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Summary Experiments are perfonned in a 24.4 mm diameter choked circular hot and cold jets issuing from a sharp-edged orifice at a fully 
expanded jet Mach number of 1.85. The stagnation temperature of the hot and the cold jets are 319 K and 299 K respectively. The results 
suggest that temperature effects on the screech amplitude and frequency are manifested for the fundamental , with a reduced amplitude and 
increased frequency for hot jet relative to the cold jet. Temperature effects on the second hannonic are also observed. 

INTRODUCTION 

Supersonic jet screech represents an important consideration as the intensity (as high as 170 to 180 dB) in the nearfield 
with a significant upstream directivity can induce fatigue and cause structural damage to aircraft and launch vehicles 
[I]. Physically screech noise is shown to be manifested by the interaction of shock-cell structures with acoustics waves 
[I] and other instability waves. The existing data on the screech noise, which are primarily limited to convergent
divergent and choked nozzles, suggest that uncertainties persist concerning the nature of the temperature effects on the 
fundamental and higher harmonics [2]. To the author's knowledge, screech data from choked nozzles issuing from a 
sharp-edged orifice are presently unavailable. Such applications arise in purge systems. 

The objective of the present work is to report measurements of screech amplitude and frequency for a co ld and a hot jet 
issuing from a sharp-edge orifice at the same fully expanded jet Mach number. Temperature effects on the screech 
amplitude and frequency on both the fundamental and higher harmonics are reported. 

EXPERIMENTAL SETUP AND ANALYSIS 

Test Setup 
Nitrogen flows from a chamber through a sharp-edged orifice of 2.44 cm diameter. The total pressure is 0.65 MPa. The 
total temperature for the hot jet and the cold jet are 3 19.4 K and 299 K respectively. The jet static pressure ratio is 3.18, 
and the ambient temperature is 299 K. The fully expanded jet Mach number is 1.85. The jet exit Mach number is 1.05 . 
The jet Reynolds number (based on jet diameter) is about 2.5x I 06

. Static pressure and total pressure are measured by 
pitot tubes, and the acoustic pressure is measured by B&K microphones with a frequency range of 10 kHz. Both axial 
and radial traversing in the jet is carried out. 

CFD Analysis 
An axisymmetric CFD (Computational Fluid Dynamics) analysis is conducted with the aid of NASA OVERFLOW 
Navier-Stokes code [3]. Similar CFD analysis for supersonic jets was conducted with this code in [4]. A simple one
equation Spalart-Allmaras turbulence model is considered. 

RESULTS 

Fig. I shows the jet Mach number contours as obtained by the CFD analysis, showing several shock-cell structures 
characteristic of an under-expanded jet. Based on a 10% decay of the jet center-line velocity, CFD results suggest a jet 
angle of about 8 deg, whereas both the pressure data and infrared photographs suggest a spread of about 7 deg. 

Mach 

Fig. I. Mach number contours in the heated axisymmetric jet. 
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Fig. 2 presents a comparison of the jet centre-line Mach number for the hot jet. Reasonable agreement is noticed 
between the data and the prediction except near the jet exit. The CFD solution seems to indicate a more dissipative 
character. 
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Fig. 2. Distribution of jet centre-line Mach number for the hot jet. 

Fig. 3a illustrates the narrow band spectral sound pressure level for the hot and the cold jet at an axial station of 48.3 cm 
from the jet exit, and at two radial locations (17.8 cm and 45 .7 cm). Fig. 3b indicates the narrow band spectral sound 
pressure level for the hOI and the cold jel at an axial station of 78.7 cm from the jet exit, and at a radial location of 40.6 
cm. These data for the free jets reveal the presence of screech, and include the overall sound pressure level (OASPL). 
The character of screech amplitude and screech tones for the hot and cold jets from sharp-edged orifices is in general 
agreement with the nozzle data of Ahuja el al. [2]. 

Calculations based on existing correlations for the screech frequency for nozzles [5] yield a frequency of 1700 Hz, 
which is close to the measured value of about 1800 Hz. Data for the hot jet suggest that the fundamental screech 
amplitude is slightly decreased while the fundamental frequency is slightly increased relative to the cold jet. For the second 
harmonic, the screech amplitude remain unaltered by temperature. 
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Fig. 3 Narrowband acoustic spectrum for cold and heated jets. 

