. The dash-dot, dash-dot-dot-dot, and 
solid lines are model SEDs of the star, disk, and star-plus-disk respectively. 

Model Parameters Face-on Face-on 

Radial power-law exponent, a 
Disk inclination, i 
Position angle of the major-axis 

ll1acc (M@ yr- I
) 

2 
XIF 

2 
XSED 

2 
XTotai 

Accretion disk Power-law disk 
0.68 ± 0.01 0.66 ± 0.02 
628 1500 (fixed) 
0.75 (fixed) 1.12 ± 0.02 
0° (fixed) 0° (fixed) 

3 x 10-6 

2.6 1.3 

9.8 126.0 

8.0 94.9 

Inclined 
Power-law disk 
0.76 ± 0.05 
1500 (fixed) 
1.26 ± 0.05 

0.6 

5.9 

4.6 

Table 3: Derived parameters for the disk models presented in Section 3.2. The entries X7F ,X;ED' and Xiotal refer to 

the X~ for interferometric data, SED data, and the combined set of interferometric and SED data respectively. 

3.3. RADIATIVE TRANSFER MODELS 

We have also carried out two-dimensional radiative transfer modeling of the dusty disk of MWC 325 
through Monte Carlo simulations (Ohnaka et al. 2006) in order to explain our interferometric 
measurements. In this radiative transfer calculation, photon packets randomly released from the stellar 
surface are subjected to absorption and scattering by multiple species of dust grains in the circumstellar 
disk (we assumed isotropic scattering for simplicity). The dust temperature of each grain species is 
computed using the method of Bjorkman & Wood (2001). The outputs of the Monte Carlo code are the 
SED viewed from arbitrary inclination angles, the temperature of each grain species, and the 
monochromatic mean intensity at each cell position in the dust disk. Using these resultant mean 
intensity and dust temperatures, monochromatic images viewed from any arbitrary angle are computed 
through ray tracing. 

We used a Kurucz stellar atmospheric model (Kurucz 1970) for an A2-type star of solar metallicity (Teff 
9250K, log g 3.5) as our input stellar spectrum for our radiative transfer calculations. We assumed 

that the disk consists of a mixture of graphite and silicate with equal fractional abundances and used the 
optical properties presented by Draine & Lee (1984). For the modeling of MWC 325, we adopted 
representative "sub-micron" (0.1 f,lm) and "micron" (2 ~tm) radius grains. We computed models with 



different grain size distributions, for example, models only with the sub-micron sized grains or micron
sized grains, as well as models with mm-sized grains. However, it turned out that a two-grain model 
consists of 0.1 and 2 11m grain is needed to reproduce the observed SED and interferometric data. 

The dust density distribution in the circumstellar disk is characterized by the standard flared disk 
geometry given by 

pJr,z) oc [~J-p exp[_![_z Y] (6) 
ro 2 hi(r)) 

h,(r)~h,tJ (7) 

where r is the radial distance in the equatorial plane, z is the height from the equatorial plane, and h;,o is 

the scale height of the ith grain species at some reference radius roo In the region with r smaller than the 
inner boundary radius, dust was assumed to be absent. 

In order to allow for the vertical dust segregation that has been inferred (Tannirkulam et al. 2007), we 
treated the scale heights of the small and large grains as free parameters, The other free parameters are 
the disk's inner boundary radius of the dust grains (assumed to be the same for both grain species) and 
the optical depth of dust grains (equivalent to specifying the mass of dust grains). 

The computation is CPU-intensive and performed in a parallel computing environment, simultaneously 
running on three Sun Fire V 440 servers (each one powered by four 1.593 GHz UltraSPARC lIli 
processors), taking about two days of CPU time to generate a single model with adequate SNR, spatial 
resolution and field-of-view. We used 2x 107 photon packets for most of our simulations for stable 
results with adequate SNR. A library of model images at the wavelengths of interest and the 
corresponding model SEDs are generated for a range of model parameters. Model V2 values are 
computed from these images and compared with measured V2 data by varying the position angle of the 
disk through non-linear least squares fitting. The choice of distance has no impact on our radiative 
transfer modeling since the raw images are in units of stellar radius and are scaled to fit the SED data. 
The scaling of these images gives a distance of 321 pc to MWC 325 within roughly 5% of the adopted 
340 pc value. 

