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REMOTE SENSING ANALYSIS OF FOREST 	 BRIEF DESCRIPTION OF THE DRAWINGS 
DISTURBANCES 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was supported in part by funds obtained 
from NASA's Large-Scale Biosphere-Atmosphere Experi-
ment in Amazonia (LBA-ECO), grant number NCC5-675 
(LC-21). The U.S. Government may therefore have certain i0 

rights in the invention. 

BACKGROUND OF THE INVENTION 

Tropical forests have been threatened by increasing rates of 15  
deforestation or clear-cutting during the past three or more 
decades (E. F. Lambin, H. J. Geist, E. Lepers, Ann. Rev. 
Environ. Res. 28, 205 (2003)). Although deforestation, 
largely for conversion of land to food crops or pastures, is the 20  
major destructive force in tropical forests worldwide, other 
forest disturbances such as the selective harvest of timber 
have increased in frequency and extent (D. C. Nepstad et al., 
Nature 398, 505 (1999), L. M. Curran et al., Science 303, 
1000 (2004)). In selective logging, a limited number of mar- 25 

ketable tree species are cut, and logs are transported off-site to 
sawmills. Unlike deforestation that is readily observed from 
satellites, selective logging in the Brazilian Amazon causes a 
spatially diffuse thinning of large trees that is hard to monitor 
using satellite observations. Selective logging causes wide- 30 

spread collateral damage to remaining trees, sub-canopy veg-
etation and soils, with impacts on hydrological processes, 
erosion, fire, carbon storage, and plant and animal species. 

There is surprisingly little known about the extent or 
impacts of selective logging throughout the tropical forests of 35 

the world, including the Amazon Basin. A survey of sawmills 
in the Brazilian Amazon suggested that 9,000-15,000 km 2  of 
forest had been logged in 1996-97 (D. C. Nepstad et al., 
Nature 398, 505 (1999)). The large uncertainty in this 
reported area resulted from necessary assumptions of the 40 

wood volume harvested per area of forest. Sawmill surveys 
can, at best, provide only a general idea of where and how 
much logging occurs because most operators buy timber at 
the mill gate rather than harvesting the wood themselves. 

Objective, spatially-explicit reporting on selective logging 45 

requires either labor-intensive field surveys in frontier and 
often violently contested areas, or by remote detection and 
monitoring approaches. Previous studies of small areas show 
the need for high-resolution observations via satellite. More-
over, most of the traditional analysis techniques employed for 50 

localized selective logging studies have proven insufficient 
for large-scale selective logging assessments. A detailed 
comparison of Landsat satellite observations against field 
measurements of canopy damage following selective logging 
proved that traditional analytical methods missed about 50% 55 

of the canopy damage caused by timber harvest operations 
(G. P. Asner, M. Keller, R. Pereira, J. Zweede, Rem. Sens. 
Environ. 80, 483 (2002)). 

BRIEF SUMMARY OF THE INVENTION 	60 

The present invention provides systems and methods for 
automatically analyzing Landsat satellite data of forests. The 
present invention can easily be used to monitor any type of 
forest disturbance, such as, but not limited to, logging, agri- 65 

culture, cattle ranching, natural hazards (fire, wind events, 
storms), etc. 

For the purpose of illustrating the invention, there are 
depicted in the drawings certain embodiments of the inven-
tion. However, the invention is not limited to the precise 
arrangements and instrumentalities of the embodiments 
depicted in the drawings. 

FIG. 1 depicts spatial distribution of selective logging in 
five timber production states of the Brazilian Amazon for the 
year intervals 1999-2000 (red), 2000-2001 (blue), and 2001-
2002 (green). The states of Amazonas (AM), Amapa (AP), 
Tocantins (TO), Maranhao (MA), and the southern non-for-
ested part of Mato Grosso were not included in the analysis. 
Light gray areas show the extent of indigenous reserves; dark 
gray areas delineate federal conservation lands as of 1999 
Instituto-Socioambiental. (Sao Paulo, Brazil, 1999) Map of 
forest types, land-use change and protected areas in the Ama-
zon). 

FIG. 2 depicts a high resolution example of selective log-
ging results in 2001-2002 from the CLAS processing in com-
parison to deforestation mapping provided by the Brazilian 
National Institute for Space Research (INPE (Instituto Nacio-
nal de Pesquisas Espaciais), "PRODES: Assessment of 
Deforestation in Brazilian Amazonia (http://www.obt.in-
pe.br/prodes/index.html) " (2005)). 

FIG. 3 depicts the Carnegie Landsat Analysis System 
(CLAS) processing stream. 

FIG. 4 depicts the AutoMCU sub-model within CLAS, 
showing that each satellite image pixel is a calibrated reflec-
tance spectrum that is deconvolved into constituent fractional 
covers of photosynthetic vegetation (PV), non-photosyn-
thetic vegetation (NPV), and soil. Spectral endmemberlibrar-
ies developed from extensive field and hyperspectral satellite 
studies (TropiSpec) (Asner et al., 2005) are in a probabilistic 
Monte Carlo unmixing approach to derive the percentage 
cover of PV, NPV and soil within each image pixel. 

FIG. 5 depicts spectral endmember bundles used in the 
AutoMCU step of CLAS (from FIG. 3), which are (A) Pho-
tosynthetic vegetation, (B) Non-photosynthetic vegetation, 
and (C) soil. Adapted from Asner et al. (2004a). 

FIG. 6 depicts an example of deforestation and water body 
masking using Landsat thermal band 6 and the AutoMCU 
result for photosynthetic vegetation (PV). 

FIG. 7 depicts an example of logging detection using 
CLAS. AutoMCU results from one year are differenced 
against those of the next year. A directional pattern recogni-
tion algorithm then uses the PV-change image to locate prob-
able logging decks, skids, and roads. 

FIG. 8 depicts a geographic coverage of study, showing the 
Brazilian Legal Amazon with Landsat 7 satellite footprints. 

FIG. 9 depicts an example showing how the CLAS logging 
product is unique from the PRODES deforestation products 
provided by the Brazilian Space Research Institute. 

FIG. 10 depicts a block diagram of the CLAS system. 

DETAILED DESCRIPTION OF THE INVENTION 

All publications and patent applications herein are incor-
porated by reference to the same extent as if each individual 
publication or patent application was specifically and indi-
vidually indicated to be incorporated by reference. 

The following description includes information that may 
be useful in understanding the present invention. It is not an 
admission that any of the information provided herein is prior 
art or relevant to the presently claimed inventions, or that any 
publication specifically or implicitly referenced is prior art. 
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Unless defined otherwise, all technical and scientific terms 
used herein have the same meaning as commonly understood 
by one of ordinary skill in the art to which this invention 
belongs. Although any methods and materials similar or 
equivalent to those described herein can be used in the prac- 5 

tice or testing of the present invention, the preferred methods 
and materials are described. 