CONCLUSIONS 

The present experiments on choked circular jets suggest that for the hot jet the fundamental screech amplitude is slightly 
decreased while the fundamental frequency is slightly increased relative to the cold jet. With regard to second harmonic, the 
screech amplitude remain unaltered by temperature, while the frequency of the second harmonic is larger for the hot jet. 
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Background 
• Choked flows through sharp-edged orifices arise in many 

applications: 

- Purge systems, fuel injectors, metering devices, piping systems 

• These flow.s are characterized by intense screech tones: 

- generated by resonant feedback mechanism. 

- can cause fatigue and damage to nearby ·equipment. 

- analogous to jet noise screech nozzles. 

• _ Data on screech tones from sharp-edged orifices is relatively 
limited with regard to thermal effects (as opposed to nozzles). 

2 



Objectives 

• Measure screech frequency and amplitude for 
nitrogen jets issuing from a sharp-edged orifice. 

• Investigate temperature effects on the screech 
fundamental and the harmonics. 

- Different total temperature 

• Cold jet vs. hot jet 

• Assess the existence of subharmonics. 

3 



N 

~ 
~ 
"0 

Typical Jet Noise Spectrum 

130~------------------------~ 

110 

90 

70 

Md 2.0, Mj=1.5 
pefpa-0.47, (} =150° 

flu·bulent . 
tnnnng notse 

'-

screech 
/ 

broadband 
shock noise 
/ 

50~------~----------~----~ 
0.03 0.1 1 3 

St=fd·/u· J J 

Ref: Seiner (NASA 
Langley, AIAA-84-2275) 

4 



Theories of Jet Screech Tones 

• Screech frequency 

-Tam, Seiner & Wu (JSV, 1986) 

• Shock/Instability Wave interaction 

• Screech Amplitude. 

-. Kandula (AIAA J, 2008) 

• Shock/Acoustic Wave interaction (shock-refraction) 
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Test Facility 
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Test Setup 
Measurement Locations 
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Test Conditions 

Parameter Value 

Nozzle exit diameter 2.44 em 
~~--~~------~ -----=~~~ 

Total pressure 0.65 MPa 

Total temperature (cold jet/hot jet) 299 K/ 319 K 
(11T = 20K) -------...J 

Jet static pressure ratio 
(exit pressure/ambient pressure) 

--
Jet Reynolds number 

Jet exit Mach number 

Fully expanded jet Mach number 

3.18 

2.5E6 

1.05 

1.85 
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CFD Analysis (OVERFLOW Code) 
Jet Mach Number Contours 

(Axisymmetric Solution) 

Mach 

nozzle exit Mach disc center-line 

•Spalart-AIImaras one-equation turbulence model {1991) 
•CFD solution shows a jet spread of about 8 deg. 
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•Both pressure data and infrared photographs suggest a jet 
spread of about 7 deg. 
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Jet Center-Line Mach Number 
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Acoustic Spectrum ( contd.) 

-Hot jet (OASPL . 136.dB) 

120 
-----Cold jet (OASPL = 133 dB) 

...-... 
~ 110 

H 

~ 100 

90 Mic 3 (78.7 em axial, 
40.6 em radial) 

frequency (Hz) 
14 

i c I 



Summary of Screech Tones 

Subharmonic Fundamental 

Hot jet Cold jet 

SPL f SPL f SPL f SPL 

(dB) (kHz) (dB) (kHz) (dB) (kHz) (dB) 

3.77 9 

M2 1.53 5 1.64 4.5 3.50 4.5 3.77 10 

M3 1.53 8 3.77 9.5 

- Existence of subharmic is evident. 
- Subharmonic screech frequency increases with temperature, but amplitude decreases. 
- Both the fundamental screech frequency and amplitude increase with temperature. 
- Predicted screech frequencies: Cold jet: 3.62 kHz, Hot jet; 3.69 kHz 
- Estimated screech amplitudes are only qualitative (due to directivity effects, etc.). 
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Conclusions 

• The measurements suggest the existence of sub-harmonic 
screech, with a frequency increasing with temperature, but 
amplitude decreasing with temperature. 

• Both the frequency and the amplitude of the fundamental 
screech increase with temperature. 

• The measured fundamental screech frequ·ency is close to that 
predicted by the existing theory. 

• The present results should be considered only preliminary. 

• Measurements over an extended range of temperature would 
be helpful for further investigation. 
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