Our attempt to fit simultaneously interferometric and SED data with a flared-disk model (q 2: 1) was not 
successful. In these models, the outer region of the disk is efficiently warmed up so that the 10 micron 
silicate emission originates in the outer region of the disk. This makes the object appear larger in the 10 
micron silicate feature than at 8 or 13 micron. However, as shown in Fig. 1, the size of the object 
increases monotonically from 8 to 13 micron without regard to the presence of the 10 micron feature, 
whether in emission or absorption. The situation is different from that typical of studies of gas in 
circumstellar disks in which the visibilities across H and CO features change relative to the continuum, 



allowing conclusions on the relative spatial distribution of gas and dust. We conclude that flared disk 
models with q 2: 1 cannot explain the observed N-band visibilities. 

Subsequently we explored the parametric space, q < 1 and the best fit provides q 0.875, suggesting 
that the disk is fairly flat with little or no flaring. Comparison between our observations and the best-fit 
model is shown in Fig. 4. The best-fit to the data can be obtained by a disk model viewed from an 
intermediate inclination angle of 45 degrees with a dust sublimation radius of 1.26 AU. 

As mentioned before, if the photocenters of the star and disk are not the same, the use of Equation 5 
incorrectly estimates the squared visibility of the disk. We use Equation 5 for the initial models. Then 
we derive fringe phase information from the model images to compute an improved set of squared 
visibilities for the disk using Equation 4. We iterate this procedure a few times until it converges. The 
maximum correction required for the photo-center effect was 0.035 in squared visibility - well within 
the one-sigma measurement errors. The assumed stellar parameters are given in Table 4 and the 
characteristics of the flat-disk are given in Table 5. Figure 5 (left) shows that the interferometric data 
spanning from 2 to 13 !lm are well reproduced by this model. Figure 5 (right) shows that the near-IR 
part of the observed SED, as well as the mid-IR excess including the 10 !lm silicate emission, is 
reasonably reproduced, although the model predicts values of the far-IR 60 and 90 !lm flux well below 
the observations. However, the model far-IR values could be considered as consistent with the 
measurements given the broad bandwidth of these far-IR measurements (shown in Figures 5 & 6 as 

2 
horizontal error bars). This model gives a X R value of 1.5 for the combined set of interferometric and 
SED data. However, if we restrict to only 2-13!lm region of the SED fit, we get a X~ (2 -13fim) value of 
1.0. In this model with little or no flaring, which slightly shadows the intermediate distance regions, the 
outer region of the disk is not efficiently warmed up. Therefore, the 10 !lm silicate emission is confined 
in the inner region which prevents the object from appearing larger at 10 !lm than at 8 or 13 !lm. The 
increase in the object size from 8 to 13 !lm simply results from the emission at longer wavelengths 
originating from the larger distances from the star. 

In order to improve the fit to far-IR SED data further, we also developed a model that flares only in the 
outer regions meaning that the inner region is vertically thick enough to shadow a significant part of the 
disk except the outer regions, resulting in flaring at these regions. The resultant model fit is shown in 
Figure 6 and the disk parameters are given in Table 5. This model, which is the best-fit model of all 

2 
those considered, gives a X R value of 1.1 for the combined set of interferometric and SED data. Even if 
we consider only 2-13!lm region of the SED fit, we get a similar value, X ~ (2 -13 fim) ~ 1.1. The model 
SED corresponding to the weakly-shadowed model compares well with the far-IR SED data, but not the 
near-IR SED. The errors of the model parameters given in Table 5 refer to the X ~ + 1 location of the chi
square space. These errors can be underestimated in the case of two or more parameters being 
degenerate. The scale height of the large grains is found to be about 80% of that of the small grains, 
somewhat larger than the value of 60% used by Tannirkulam et aL (2007). The power-law exponents 
p and q (Eq. 2) in the inner regions of the disk are 1.8 and 0.825 respectively providing a surface density 



distribution ofl: ex r-0975. These parameters for the outer flaring regions are 1.8 and 1.125 respectively 
providing a surface density distribution ofl: ex r-0675. The corresponding model images at 2.17,3.81, 
8.21, 9.73 and 12.71 f.1m for this best-fit weakly-shadowed disk model are given in Figure 7. These 
images suggest that the K-band data are dominated by the emission from the inner rim, while the 
extended emission becomes more and more prominent from the L to N band. The intensity profiles of 
the disk along the major and minor axes are shown in Figure 8. 