The computational analysis of Landsat Enhanced The-
matic Mapper Plus (ETM+) satellite data was advanced using 
the new Carnegie Landsat Analysis System (CLAS) to detect to 
and quantify the amount of selective logging in the major 
timber production States of the Brazilian Amazon. The 
approach provides automated image analysis using atmo-
spheric modeling, detection of forest canopy openings, sur-
face debris, and bare soil exposed by forest disturbances, and 15 

pattern recognition techniques. As discussed in greater detail 
below, CLAS provides detailed measurements of forest 
canopy damage at a spatial resolution of 30x30 meters, and it 
does so over millions of square kilometers of forest. 

CLAS was applied to five states Para, Mato Grosso, Ron- 20 

d6nia, Roraima, and Acre that account for —90% of all 
deforestation in the Brazilian Amazon. The analysis was con-
ducted on a time-series of Landsat ETM+ imagery from 1999 
to 2002. Across the five timber producing Brazilian states, the 
annual extent of selective logging ranged from 12,135 to 25 

20,651 km2  (FIG. 1). These logging results represent new 
forest damage not accounted for in deforestation studies. 
Each year, the overlap between the results and the Brazilian 
National Institute for Space Research (INPE) annual defor-
estation maps was only 6% (±5%). Moreover, only 19% 30 

(±11 %) of the total area logged in any given year was subse-
quently deforested three years later. Selective logging thus 
adds 60-128% more forest area damage than has been 
reported for deforestation alone in the same study period 
(Table 1). Selective logging was concentrated in the states of 35 

Mato Grosso and Para, where logging areas exceeded or 
nearly matched deforestation areas. In other smaller states, 
selective logging increased forest damage area by 10-35% 
over reported deforestation rates (Table 1). 

4 
Gorotire (Para), and 7uruena (Mato Grosso) were harvested 
for timber at rates of up to 23, 90, and 380 km 2  each year, 
respectively. 

Extensive field validation studies showed that the canopy 
damage detection within CLAS is precise and accurate, as set 
forth below in the Materials and Methods section. Field vali-
dation studies showed false-positive and false-negative detec-
tion rates of only 5%. Uncertainty caused by errors in atmo-
spheric correction of satellite data, cloud cover, 
annualization, automated logging area delineation and 
manual auditing were 0.7-12.8% individually. After combin-
ing all known sources of error, the analysis suggests an overall 
absolute uncertainty of up to 14% in total logging area. 

Selective logging contributes substantially to gross carbon 
fluxes from the Brazilian Amazon. Forest damage results 
from CLAS were combined with field-based forest canopy 
gap fraction and roundwood extraction data to calculate the 
total wood extraction rates. In 2000, 2001 and 2002, round-
wood production averaged 49.8, 29.8 and 26.6 million cubic 
meters, respectively. The mean annual harvest intensities 
were 26.6, 21.7 and 21.4 m 3  ha-f , whichwere generally lower 
than thosereported by sawmill owners in 1996. Nepstad et al. 
(1999) interviewed sawmill operators to estimate harvest 
intensities of 19, 28 and 40 m3  per hectare in 1996. The total 
volume harvested equates to 10-15 million metric tons of 
carbon removed. In addition to roundwood, residual stumps, 
branches, foliage androots are left to decompose in the forest, 
subsequently returning to the atmosphere as carbon dioxide 
over about a decade. The calculated average harvest intensity 
of 23.2 m3  ha t  equates to —8 Mg C ha t  contained in round-
wood, with an associated 34-50 Mg C ha- ' of fine and coarse 
debris. The conversion of roundwood to carbon assumes an 
average wood specific gravity of 0.7 Mg M-3 

  and a propor-
tional carbon content of 0.5 as in Keller et al. (2004a). Fallen 
debris creation was estimated based on data from Keller et al. 
(2004b) based on mean debris amounts found in logged for-
ests (-30 m3  ha- ' harvested) subtracting the woody debris 
found in undisturbed forests. Upper and lower estimates were 
based on mean debris amounts plus root mean squared (RMS) 

TABLE 1 

Selective-logging rates from 1999-2002 in five major timber-producing states of the Brazilian 
Amazon. with comparison to the deforestation rates reported by INPE (2005). 

2000-01 rates (km2  yr i ) 2001-02 rates (km2  yr i ) 
1999-2000 rates (km2  yr i ) Logged Logged  

State Logged Deforested Logged Deforested Logged Deforested 

Acre 64 547 53 419 111 727 
Mato Grosso$ 13,843 6,176 7,912 7,504 7,267 6,880 
Para 5,939 6,671 5,343 5,237 3,791 8,697 
Rondonia 773 2,465 923 2,673 946 3,605 
Roraima  32 253 55 345 20 54  

Total 20,651 16,112 14,286 16,178 12,135 19,963 

$Only the northern 58% of Mato Grosso containing forested lands was included in the analysis 

Conservation units such as indigenous reserves, parks and 
national forests generally afforded protection against log-
ging. However, exceptions included areas in northern Mato 
Grosso, where up to 880, 291, and 50 km 2  of logging were 
measured each year in the Xingu, Aripuana, and Serra 
Morena indigenous reserves, respectively (FIG. 1). In the 
southern portion of Para state, major logging disturbances 
were observed in the Menkragnoti and Kayap6 indigenous 
reserves, with up to 261 and 198 km 2  detected each year 
between 1999 and 2002. Federal forest reserves of Acre,  

error accounting for the uncertainty of estimates for both 
background and logged sites. Total debris was estimated as 
1.4 times fallen debris to account for standing dead and roots 

60 (Keller et al., 2001). Integrated to the regional scale, the 
processing of roundwood and decomposition of residues lead 
ultimately to a gross flux of carbon from the forest of up to 
0.08 billion metric tons for each year of logging. The regional 
gross flux of carbon was estimated by multiplication of the 

65 range of carbon densities of debris created by the area logged. 
The range includes both variation in the annual area logged 
and uncertainty in the amount of debris created during log- 
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ging. This value increases the estimated gross annual anthro-
pogenic flux of carbon from Amazon forests by up to 25% 
over carbon losses from deforestation alone. Post-harvest 
forest regeneration reduces the net flux of carbon to the atmo-
sphere below these values but the pace of regeneration after 
logging varies considerably. 

Selective logging doubles previous estimates of the total 
amount of forest degraded by human activities (Table 1), a 
result with potentially far-reaching implications for the ecol-
ogy of the Amazon forest and the sustainability of the human 
enterprise in the region. In the future, improved monitoring of 
tropical forests will require high performance satellite obser-
vations and new computational techniques . The results, pre-
sented with explicit uncertainty analysis and transparency of 
method, have located and quantified ubiquitous but previ-
ously cryptic disturbances caused by selective logging. 

DEFINITIONS 

As used herein, each of the following terms has the mean-
ing associated with it in this section. 

The articles "a" and "an" are used herein to refer to one or 
to more than one (i . e. to at least one) of the grammatical object 
of the article. By way of example, "an element' means one 
element or more than one element. 

As used herein, the term "deforestation" refers to clear-
cutting and conversion of the forest to other land uses, such as 
cattle pasture , crop agriculture , and urban and suburban areas. 