The radial distribution of grain temperature and grain mass density along the mid-plane for our best-fit 
weakly-shadowed disk model is given in Figure 9. The vertical distance of the 't,,= 1 surface at 2.17, 
3.81,8.21,9.73 and 12.71 f.1m of this model is also given in Figure 9. The height ofTA=1 surfaces reflect 
the wavelength dependence of the opacity. The'tA=1 surface for 3.81 micron is higher than that for 2.17 
micron, because the scattering coefficient of the 2 micron-sized grains shows a peak at 3-4 micron. 
Likewise, the surface for 9.73 micron is higher than those for 8.21 and 12.71 micron because of the 10 
micron silicate feature. The vertical distance of 'tA = 1 surface goes down at large radii. This is because 
there are two competing factors in determining this surface: (1) density decrease in the radial direction 
and (2) scale height increases at larger radii. At large radii, the former factor is greater than the latter, 
leading to the downturn of the 't,,= 1 surface. Moreover, the plot does not go all the way to the outer 
radius (= 100 AU), because the optical depth measured from the vertical infinity does not reach 1 before 
the mid-plane at radii larger than some value, which depends on wavelength. The peak value of the 'tA = 1 
surface is in the range 0.25-0.45 AU. As Fig. 11 (upper panels) show, the tempertures at these vertical 
distances are not different from that of the mid-plane and is more or less same in the 2-13 f.1m region. A 
representative temperature profile at 3.81 f.1m (where the vertical distance of the 'tA=l surface is 
maximum) of the best-fit weakly-shadowed disk model is shown in Figure 9 (bottom right). 

In a flared disk, the stellar and any other high energy flux is absorbed and re-radiated in the upper disk 
atmosphere layers. Mid-plane heating is possible either via re-radiation or directly if stellar photons 
entering from the top of the disk atmosphere can propagate downward to the mid-plane. However, in the 
case ofMWC 325, flaring becomes important only beyond 13 AU from the star (see Figure 9, upper left 
panel). While the argument above about the stellar flux possibly heating the mid-plane of the disk is 
appropriate for the flared regions, where there is a geometrically large area to intercept radiation from 
the star, at small disk radii this is not the case. The radius of the star is only 0.017 AU in size compared 
to the 0.1 AU scale height of the disk at 1.26 AU. Thus the star can only effectively illuminate the inner 
radius of the disk and it of course illuminates some of the disk but that material is of low density being a 
few scale heights from the mid-plane and hence can only weakly heat the mid-plane since it is low 
density material that is re-radiating the star light. The material has to be something greater than about 4 
degrees (i.e. tan-l ((0. 1-0.017)/1.26)) in angle from the star off the mid-plane to get mostly pure stellar 
radiation. 

We derive a total dust mass of 9.9 x 10-8 Me for sub-micron grains and 1.5 x 10-6 Me for the micron 
grains, assuming a bulk density of 3.5 gm cm-3 and 2.24 gm cm-3 for the silicate and graphite grains 



(Zubko et al. 2004) and hence 2.87 gm cm-3 for the silicate-graphite (50:50 ratio) mixture. Thus the 
derived total dust-mass of the sub-micron and micron sized grains in the disk of MWC 325 is 1.6 x 10-6 
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Figure 5: Radiative transfer model fits. Left: Multi-wavelength V2 measurements and model V2 Monte-Carlo 
simulations (see text for details). The dotted and dashed lines represent visibilities predicted by the 2-D radiative 
transfer model of a flat disk for the baseline orientation of the two epochs shown along with symbols as in Figure 3. 
Right: The dash-dot and solid lines are model SEDs of the star and star-plus-disk respectively while symbols are as 
in Figure 3. The bandwidth (FWHM) of the IRAS and AKARI photometric data are shown as horizontal error bars. 
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Figure 6: Radiative transfer model fits. Left: Multi-wavelength V measurements and model V2 Monte-Carlo 
simulations (see text for details). The dotted and dashed lines represent visibilities predicted by the 2-D radiative 
transfer model of a weakly-shadowed disk for the baseline orientation of the two epochs. Symbols are as in Figure 3. 