Without further description, it is believed that one of ordi-
nary skill in the art can , using the preceding description and 
the following illustrative examples, make and utilize the com-
pounds of the present invention and practice the claimed 
methods. The following working examples therefore, specifi-
cally point out the preferred embodiments of the present 
invention, and are not to be construed as limiting in any way 
the remainder of the disclosure. 

EXPERIMENTAL EXAMPLES 

The invention is now described with reference to the fol-
lowing examples. These examples are provided for the pur-
pose of illustration only and the invention should in no way be 
construed as being limited to these examples but rather should 
be construed to encompass any and all variations which 
become evident as a result of the teaching provided herein. 

The materials and methods used in the experiments pre-
sented in this Example are now described. 
Materials and Methods 
Processing Methodology 

The Carnegie Landsat Analysis System (CLAS) includes a 
general purpose computer programmed to use high spatial 
resolution satellite data for regional and global studies of 
forest disturbance . The computer system used is a multi-
processor Linux system , but other systems can be used. 
CLAS is an automated processing system that includes: (i) 
atmospheric correction of satellite data; (ii) deconvolution of 
spectral signatures into sub-pixel fractional cover of live for-
est canopy , forest debris and bare substrates ; (iii) cloud, 
water, and deforestation masking; and (iv) pattern recognition 
algorithms for forest disturbance mapping. The following 
sections provide a detailed description of CLAS, illustrated 
by FIG. 3. 
Image Preparation and Atmospheric Correction 

The version of CLAS presented here ingests raw Landsat 
Enhanced Thematic Mapper Plus (ETM+) satellite imagery 
and applies sensor gains and offsets to convert from digital 
number (DN) to exo-atmospheric radiance. The radiance data 

6 
are passed to a fully automated version of the 6S atmospheric 
radiative transfer model (Vermote et al.). The 6S program is 
integrated into the CLAS processing stream and uses monthly 
averages of aerosol optical thickness (AOT) and water vapor 

5 (WV) values from the Moderate Resolution Imaging Spec-
trometer (MODIS) sensor onboard the NASA Terra space-
craft. Time-stamping of MODIS AOT and WV data with 
Landsat data is done on an automated basis (FIG. 3). 
Sub-Pixel Analysis 

10 	The CLAS process relies upon the quantitative determina- 
tion of fractional material cover at the sub-pixel scale (e.g., 
within each Landsat 3000 m pixel). This core step employs 
a probabilistic spectral mixture sub-model that is run using 
the formulation shown in FIG. 4 . This process spectrally 

15 decomposes each image pixel into fractional cover estimates 
(0-100% cover) of photosynthetic vegetation (PV) canopy, 
non-photosynthetic vegetation (NPV), and bare substrate. 
This sub-model is based on an algorithm developed for forest, 
savanna, woodland and shrubland ecosystems. It is fully auto- 

20 mated and uses a Monte Carlo Unmixing (AutoMCU) 
approach to derive uncertainty estimates of the sub-pixel 
cover fraction values. The method uses three spectral end-
member "bundles", derived from extensive field databases 
and satellite imagery, to decompose each image pixel using 

25 the following linear equation: 

P(k)P; ,1-1][C,-  P(k)J+E°[Cp, P(k)P„+CnPv P(k)P,+ 

C,,,,_re P(~)~ua~ area]+E 	 (1) 

where p(X) e  is the reflectance of each land-cover endmember 
30 (e) at wavelength X and e is an error term. Solving for the 

sub-pixel cover fractions (CJ requires that the observations 
(p(X)P,er---in this case, Landsat ETM+reflectance) contain 
sufficient spectral information to solve a set of linear equa-
tions, each of the form in equation (1) but at different wave- 

35 lengths (X). 
Until recently, there were a limited number of spectral 

signatures of green and senescent vegetation and bare sub-
strates for tropical regions. The mixture modeling technique 
requires spectral reflectance bundles (pp , (X), p P„ (X), and 

40 Ps b,1 a1(X)) that encompass the common variation in canopy 
and soil properties . Asner (1998) and Asner et al. (2003a, 
2004a) collected these spectral data using full optical range 
field spectroradiometers (Analytical Spectral Devices, Inc., 
Boulder, Colo., USA) during field campaigns conducted from 

45 1996 to 2000 . The spectral endmember database encom-
passes the common variation in materials found throughout 
the Brazilian Amazon, with statistical variability well defined 
(2004a). The bare substrate spectra have been collected 
across a diverse range of soil types, surface organic matter 

50 levels, and moisture conditions. Spectral collections for NPV 
have included surface litter, senescent grasslands , and defor-
estation residues (slash) from a wide range of species and 
decomposition stages. 

In contrast to the NPV and bare substrate spectra that can 
55 be collected via ground-based spectroscopic measurements, 

the photosynthetic vegetation (PV) spectra of forest species 
require overhead viewing conditions. This is very difficult in 
forest canopies with heights typically ranging from 10-50 m. 
Spectral measurements of individual leaves, stacks of foliage, 

60 or partial canopies (e.g., branches ) introduce major errors in 
spectral mixture models and cannot be used (Asner, 1998). 
Therefore, canopy spectra were collected using the Earth 
Observing-1 (EO-1) Hyperion sensor, the first spaceborne 
hyperspectral sensor for environmental applications (Ungar 

65 et al.). The PV spectral bundle was derived from more than 
40,000 spectral observations made at 30 m spatial resolution 
with Hyperion (images taken throughout 1999), atmospheri- 
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8 
cally corrected to apparent top-of-canopy reflectance using 	model, residual atmospheric effects can persist (Asner et al., 
the ACORN-4 atmospheric correction algorithm for hyper- 	2005). These residual effects exist spatially within a scene 
spectral data (ImSpec Inc., Palmdale, Calif. USA), and con- 	and temporally between scenes. These effects were greatly 
volved to Landsat ETM+optical channels (Asner et al., 2005). 	reduced prior to automated logging detection (next section) 
These green vegetation spectra thus inherently included the 5 by calculating the average change in fractional forest cover in 
variable effects of intra- and inter-crown shadowing, which 

	
55 km2  subsets of the imagery. These large geographic sub- 

are prevalent in tropical forests (Gastellu-Etchegorry et al.). 	sets are made at a spatial scale far greater than that of the most 
In Amazonia, shade fractions average 25% cover in humid 

	
extensive logging activities, so temporal differences in the 

tropical forests, but the variance is high with standard devia- 	overall forest fractional cover at this scale are a result of 
tions of 12% or more (Asner et al., 2003b). 	 io atmospheric effects (e.g., haze) or forest phenology. These 

It is thus critically important to note that the PV results 
	

false fractional cover changes are normalized by adjusting the 
include shade, which varies substantially with forest struc- 	background forest temporal variation to zero. Since distur- 
ture. Using a separate shade endmember is attractive (Souza 

	
bances related to logging or other anthropogenic activities 

et al., 2000), but doing so with multi-spectral Landsat data 	occur at a much smaller spatial scale than is considered in this 
and such high shadow fraction variability often results in an 15 processing step, normalization of the forest values across 
under-determined spectral and mathematical problem in lin- 	large areas does not affect the CLAS process in discriminat- 
ear mixture models. That is, there are many viable solutions to 

	
ing true disturbances from the surrounding forested areas. 