Right: The dash-dot and solid lines are model SEDs of the star and star-plus-disk respectively while symbols are as in 
Figure 3. The bandwidth of the 60 and 90 Ilm measurements are shown as horizontal error bar. 
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Figure 7: Model images in logarithmic scale. Weakly-shadowed disk model images generated through radiative 
transfer modeling of multi-wavelength interferometric measurements and SED data are shown at 2.17, 3.81, 8.21, 
9.73 and 12.71Ilm (see the text for details). The disk parameters are given in Table 5 (right column). 



lOG 10° 

B.21 .um 

10·' 10·\ 9.73.um 

12.71i'm 

~ '" t: 
<Il 

c: c: 

'" 10.2 

~ 10.2 

E 
as "tl 

'" .~ .!::! 
en en 
E 10.3 E 10 3 

~ 0 
Z 

10'" 10" 

10.5 10·5 
·10 0 10 

Radial Distance (AU) Radial Distance (AU) 

Figure 8: Left: Intensity profile of the best-fit weakly-shadowed disk model shown in Figure 7 at 2.17, 3.81,8.21,9.73 
and 12.71lJ.m along the major axis. Right: same as that of the left Figure but for the minor axis. 
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Figure 9: Top-left: Radial distribution of grain temperature of our best fit weakly-shadowed (WS) disk model. Solid 
and dotted lines represents radial temperature profile of 0.1 ,..,m and 2 ,..,m grains, respectively, along the mid-plane of 
the disk. Also shown for comparison are the temperature profiles of the best-fit face-on accretion disk (dash-dot-dot
dot line) and inclined power-law disk (long dashes line) models. To-right: Radial distribution of grain mass density 
along the mid-plane of the disk for both 0.1 ,..,m (solid line) and 2 ,..,m grains (dotted line). Bottom-left: Vertical 
distance of the tau=l surface at 2.17, 3.81, 8.21, 9.73 and 12.71 ,..,m (see the text for details). Bottom-right: Surface 
temperature of the disk at 2.17 ,..,m for both grain sizes is shown. The temperature profiles for other wavelengths look 
similar and are not shown here for clarity (see the text for details). 



Stellar Parameters 
Spectral type 
Stellar luminosity 

Stellar effective temperature 
Stellar radius 

Stellar mass 

Distance 

Table 4: Assumed stellar parameters 

Model Parameters 

Radial power-law exponent, p 
Vertical power-law exponent, q 
Scale height (ho) of sub-micron grains at 1.26AU 
Scale height (ho) of micron grains at 1.26 AU 
Inner boundary radius for both grains 

Inner boundary radius for Flaring (fixed) 
V ertical power-law exponent, q outer (fixed) 
Inner boundary dust temperature of 0.1 /-lm grains 
Inner boundary dust temperature of 2 /-lm grains 
Representative grain sizes (fixed) 
Outer boundary radius (fixed) 
Disk inclination 

Position angle of the disk major axis 

Radial optical depth of the grains at 0.55/-lm (Tv) 

Total dust mass of the disk 
, 7 ) 

XlF, XSED & XTotal 

XlF' X~ED (2- 13/-lm) & Xio,al (2- 13/-lm) 

Value 
A2IVev 

83 L@ 
9250K 

3.6R@ 

2.85 M@ 
340 pc 

Flat disk Weakly-
shadowed disk 

1.8 ± 0.8 1.8 ± 0.8 
0.875 ± 0.13 0.825 ± 0.13 
0.10 ± 0.02 AU 0.10 ± 0.02 AU 
0.08 ± 0.04 AU 0.08 ± 0.04 AU 

1.26~~~~AU 1.26~~~AU 
NA 13.4 AU 
NA 1.25 
1604K 1537 K 
1094 K 1065 K 
O.l/-lm & 2.0 /-lm O.I/-lm & 2.0 /-lm 
100AU 100 AU 

45~;~ degrees 45~;~ degrees 

9CC~degrees 8~~degrees 

200+800 
-125 

200+800 
-125 

1.1 x 10-6 A1@ 1.6 x 10-6 M@ 
1.24, 1.55 & 1.47 1.03,1.14 & 1.13 

1.24, 0.59 & 0.98 1.03, 1.11 & 1.06 

Table 5: Derived parameters for the circum stellar disk. The entries X;F ,X,~ED' and Xiotal refer to the 
! ! 

Xi? for interferometric data, SED data, and the combined set of interferometric and SED data respectively. XSED (2-

13/-lm) and (2-13/-lm) refer to the X~ for SED data, and the combined set of interferometric and SED data 

in the 2-13llm region. 



4. DISCUSSION 

Our new spectrally dispersed K-, L-, and N-band KI observations provide powerful new constraints on 
the physical structure of the material surrounding the young Herbig Ae star MWC 325. Wavelength
dependent uniform-disk sizes of our measurements have a steep slope (i.e. size increases with 
wavelength) confirming that the 2-12 !lm emission region is extended with strong radial temperature 
dependence. 

For MWC 325, the derived uniform-disk diameter at 10 !lm (<PlOllm 12.3 ± 0.2 mas) is about a factor of 
2.2 larger than the diameter at 2.2 !lm (<P2.2Ilm 5.7 ± 0.3 mas), and the derived mean uniform-disk 
diameter at 3.7 !lm (<p3.7llm= 7.7 ± 0.2 mas) is about a factor of 1.4 larger than the diameter at 2.2!lm. 
The derived K-band uniform-disk angular diameter is consistent with the reported K-band value of 5.57 

~~~!mas by Eisner et al. (2004). Monnier et al. (2006) reported a ring diameter of 3.48 ± 0.4 mas in the 

H-band. Eisner et al. (2009) used a dust plus gas model to fit their spectrally dispersed (R ~ 230) KI 
observations in the K-band. These authors report a dust ring diameter of 4.28 ± 0.07 mas at 1106 ± 10 
K, and an inner gas diameter of 0.97 ± 0.07 mas at 3115 K. Our modeling shows that the observed SED 
and KIN data can be explained without hot emission from inside the dust sublimation radius. This can 
indeed mean the absence of the hot emission found in some Herbig Be stars (due to hot gas or highly 
refractory dust). However, since we did not test a model with such hot emission, we cannot entirely 
conclude on this. 

The disk inclination angle of 45~;~ degrees derived from our radiative transfer calculations is consistent 

with that of the inner-rim of 18 :~~ degrees derived from our elliptical ring model fit to broadband K
band measurements within the measurement accuracy. Moreover, the best-fit radiative transfer model 
also fits K-band measurements well (X;F = 1.3). Earlier, Isella et al. (2006) report disk inclination angle 
in the range 40 65 degrees using H- and K-band interferometry data available in the literature, which 
is somewhat larger than our value. And their inner boundary radius of 0.7 AU is about a factor of two 
smaller than our value of 1.26. While our analysis incorporates sub-micron (0.1 !lm) and micron (2 !lm) 
radius grains to fit the interferometric and SED data simultaneously, Isella et al. (2006) used 0.3 !lm and 
;;:: 1.2 !lm radius grains to fit simultaneously near-infrared interferometric data and optical and near
infrared SED data (far-infrared SED data was not included in their analysis). Kraus et al. (2008) used 
similar small (0.005-1 !lm) and large (1-1000 !lm) radius grains to simultaneously fit broad wavelength 
range of interferometric and SED data of the Herbig Be star, MWC 147. We suggest that the grains in 
the disk of MWC 325 haven't grown to millimeter-sized grains. Perhaps the luminosity of the central 
star plays a major role in promoting the grain growth process. 



The radial distribution of grain temperature of MWC 325 along the T),=1 surface of the disk (Figure 9) 
in the 1-2 AU region is steeper than that of classic disk with a power-law exponent of -0.75 and the 
temperature gradient becomes shallower at larger radial distances. For deriving power-law index of -
0.75, the disk is assumed to be directly irradiated by the star. However, this is not the case for 
the material in the TI-.=1 surface except at the inner-rim. Figure 10 shows the optical depth at 0.55 
micron in the mid-plane measured from the inner rim. The figure shows that the optical depth to the 
region even slightly behind the inner rim is already higher than 1, and therefore, the TI-. = 1 surface of the 
disk beyond the inner-rim region is shielded from the stellar radiation, resulting in reduced grain 
temperature (see the temperatures around the mid-plane at three representative radial positions in Figure 
11) and hence steeper temperature gradient. 

Earlier multi-band interferometry has shown somewhat similar temperature profile for two Herbig Ae 
disks, namely, MWC 275 and AB Aur (Tannirkulam et al. 2008a) and to lesser extent for the Herbig Be 
disk MWC 147 (Kraus et al. 2008a). Recent disk models include an inner rim at the boundary between 
the dust-free inner disk and the main disk that is vertically "puffed up" relative to the dusty material at 
only slightly larger radii. Modifications to this simple geometry and with some hot refractory dust or 
gaseous material inside the inner rim and a blunt (rather than sharp) dust boundary can have just the 
effect we see of an apparent size gradient with wavelength and an accompanying steep temperature 