the mixture modeling problem in forests. Imaging spectros- 	Pattern Recognition 
copy (hyperspectral) data are needed to solve this problem 

	
The specific criteria used in this procedure were deter- 

(Roberts et al.,1993). This issue was avoided by accepting the 20 mined following a comprehensive analysis and review of the 
limitations of incorporating variable shade directly into the 

	
forest responses to logging at various intensities in the Bra- 

PV bundle derived from the EO-1 Hyperion sampling of 
	

zilian states of Para, Mato Grosso and Acre where field stud- 
undisturbed forest canopies in Brazil. The PV bundle 

	
ies were conducted. The mean and standard deviation frac- 

includes spectra from mature forest, late-stage forest 
	

tional cover images from the AutoMCU step in CLAS 
regrowth, and logged forest of at least five years post-harvest. 25 provide quantitative data on canopy damage and forest dis- 
In the end, the total number of spectra retained in the end- 	turbance intensity from which selectively logged areas can be 
member bundles for the AutoMCU sub-model was 252, 611, 	determined (FIG. 3). By identifying areas of canopy distur- 
and 434 for PV, NPV and bare substrate, respectively (FIG. 	bance that are arranged in specific spatial patterns, it is pos- 
5). These spectra represent more than 130,000 field and spa- 	sible to detect logged areas on an automated basis. The pri- 
cebome spectrometer observations collected over a five-year 30 mary method by which logging is detected is image 
period of study (Asner et al., 2005). 	 differencing, where pairs of AutoMCU sub-pixel fractional 
Non-Forest Masking and Atmospheric Compensation 	cover images, separated by approximately one year, are used 

A series of automated masks were designed to exclude 	to create images of PV (forest canopy) and NPV (surface 
clouds, water bodies, cloud shadows, non-image and non- 	woody and senescent vegetation material) change that indi- 
forest areas (e.g., pasture, urban and agriculture) from the 35 cate areas of relative canopy disturbance or recovery. Forest 
CLAS processing stream (FIG. 3). Prior to execution of the 

	
disturbances in these images always have reductions in PV, 

AutoMCU sub-model, clouds are masked using the thermal 
	

simultaneous with increases in NPV fractional cover. 
channel (band 6) from the raw Landsat images. Asner et al. 	Logging activity results in low intensity forest disturbances 
(2005) found that a thermal band threshold DN value of 125 

	
from tree felling gaps, moderate intensity linear features from 

can conservatively detect cloudy pixels over Amazonia. 40 skid trails along which felled trees are dragged by tractors or 
Water bodies are masked by finding pixels in the calibrated 

	
skidders, and high intensity points of damage called log decks 

Landsat reflectance data in which bands 1-4 (blue, green, red, 	where logs are loaded onto trucks for transportation. The log 
and near-infrared) have a negative slope. Only water displays 

	
decks are connected by logging roads, seen as linear features 

such a negative reflectance slope with increasing wavelength. 	causing large reductions in the fractional cover of PV, to local 
Non-image areas containing zero values are also masked. 	45 roads or rivers for transportation to markets. These patterns 

Cloud shadows are identified using the root mean square 	are unique to logging throughout most of the Amazon, and 
error (RMSE) image that results from the AutoMCU process- 	thus they serve as the basis upon which the method for log- 
ing (FIGS. 3-4). Areas shadowed by clouds have large RMSE 

	
ging detection functions. CLAS identifies points (e.g., treefall 

values and are masked by identifying pixels above a specific 	gaps and log decks) and linear features (e.g., skid trails and 
RMSE threshold (Asner et al., 2005). To limit the logging 50 logging roads) of recent disturbance occurring in forested 
analysis to forested areas, Landsat thermal band 6, combined 

	
areas. As these features also exist at a lower frequency in 

with the AutoMCU results, is used to identify pixels contain- 	intact forest regions, their spatial density and diversity (see 
ing primarily forest and non-forest areas. Forests have a lower 

	
definition in next section) are calculated to identify those 

brightness temperature and a higher PV fractional cover than 	areas having disturbances in patterns most indicative of log- 
deforested lands. A conservative PV fractional cover thresh-  55 ging activity. The procedure then identifies these areas for 
old of 60% was employed to delineate forest cover in the PV 

	
further analysis by creating point maps, termed logging 

mask. The minimum and maximum thermal thresholds, 	nodes, indicating their locations. 
which encompass forested areas in the thermal mask, are 

	
Log decks are automatically detected by searching for 

dynamically generated for each image by calculating the 	pixels where PV decreases significantly in a 30 m pixel cen- 
mean thermal value of all pixels having a PV fraction cover 60 tered on a 7x7 pixel kernel (4.41 ha). A positive detection is 
greater than 80% and then masking all pixels with values >15 

	
flagged when pixels with large PV reduction are surrounded 

digital numbers (DN) from the mean thermal value. These 
	

by three concentric rings of incrementally greater PV cover 
final masking steps have the added feature of removing 	surrounding the target pixel. This indicates an increase in 
residual clouds and cloud shadows that were missed in the 	canopy damage with greater proximity to the log deck, a 
masks applied earlier in the CLAS process (FIG. 6). 	65 pattern consistent with most logging activities. 

Although atmospheric correction was performed on the 
	

The strategy for detecting decks works well in areas logged 
raw imagery before processing through the AutoMCU sub- 	at higher intensities, as the decks tend to be abundant and 
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equally spaced. However, in areas where the logging is more 
haphazard, where the forest damage is extremely high or low, 
or where the roads themselves also function as loading zones, 
individual log decks are not always distinguishable. Skids 
trails are a typological feature of selective logging practices, 
and they are the single-most ubiquitous surface feature found 
in harvested areas (Pereira et al., 2002; Asner et al., 2004). 
The presence of skid trails is quantifiable based on large 
decreases in PV fractional cover in linear or near-linear pat-
terns (Asner et al., 2004a). To detect the concentration of skid 
trails and auxiliary roads, a moving 6x6 pixel (3.24 ha) kernel 
is applied to the PV change image to enhance linear features 
in the N-S, E-W, NE-SW, and NW-SE directions (FIG. 3). 
The number of directions in which the linear features are 
arranged (which are defined herein as their diversity), and 
their spatial density, in conjunction with the presence or 
absence of logging decks, is calculated for each location. 
With this information, it is possible to automatically distin-
guish probable logging events. In general, areas of greater 
logging intensity have a roughly equal proportion and higher 
density of linear features with the presence of logging decks. 
Lower intensity areas are normally dominated by one direc-
tion of linear feature and have few or no logging decks. An 
example of a typical logging detection is shown in FIG. 7. 
Final Integration 

After the linear and logging deck pattern recognition steps 
are completed, CLAS automatically integrates the various 
results to identify contiguous pixel clusters of probable log-
ging activity. This process starts by creating a list of the 
logging nodes that are identified in the previous steps. Logged 
areas are identified using a moving kernel approach. A base 
kernel of 7x7 pixels (4.41 ha) and four 30 pixel (0.81 ha) 
subset kernels, one located at each corner of the base kernel, 
are used. The base kernel begins at each logging node and 
tests the criteria described below. If the area in question tests 
positive, the analysis kernel is moved to its 7x7 pixel neigh-
bors to the north, south, east, and west, which are then each 
tested against the criteria (FIG. 3). This iterative process 
continues until all neighbors havebeen evaluated or the maxi-
mum logged cluster size (maximum of 17 positive detections 
per logging node) has been reached. The input layers and 
specific criteria tested within the base and subset kernels are 
described below. For the criteria below, all units for PV and 
NPV are % fractional cover within a pixel; units for PV Cl and 
NPV Cl are % change in cover fractions between image dates. 

Input Layers to Logged Area Detection Procedure: 
Logging Node Map 
Thermal RMS mask (dynamically generated in earlier pro-

cedure) (T-mask) 
PV mask (>60% fractional cover) (PV-mask) 
PV change difference image (PV CI) 
NPV change difference image (NPV CI) 
After image PV (Al PV) 
Base Kernel Criteria: 
75% good data pixels (not cloud, cloud shadow, or water) 
Non-forested area<0.54 ha (12.2%); based on T- and PV-

masks. 
60%<MeanAI PV>93% 
Mean PV CI>-9% 
Mean NPV CI<2% 
Mean PV Cl standard deviation>33% 
Mean NPV Cl standard deviation>46% 
More than 6 pixels (0.54 ha) with PV Cl values>80% 
More than 6 pixels (0.54 ha) with NPV Cl values<-85% 
Masked area<0.18 ha 

10 
Subset Kernel Criteria: 
?2 subsets with PV CI?32% standard deviation 
?2 subsets with mean PV CL3% and ?60% 
?2 subsets having ?1 pixel (0.09 ha) with a PV Cl 

5 	value?80% 
?2 subsets with NPV CI?46% standard deviation 
?2 subsets with mean NPV CL-5% and ?-65% 
?2 subsets having ?1 pixel (0.09 ha) with a NPV Cl 

valued-85% 
io Manual Audit 

Maps of probable logging events were visually audited to 
verify whether an area is being logged or not, in accordance 
with criteria established for identification of logged areas (see 
criteria below). In this process, false positives and negatives 

15 were manually removed and added. In this Amazon study, 
two analysts were employed during the audit, and their results 
and uncertainties were monitored and compared. 

The audit logging criteria are divided into high- and low-
damage obvious and non-obvious categories. These catego- 

2o ries encompassed all probable logging events in the study 
area and were identified after extensive review of logging 
events identified in the field. The criteria applied in each 
category are listed below. 

High-Damage Obvious Criteria 
25 Abundance of logging decks 

Obvious linear features (including primary-tertiary access 
roads and skid trails) 

Severe canopy damage visible in PV change difference 
image 

30 Areal extent normally ?1 ha 
Evidence of logging from previous years in close proxim-

ity (<-15% PV change difference image) 
High-Damage Non-Obvious Criteria 
Few to no logging decks 

35 	Few to no linear features 
Severe canopy damage visible in PV change difference 

image (>15%) 
Presence of access roads or rivers, if not adjacent to a 

anthropogenic non-forest areas 
40 Areal extent normally ? 1 ha 

Evidence of logging from previous years in close proxim-
ity (<-15% in PV change difference image) 

Low-Damage Obvious Criteria 
Few to no logging decks 

45 	Obvious linear features 
Presence of access roads or rivers 
Often tree-like in formation (graduating from higher to 

lower damage linear features) 
Not a linear feature connecting non-forest areas, or other-

50 	wise used for general transportation 
Often encompassing large extents 
Evidence of logging from previous years in close proxim-

ity (<-15% PV change difference image) 
Low-Damage Non-Obvious Criteria 

55 	Few to no logging decks 
Few to no linear features 
Close proximity to access (i.e. roads, rivers or anthropo-

genic non-forest areas) 
Speckles of recent canopy damage (felling gaps; >15%) in 

60 	PV change difference image occurring at a density 
greater than in the surrounding forest areas 

Areal extent normally <6.5 ha 
Evidence of logging from previous years in close proxim-

ity (<-15% in PV change difference image) 
65 	Variation in the final logging products may result from 

differences in observer application of the manual audit pro- 
cedure. The error associated with these user-specific differ- 
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ences was tested by randomly selecting 25 subsets (400x400 
pixels-144 km2) of the logging results throughout the Ama-
zon study area. These areas were then manually audited by 
two separate observers one with in-depth experience with 
the auditing procedure, and one with no experience whatso-
ever. Paired t-tests were then used to assess differences in the 
final auditing results. This test showed no statistical differ-
ence between auditors (p -0.21). As a result, it is concluded 
that the auditing step used herein the only significant non-
automated step in the CLAS processing stream is not sen-
sitive to user biases. 
Annualization 

To determine the total amount of logging within a Brazilian 
state for a given year interval, it is necessary to account for the 
seasonality of logging operations during the year. Since the 
Landsat ETM+ images are selected based on lowest possible 
cloud cover, the time interval for which the logging activity is 
identified in the pair of images is not exactly one year, and so 
may contain more or less than one year of logging. Therefore, 
a time period was defined to which annual logging estimates 
must be standardized. The annualization methodology used 
by the Monitoring the BrazilianAmazon Gross Deforestation 
Project (PRODES) was adopted. Assuming that logging, like 
deforestation, occurs during the dry season, the annual log-
ging rate was determined by prorating the amount of logged 
area to a complete dry season. This standardization depends 
upon the onset and length of the dry season for each image, 
basedthe geographic location ofthe scene center. The general 
spatial pattern of the Amazon dry season was provided by 
Marengo et al. (2001), based on the daily amount of outgoing 
longwave radiation. 
Geographic Coverage 

The Brazilian Amazon basin covers an area of approxi-
mately 4.1 million km2 . Analysis of the entire region with 
Landsat Enhanced Thematic Mapper-Plus (ETM+) imagery 
would require approximately 220 scenes per year or 880 
images for the years 1999-2002, yet much of the northwestern 
Amazon still contains relatively little deforestation and log-
ging (Nepstad et al., 1999). Therefore, the study was limited 
to the States ofAcre, Para, Mato Grosso (northern 58% of the 
state containing most of the forested area), Rondonia, and 
Roraima (FIG. 8). These five states contain 90% of the defor-
estation reported by Brazil for all of the Legal Amazon, and 
thus are the most important areas for logging studies today. 
This strategy reduced the number of required Landsat images 
to 480 scenes. 

The geographic overlap was evaluated between the Brazil-
ian Space Research Institute's deforestation maps and the 
CLAS logging maps for all Landsat images used in the study. 
An example of this comparison is shown in FIG. 9. It was 
found that the logging detections overlapped with PRODES 
deforestation maps only 6% (±5%) of the time in any given 
year. Up to three years following harvest, a maximum of 19% 
(±1 I%) of logged areas were subsequently deforested (clear 
cut). Therefore, these results are not redundant with defores-
tation and thus represent forest damage that has been unac-
counted for in previous State- and Basin-scale forest distur-
bance estimates. 