profile (see e.g. the recent review by Dullemond & Monnier 2010). Radial sorting of grain sizes may 
also playa role in the effects that we see. 
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Figure 10: Radial distribution of optical depth along the mid-plane of the best-fit weakly-shadowed disk, i.e., at 
latitude 0 deg. As can be seen, the disk is optically thick at the inner regions along the mid-plane shielding the outer 
regions from the stellar radiation. 
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Figure 11: Vertical temperature and mass density distributions of our best fit radiative transfer model of a weakly
shadowed disk. Top Left: Solid, dotted and dashed lines represents vertical temperature profile of 0.1 J.Lm grains at 
three radial distances, namely, 1.26AU (inner radius), 5 AU & 15 AU respectively. Top Right: Same as the top left 
plot for 2 J.Lm grains. Bottom Left: Solid, dotted and dashed lines represents vertical mass density profile of 0.1 J.Lm 
grains at three radial distances, namely, 1.26AU (inner radius), 5 AU & 15 AU respectively. Bottom Right: Same as 
the bottom left plot for 2 J.Lm grains. 

We assumed a grain composition consists of a mixture of graphite and silicate with equal fractional 
abundances for the radiative transfer models presented in this paper. We also attempted a grain 
composition of Silicate and amorphous carbon with equal abundances. We find that such a grain 
composition generates weak lO/lm feature. The reason is that graphite has steeper wavelength 
dependence (~ ),.-2) than amorphous carbon (~ ),.-1.2). Because of the flatter wavelength dependence, 
amorphous carbon has a higher opacity at lO/lm than graphite, which makes the silicate feature less 
pronounced. In order to improve the strength of this feature (to be consistent with SED data), we had to 
introduce significant flaring in the disk as this would expose more and more disk material to stellar 



radiation, which produces the pronounced silicate feature. However, such flared-disk geometry fails to 
reproduce the shape of the observed visibility spectrum. The best-fit model gives unacceptably large 
chi-square value (X;F ~ 56) for our interferometric data although the fit to SED data is reasonable 

(X~ED ~ 2). Hence we ruled-out silicate-amorphous carbon grain composition for the disk ofMWC 325. 

A silicate only model simultaneously fits the visibility and SED data. However, such as grain 
composition is far from that of the interstellar grains. Hence we did not consider this casc in our work. 

The decomposition of the N-band silicate feature of MWC 325 shows a strong dominance of 2 J.lm 
amorphous silicate grains with a mass fraction of 0.S5 (SchUtz et al. 2009). Sub-micron (0.1 J.lm) 
amorphous silicate and enstatite and 2 J.lm silica grains are present in much smaller amounts. More 
recently, Juhasz et al. (2010) decomposed mid-infrared spectra (5.5-37 J.lm) of a sample of Herbig 
Ae/Be stars taken with the Spitzer Space Telescope. They used a mixture of five-grain species, namely, 
amorphous silicate with olivine and pyroxene stoichiometry, crystalline forsterite, and enstatite and 
silica, together with polycyclic aromatic hydrocarbons (PAHs) and report a mass fraction of 0.6S for 
micron-sized amorphous silicate grains. In our best model, the mass fraction of the 2J.lm grains is 0.94. 
Thus our model is qualitatively consistent with Juhasz et al. 2010 and Schutz et al. (2009), who both 
conclude that micron-sized amorphous silicate grains dominate in MWC 325. Direct comparison of our 
grain composition with these mid-infrared modeling papers is not possible since the mid-infrared 
decomposition method is sensitive only to dust grains from the surface of the disk that show resonances 
in the mid-infrared (slicate based grains). Thus featureless grains such as amorphous carbon or iron are 
unaccounted for here. High spectral resolution interferometric measurements in the mid-infrared are 
essential to study the presence of crystalline grains since they produce narrow features. 

Earlier studies (Monnier & Millan-Gabet 2002; Eisner et al. 2004) using broad band, usually single
wavelength, interferometric data, recognized a difference in the near-infrared size vs. luminosity 
behavior of high luminosity objects (pre-main sequence Be) compared to lower luminosity ones (pre
main sequence Ae), the former being more consistent with "classical disk" models. This has been 
revisited most recently by Vinkovic & Jurkic (2007), who use a model-independent comparison of 