The study covered the period 1999 to 2002, which is prior 
to the failure of the Scan Line Corrector (SLC) in the ETM+ 
instrument onboard Landsat 7. Following the SLC failure, 
roughly 40% of each acquired Landsat image is missing data. 
To seek out alternatives to Landsat 7, a satellite inter-com-
parison of logging detection capability based on the network 
of low- and high-intensity logging sites in Amazonia was 
conducted (Asner et al., 2004). Comparisons were made 
among the detection capabilities of hyperspectral (EO-I 

12 
Hyperion), multi-view angle (Terra-MISR), high spatial reso-
lution multi-spectral (EO-I Advanced Land Imager, Landsat 
5 Thematic Mapper, Landsat 7 ETM+, CBERS-2, SPOT, 
Terra-ASTER-VNIR), and low spatial resolution multi-spec- 

5  tral (Terra-MODIS, AVHRR) data. The only sensor to meet or 
exceed the performance of Landsat ETM+ was EO-I Hype-
rion; all others failed to detect at least 80% of the logging 
damage in the field sites. However, EO-I Hyperion is a hyper-
spectral technology demonstration with extremely limited 

10 spatial and temporal coverage, making its application to 
large-area analysis intractable. It was concluded that the com-
bination of spectral resolution (6 optical channels), spectral 
signal-to-noise performance, and spatial resolution was criti- 

15  cally important in determining the amount of logging that 
could be reliably detected. Landsat 7 ETM+ provides the 
minimum performance needed for reliable analysis of selec-
tive logging in Amazon forests, and improved space-based 
technology is critically needed to remedy the current limita- 

20 tions. 

Unobserved Areas 

In some cases, there is a lack of sufficiently cloud-free 
imagery to determine logging extent using the pattern recog- 

25 nition portion of CLAS. For example, cloud cover precluded 
the use of two image pairs (Landsat path-row 222/062 and 
226/062) in the state of Para, one in 1999 and the other in 
2000. To estimate logging in these areas, it was necessary to 
employ the single-scene analysis approach detailed by Asner 

30 et al. (2004a), which demonstrated that manual interpretation 
of single-date AutoMCU results have a temporal sensitivity 
of about one year following logging. Therefore, the extent of 
new logging in these two Para images as a proxy for annual 
logging rates in these regions was estimated. 

35 	
In other cases, persistent cloud cover resulted in no images 

for certain areas for certain years. In these instances, the 
amount of logging for the area was estimated from Landsat 
observations made in the closest year. Of the 480 Landsat 

40 images employed throughout the entire study, this was nec-
essary 10.5% of the scenes. 

Uncertainty Analyses 

Any large-scale, complex remote sensing study must track 
45  and manage sources of uncertainty in the final results. This is 

important because there are many steps that can lead to errors. 
The uncertainty was carefully quantified in four key areas: (i) 
atmospheric correction (aerosol and water vapor), (ii) unob-
served areas caused by persistent cloud cover, (iii) annualiza- 

50 tion, and (iv) auditor uncertainty. 

Atmospheric Uncertainty 

In the CLAS processing stream, Landsat ETM+ images are 
atmospherically corrected using the 6S atmospheric correc- 

55 
tion algorithm (Vermote, 1997), with monthly averages of 
aerosol and water vapor inputs from the MODIS satellite 
sensor. The sensitivity of the CLAS AutoMCU algorithm to 
atmospheric correction errors was comprehensively assessed 
by Asner et al. (2005), and was found to be minimally sensi- 

60  tive to uncertainties in aerosol and water vapor from MODIS. 
To further understand the effect that the atmospheric correc-
tion has on the sensitivity of entire CLAS process, five Land-
sat image pairs were atmospherically corrected using ran-
domly-selected, monthly aerosol and water vapor values 

65 from MODIS. The difference in the amount of automatically 
detected logging between the different atmospherically-cor-
rected images was only 0.7% (Table 2). 
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TABLE 2 

Primary sources of uncertainty in CLAS analyses of 
selective logging extent in forests ofAmazonia. 

Percentage of 
Total Logged 

Source Area 	Method 

Atmosphere ±0.7% 	Difference in automatically detected logged 
area between the atmospherically corrected 
image and an image with randomly selected 
atmospheric characteristics. 

Unobserved Area +5% 	Percentage of cloud- and shadow-covered area 
compared to total logged area 

Annualization ±2-9% 	Standard error of the difference between dry 
season length for matched pairs of consecutive 
years from 1979-1996. 

Auditor ±12.8% 	Standard error of difference between auditor 
estimates, on a per kM 2  of logging basis 

TOTAL ESTIMATED ±11-14% 	Root mean square error 
ERROR 

14 

Unobserved Area Uncertainty 	 20  
When cloud and cloud-shadow cover is greater than 50% in 

any 5,625 km2 area (2,500x2,500 pixels), the area of 
observed logging is used to estimate the amount of logging in 
the unobserved, cloudy areas. The sensitivity to this type of 
error was assessed by simply quantifying the fractional cover 25 

of clouds and cloud shadows in comparison to observed log-
ging extent. The calculated absolute uncertainty caused by 
this step was approximately +5% over the five states (Table 
2). 

Annualization Uncertainty 	 30 

Although the rate of logging is assumed constant through-
out the dry season, there is a level of uncertainty inherent in  

estimates were also annualized without the constraint that 
logging activity only occurs only during the dry season. These 
results are reported in Table 3, with comparison to the pre-
ferred results that appear in the main text (Table 2). It is clear 
that the differences between these two assumptions can be 
large in the smaller states (e.g., Acre, Rondonia), where the 
estimate of logged areas is more sensitive to the acquisition 
dates of a smaller number of annual satellite image pairs. 
However, in the larger states, these uncertainties tend to bal-
ance out. In the majority of cases, the amounts of logging 
estimated without the dry season constraint still falls within 
the minimum and maximum limits of estimated logged area 
caused by other sources of uncertainty (discussed below). 

TABLE 3 

Logging estimates for Brazilian states in the Amazon using the dry-season annualization 
Drotocol from INPE (Marenao et al.. 2001) and a calendar-vear annualization. 

1999-2000 rates (km2  yr i) 2000-2001 rates (km2  yr i) 2001-2002 rates (km 2  yr i) 

Dry-season Calendar Dry-season Calendar Dry-season Calendar 
State Protocol Year Protocol Year Protocol Year 

Acre 64 91 53 48 111 117 
Mato Grosso 13,843 11,762 7,912 7,783 7,267 7,182 
Para 5,939 5,030 5,343 5,159 3,791 3,751 
Rondonia 773 694 923 902 946 638 
Roraima 32 32 55 55 20 20 

TOTAL 20,651 17,609 14,286 13,947 12,135 11,708 

this assumption. Marengo et al. reported rainy season length 
for five regions of the Amazon (i.e., NorthAmazonia, Central 
Amazonia, Mouth of Amazon, Southeast Amazonia, and 
Southwest Amazonia) for the period 1979-1996. To deter-
mine the uncertainty in the logging estimate related to 
assumption of dry season length, a series of matched pairs of 
dry season length for two consecutive years (e.g., 1979-1980, 
1980-1981, 1995-1996) was compiled to calculate the stan-
dard error of the difference in dry season length for each 
region. This standard error (in days) was divided by the aver-
age length of the dry season for the respective region to 
express the uncertainty in percent of dry season. This percent-
age uncertainty was then applied to actual satellite image 
pairs or by averaging the uncertainty for states located 
between two regions. These uncertainties ranged from 2-9% 
as a result of interannual variation in dry season length (Table 
2). 

To further assess the sensitivity of the logging area esti-
mates to the annualization and timing of the dry season, the 

Auditor Uncertainty 

50 	Each auditor reviewed a set of the same 25 image subsets 
(400 by 400 pixels) in which most images include some form 
of logging. A test was performed in which a novice and an 
experienced image analyst manually delineated areas con-
taining logged forest. This comparison was used to calculate 

55 one standard error of the difference in logging assessments 
between auditors for each image subset. The standard error 
between auditors was 0.69 km 2  of logging, which when 
scaled by the average amount of logging identified by the two 
analysts (5.4 km2), resulted in an uncertainty of 12.8% (Table 

60 2) 

These different sources of uncertainty were compiled and 
used to estimate an overall uncertainty in the logging extent 
estimates of 11-14% for each Brazilian state in each year of 

65 analysis (Table 2). These uncertainties were then propagated 
to the Basin scale for annual estimates of selective logging for 
the years 2000, 2001, and 2002 (Table 4). 
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TABLE 4 

Minimum-maximum logging estimates for Brazilian states in the 
Amazon based on uncertainties in CLAS logging methodology.  

1999-2000 rates (km' yr - ') 2000-01 rates (km2  yr t) 	 2001-02 rates (km2  yr t) 
Logged Logged Logged  

State Minimum* 	Maximumf Minimum* Maximumf 	Minimum* 	Maximumf 

Acre 54 	 78 45 66 	 94 133 
Mato Grosso$ 11,801 	16,521 6,744 9,481 	6,195 8,453 
Para 4,905 	7,419 4,421 6,536 	3,138 4,844 
Rondonia 657 	931 785 1,076 	804 1,113 
Roraima  27 	38 46 66 	17 26  

Total 17,444 	24,987 12,041 17,225 	10,248 14,569 

*Composed of atmospheric, temporal interpolation, annualization, and auditor uncertainties (see text for definitions 
Tlncludes all uncertainties plus cloud interpolated area. 
$Includes Northern Mato Grosso only. 
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Validation 
A comprehensive validation study of the logging extent 

results derived from the CLAS processing stream was carried 
out. Previous validation studies were highly detailed (tree-
by-tree level) damage assessments, but were limited to fewer 
logging sites and only to the AutoMCU portion of the process 
(Asner et al., 2004a). Pereira et al., Asner et al. (2002b, 
2004b), and Keller et al. (2004b) carried out extensive field 
studies from 1997-2002 in logging areas subjected to a wide 
range of harvest methods, intensities, and canopy damage 
levels. These studies included the development of high-reso-
lution global positioning system (GPS) coverages of logging 
extent in conventional and reduced-impact logging sites in 
eastern Para, central Para, and northern Mato Grosso. These 
areas contained the most intensive and widespread logging in 
the entire study. 

There were a total of 45 harvest/image combinations avail-
able for this validation study. The images areas were only 
considered where the harvest blocks were free of clouds and 
whose harvest month was known when that knowledge was 
essential. All logging events were contained in three Landsat 
images: Fazenda Cauaxi in eastern Para (Landsat path/row 
223/063); Tapaj6s National Forest in central Para (path/row 
227/062); and Juruena in northern Mato Grosso (path/row 
229/067). The timber harvest dates of areas contained within 
these images ranged from 1997 to 2002 (Table 5). About half 
of the logging sites were harvested using conventional (high-
damage) techniques, and the other half employed reduced-
impact (low-damage) logging methods (Asner et al., 2004b). 
Logging areas ranged in size from I I to 1,079 ha. This wide 
range of logging block sizes and canopy damage levels pro-
vided a substantial geographic data set against which to test 
CLAS. 

TABLE 5 

Validation of CLAS logging detection method. 

Logging Block 
Image 

Harvest Type 	Date 
Harvest 

Date 
% Logging 

Detected 

Harvests more than 12 months prior to satellite imaging 
or after satellite imaging  

Cauaxi CL 2000 1996 0 
Cauaxi RIL 2000 1996 0 
Cauaxi RIL 2000 1998 0 
Cauaxi CL 2000 1998 13 
Cauaxi CL 2000 2000 14 
Juruena CL 2000 1998 0 
Juruena CL 2000 1999 5 
Juruena CL 2000 2001 16 

Image Harvest % Logging 
Logging Block 	Harvest Type Date Date Detected 

25 	Juruena RIL 2000 2002 9 
Tapaj6s RIL 2000 1997 0 
Tapaj6s RIL 2000 2002 0 
Tapaj6s RIL 2000 2000 8 
Juruena RIL 2001 2002 1 
Tapaj6s RIL 2001 2002 0 

30 	Cauaxi CL 2001 1996 0 
Cauaxi RIL 2001 1996 0 
Cauaxi RIL 2001 1998 0 
Cauaxi CL 2001 1999 0 
Cauaxi RIL 2001 1999 0 
Cauaxi CL 2001 1998 4 

35 	Juruena CL 2001 1998 0 
Juruena CL 2001 1999 38 
Tapaj6s RIL 2001 1997 0 
Tapaj6s RIL 2001 1999 0 
Tapaj6s RIL 2001 2000 0 
Cauaxi CL 2002 1996 0 

40 Cauaxi RIL 2002 1996 0 
Cauaxi RIL 2002 1998 0 
Cauaxi CL 2002 1999 0 
Cauaxi RIL 2002 1999 6 
Cauaxi RIL 2002 2000 8 
Cauaxi CL 2002 1998 0 
Cauaxi CL 2002 2000 34 

45 	Juruena CL 2002 1998 0 
Juruena CL 2002 1999 0 
Juruena RIL 2002 2000 0 
Tapaj6s RIL 2002 1999 0 
Tapaj6s RIL 2002 2000 0 
Tapaj6s RIL 2002 2000 16 

50  Harvests less than 12 months prior to satellite imaging 

Cauaxi CL 2000 1999 75 
Cauaxi RIL 2000 1999 59 
Tapaj6s RIL 2000 1999 91 
Tapaj6s RIL 2000 2000 84 

55 	Cauaxi CL 2001 2000 44 
Tapaj6s RIL 2002 2002 36 

Geographic information system (GIS) coverages of the 
logging areas listed in Table 5 were overlaid on the CLAS 

60 products, and statistical data on logging detection percentage 
area and logging type were calculated. Results were orga- 
nized by success or failure in detecting the logged areas and 
their spatial extent. For analysis purposes, a false-negative 
detection was declared when CLAS missed areas logged in 

65 the 12 months prior to image date. A false-positive detection 
was declared for areas not logged in the 12 months prior to 
image date and when more than 25% of the false area was 

20 	 TABLE 5-continued 

Validation of CLAS logging detection method. 
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detected as logging. The 12-month limit, a result of the acqui-
sition dates of the before and after AutoMCU images used in 
the change differencing process, was selected based on the 
known sensitivity of the AutoMCU algorithm within CLAS 
(S3). 