visibility to scaled baseline and find a distinction between low-luminosity (::;: 103 Le) and high

luminosity (~ 103 Le) YSO disks where the luminosity break point corresponds to an approximate 
spectral type B3-B5. These authors modeled the visibility clusters of low luminosity Herbig Ae/Be stars 
with optically thick rings of 0°-60° inclination at a dust sublimation temperature of ~ 1500K. The 
alternate model used to fit these visibility clusters was a dusty halo model with optical depths of ~0.1 
O.S. They modeled visibility clusters of high luminosity Herbig Be stars with a classical accretion disk 
model and T Tauris stars with a dusty halo model. 

However, multi-wavelength interferometric studies have not always supported these conclusions when 
objects are modeled in detail (Kraus et al. 200Sa; Acke et al. 200S; Ragland et al. 2009). Our earlier 

multi-wavelength results (Ragland et al. 2009) show that MWC 419 (BS, 330 Le) has disk 
characteristics of a high-luminosity object in the categories of Monnier & Millan-Gabet (2002). 



However, it has a luminosity below the break point of 103 Le identified by Vinkovi6 & Jurki6 (2007) 
and fits within the population of lower luminosity Herbig starts in their model-independent comparison. 
Their physical interpretation of the low-luminosity Herbig group is an optically thick disk with an 
optically thin dust sublimation cavity and an optically thin dusty outflow. 

MWC 325 (A2, 83 Le) falls into the low luminosity group in the classification of Vinkovi6 & Jurki6 
(2007). Our results presented in this paper do not support their conclusion of a ring or halo model for 
this low luminosity YSO disk. While, a ring model could reproduce, to first order, the bright inner ring 
region seen from the K-band measurements, it would have difficulties in explaining the extended disk 
structures seen from the L-band and N-band measurements. The apparent discrepancies between our 
results and that of Vinkovi6 & Jurki6 (2007) could be attributed to the fact that their conclusions are 
based on near-infrared interferometric data while this work incorporated a broader spectral region. 

MWC 325 is in the Group II category of Herbig AeBe stars (Acke et al. 2009), in the classification 
scheme of Meeus et al. (2001), with a relatively weak IR excess and P AH emission compared to the 
Group I category. These studies based on Spitzer measurements suggest that the disk of MWC 325 is a 
self-shadowed disk - with an inner rim that is blocking star light from reaching the outer regions of the 
disk. Our finding of disk geometry with little or no flaring is consistent their results. 

5. SUMMARY 

This article reports the first milliarcsecond angular resolution N-band nulling and L-band V2 

observations of a Herbig Ae star (MWC 325), along with K-band V2 data, all spectrally dispersed. This 
multi-wavelength observational capability is well suited to probing the temperature distribution in the 
inner regions of YSO disks, which is very important for distinguishing different models and gaining 
insight into the three dimensional geometry of the inner disk (see also Ragland et al. 2009). 

A simple pole-on uniform disk model was used to infer an increase in size from 2-12 f.lm, confirming 
that the disk is extended with a radial temperature gradient. Notably, there is no difference in the 
wavelength trend of the visbilities within the broad 10 micron silicate feature compared to the adjacent 
continuum. We find that the classical accretion disk and the power-law temperature gradient models fail 
to fit simultaneously both interferometric and SED data. A 2-D slightly shadowed-disk radiative transfer 
model fits the spectrally dispersed interferometric measurements and the SED data reasonably well. 
This model implies that the disk surrounding MWC 325 is a nearly flat-disk with if at most only slight 
flaring in the outer regions of the disk in contrast to other intermediate mass Ae disks such as MWC 275 
and AB Aur, and to their more massive counterparts, such as MWC 419, which exhibit a flat geometry. 
The dominance of sub-micron grains and the absence of significant flaring in the disk of MWC 325 
found from our study suggest that dust grain growth and dust sedimentation has occurred in the disk of 
MWC 325. A more complete sample of YSO disk observations with adequate wavelength and (u,v) 



coverage, plus detailed radiative transfer modeling, are required to address the intriguing inner disk 
geometry of these sources and to address the structural differences between the Herbig Ae and Be disks. 
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