Of the 45 image combinations tested, only two false-posi-
tives and two false-negatives occurred (Table 5). For the two 
false-positives, the detected logging areas ranged from 
34-38% of the true area and were logging blocks that had been 
harvested two years prior to satellite imaging. Therefore, it is 
considered that these two blocks as false-positives only in the 
sense that it was not intended for CLAS to find logging sites 
that are more than a year old. Further review of the false-
positive from Cauaxi pointed to issues of geo-registration of 
exact harvest boundaries between the GIS and the imagery. 
The other false-positive (Juruena) was very clearly re-har-
vested over roughly 40-50% of the originally delineated log-
ging block (which had been harvested three years prior to 
re-harvest), hence it was not considered further. For the two 
false-negatives, the detected logging areas ranged from 
36-44% of the true area. Further review of the false-negative 
from Cauaxi also revealed co-registration problems between 
field data and remote sensing imagery. The other false-nega-
tive (Tapaj6s) occurred in a large block where the harvesting 
took place for several months, which caused the first har-
vested portions to be too old (14 months) for detection due to 
regrowth. 

A chi-square test of the results in Table 4 shows that there 
is a highly significant association between logging and CLAS 
algorithm detection (x2=17.0>10.8; p<0.001 (Table 6) This 
test is conservative because it is mainly testing the sensitivity 
to currently versus previously logged areas, and not to intact 
forest that have not been harvested. 

TABLE 6 

Chi square (X) test of the validation 
results of the CLAS logging methodology 

Logged Logged 
Observed No Yes 

Detected No 37 2 
Detected Yes 2 4 

Logged Logged 
Expected No Yes 

Detected No 33.8 5.2 
Detected Yes 5.2 0.8 

* Number of harvest/image combinations that met the following criteria: harvest months 
were lmown when that knowledge was essential for validation; detection was not obviously 
interfered with because of proximity of clouds/cloud shadows. 

Roundwood Estimates from Remote Sensing and Field Stud-
ies 

The roundwood production was calculated from logging 
areas detected using the CLAS approach, combined with 
field-based relationships between remotely sensed canopy 
opening (PV cover), forest canopy gap fraction and round-
wood harvest volumes. After the logging areas and canopy 
damage intensities were mapped as described in previous 
sections, an equation was applied to convert remotely sensed 
PV change of logged areas to forest canopy gap fraction. The 
equation was derived from intensive measurements of forest 
gap fraction in reduced-impact (low damage) and conven-
tional (high damage) selective logging areas and co-located 
with Landsat ETM+ satellite imagery processed with the 
AutoMCU algorithm. This general conversion from the 
CLAS-derived PV fractional cover to forest canopy gap per-
centage was reported by Asner et al. (2005) as: 

Canopy gap=(PV cLAs-90.0)/(-0.4) r2-0.87, p<0.01 	 (2)  

18 
where PVcLAS  and canopy gap are in percentage units. 
PVcL,, is a planar metric, whereas canopy gap is the hemi-
spherical canopy opening (S8). The gap-transformed data 
were then used to estimate the volume of roundwood (m 3) 

5  extracted on a per-area basis using an equation drawn from 35 
logging sites in Brazil, Belize, Suriname, Guyana, and Indo-
nesia (Pereira et al., 2002): 

Wood volume=3.882+108.7(Canopy gap/100) 
r2-0.83,p<0.0001 	 (3) 

10 
Calculated roundwood extraction volumes were then com-
piled by logging detections (from CLAS), and mean harvest 
intensities were calculated by dividing the total calculated 
annual roundwood volume by the harvest area. 
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The foregoing detailed description has been given for 

clearness of understanding only and no unnecessary limita-
tions should be understood therefrom as modifications will be 
obvious to those skilled in the art. 

While the invention has been described in connection with 
specific embodiments thereof, it will be understood that it is 
capable of further modifications and this application is 
intended to cover any variations, uses, or adaptations of the 
invention following, in general, the principles of the invention 
and including such departures from the present disclosure as 
come within known or customary practice within the art to 
which the invention pertains and as may be applied to the 
essential features hereinbefore set forth and as follows in the 
scope of the appended claims. 

The disclosures of each and every patent, patent applica-
tion, and publication cited herein including but limited to the 
references listed immediately above are hereby incorporated 
herein by reference in their entirety. This application includes 
and incorporates in its/their entirety the attached CLAS soft-
ware printouts and supporting documents, all of which are 
individually listed on the `Provisional Application For Patent 
Cover Sheet' accompanying the filing of this application. 

What is claimed: 
1. An automated image processing system to detect selec-

tive logging activity using spatial resolution data obtained 
using various sensors aboard orbiting objects, wherein the 
system comprises: 

a computer programmed to process orbital images of 
regional and global events, the computer including 

20 
an atmospheric correction module for correcting the image 

data of atmospheric effects; 
an AutoMCU module for deconvoluting spectral signa-

tures into sub-pixel fractional cover of live forest 
5 	canopy, forest debris, and bare substrates; 

an atmospheric adjustment module for cloud, water, and 
deforestation masking; and 

a pattern recognition module having pattern recognition 
algorithms for forest disturbance mapping. 

10 	
2. The system of claim 1, wherein the computer is a multi- 

processor system running on a Linux format. 
3. An automated process to detect selective logging activity 

using spatial resolution data from sensors aboard orbiting 
bodies, the steps comprising: 

obtaining orbital image data of regional and global events, 
is correcting the data for atmospheric effects, 

spectrally decomposing spectral signatures into sub-pixel 
fractional cover of live forest canopy, forest debris, and 
bare substrates, 

masking the data for cloud, water, and deforestation, and 
~~ applying pattern recognition algorithms for forest distur-

bance mapping. 
4. The process of claim 3, wherein detection of selective 

logging activity is based on identified logging decks in the 
25  proximity of linear features and access with evidence of 

canopy damage and/or previous logging activity. 
5. The process of claim 3, wherein probable logging activ-

ity is identified by analyzing a cluster of pixels using a mov-
ing kernel approach. 

30 	
6. The process of claim 5, wherein the moving kernel 

approach includes positioning an analysis kernel at a starting 
base kernel with four subset kernels in each of four corners of 
the base kernel, and if an area of the base kernel tests positive, 
moving the analysis kernel to its neighboring kernel in a 

35  north, south, east, and west direction, and iterating the pro- 
cess until all neighboring kernels have been evaluated. 

7. The process of claim 3, further including an auditing step 
for performing a manual visual audit of probably logging 
event locations to add or remove potential false positives and 

40 
negatives. 

8. The process of claim 3, wherein the process may be used 
to monitor any type of forest disturbance including from 
agriculture, cattle ranching, and natural hazards. 

9. A computer program product comprising a non-transi- 
45  tort' computer-readable medium having stored thereon com-

puter executable instructions that, when executed by a com-
puter, performs the process of claim 3. 
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