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Abstract 
 
As the world becomes increasingly urban, the need to quantify the effect of trees in urban 
environments on energy usage, air pollution, local climate and nutrient run-off has 
increased. By identifying, quantifying and valuing the ecological activity that provides 
services in urban areas, stronger policies and improved quality of life for urban residents 
can be obtained. Here we focus on two radically different models that can be used to 
characterize urban forests.  The i-Tree Eco model (formerly UFORE model) quantifies 
ecosystem services (e.g., air pollution removal, carbon storage) and values derived from 
urban trees based on field measurements of trees and local ancillary data sets. Biome-BGC 
(Biome BioGeoChemistry) is used to simulate the fluxes and storage of carbon, water, and 
nitrogen in natural environments. This paper compares i-Tree Eco's methods to those of 
Biome-BGC, which estimates the fluxes and storage of energy, carbon, water and nitrogen 
for vegetation and soil components of the ecosystem. We describe the two models and their 
differences in the way they calculate similar properties, with a focus on carbon and 
nitrogen. Finally, we discuss the implications of further integration of these two 
communities for land managers such as those in Maryland. 
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1.0 Introduction 

 Trees in the urban environment provide significant ecosystem services to urban 

residents. Researchers have sought to define these benefits in the context of a broader 

effort to understand how urban environments function in relationship with natural 

ecosystems (Costanza et al. 1997).  By identifying, quantifying and valuing the ecological 

activity that provides services in urban areas, stronger policies and improved quality of life 

for urban residents can be obtained.  In this paper we are concerned with urban trees, 

which provide a wide range of services and amenities to the urban environment (Nowak 

and Dwyer 2007). Urban trees and forest patches contribute to air filtering, micro-climate 

regulation, noise reduction, rainwater runoff reductions, and improved recreation/cultural 

values (Bolund and Hunhammar 1999).  

 Accurate and quantitative maps of urban forests have been long been sought as an 

important part of an urban tree management strategy. Knowledge of the urban forest, 

specifying where the trees are, what species are represented, how old and healthy they are 

and determining their distribution geographically has great value for planners, city 

foresters, ecologists, landscape architects, tree advocacy groups, and urban residents (Saxe 

et al. 2001).  Information about how urban trees are changing and how they contribute to 

local climate mitigation and adaptation goals has recently emerged as an important theme 

with trees included in regional climate models in large urban areas to estimate their 

contribution to reductions in the urban heat island . (Cynthia Rosenzweig 2009)  

 Recent federal legislation, such as the Energy Policy Act of 2005 (109th Congress, 

2005) and Executive Order 13514 emphasizes the necessity to quantify the effects of 
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environmental protection measures and climate change adaptation programs, especially on 

federal facilities. In addition, there is a movement for voluntary and state mandate climate 

action plans for cities that include greenhouse emission accounting and mitigation.  

However, the complexity of ecosystems leads to difficulty in conducting such studies. The 

fields of forestry, agriculture, urban planning and environmental engineering must come 

together to create a useful tool that can model the interactions between plants and the built 

environment. Fortunately, several models already exist that model and quantify energy, 

water fluxes, and carbon sequestration within different types of ecosystems.  

 The goal of this research is to provide examples of how elements of two different 

environmental models can improve the other’s ability to enable estimation of ecosystem 

services, health benefits, and carbon sequestration information on existing and future 

forest resources on private, municipal, county, state and federal facilities. In this paper, we 

present how a nitrogen uptake algorithm from an ecosystem process model (Biome-BGC) 

was incorporated into i-Tree Eco (formerly Urban Forest Effects (UFORE) model), an urban 

forest assessment model. i-Tree Eco calculates the structure, environmental effects and 

values of urban forests through ground sampling and site-specific calculations. Through 

this illustrative example, we provide concrete evidence of the benefits of bridging different 

forest modeling approaches and modeling communities. 

1.1 Forest Models and Ecosystem Services 

 Scientists have developed biophysical process models to understand the function of 

forests, particularly to explicitly represent the complex interplay between the local 

environment and each individual in the community (Deutschman et al. 1997). Urban 

forests, however, are often excluded from many ecosystem models, as most aim to 



4 
 

understand the interactions present in a natural forest environment and are often 

implemented at a spatial resolution not useful in diverse and complex urban environments.  

The need for models that incorporate explicit species information combined with 

information on changes through time and of carbon stocks is growing as more cities adopt 

policies that promote trees as ways to augment ecosystem services in the region 

(McPherson et al. 2005, Peters et al. 2010).  The impact of changing atmospheric chemistry 

and temperatures on trees will become increasingly important in the efforts of forest 

managers to estimate stock replacement and management strategies. 

 As urban and suburban areas grow, the area that needs to be excluded from process 

models designed for use in natural ecosystems becomes larger. In the Chesapeake Bay 

watershed, for example, the total amount of urban area in the Bay watershed increased by 

14 percent, or 355,146 acres, between 1984 and 2006.  Tree canopy decreased from 62.6 

percent of the watershed in 1984 to 61.5 percent in 2006, a loss of 439,080 acres (Claggett 

2010).  In addition, urban land is projected to increase from 3.1 to 8.1 percent of the 

conterminous United States between 2000 and 2050 given urban growth patterns of the 

1990s (Nowak and Walton 2005). Tree cover in urban areas are also a significant resources 

covering 35.0 percent of urban areas in the United States (Nowak and Greenfield 2012). 

Forests in this region are fragments managed by private, federal and state entities that 

have limited resources but extensive mandates to prevent forest loss.  Tree species in these 

urban and suburban environments are often exotic and of varying age.  At the landscape 

and regional scales, species composition is an important factor controlling the magnitude 

and seasonality of evapotranspiration, growth of biomass and carbon sequestration (Fan et 

al. 1998, Goetz and Prince 1998).  
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1.2  Study Site: University of Maryland College Park 

The study site for this analysis is the University of Maryland College Park (UMCP), in 

Prince George’s County, Maryland.  The University’s Facilities Master Plan 2001-2020 

stipulates preservation and reinforcement of regional ecological connections and 

recommends establishing greenways; managing invasive species; protecting streams, 

wetlands; protecting existing specimen trees; and restoring and enhancing forest cover.  

This plan requires extensive and comprehensive information on forest species, the growth 

of the trees through time, and an estimation of mortality rate. Because of these efforts, 

UMCP forest managers have conducted two tree surveys in the past decade to provide 

input into the i-Tree Eco model. The model results quantify the benefits of campus trees.   

2.0 UFORE and Biome-BGC 

 Both the Biome-BGC and i-Tree Eco models were applied to our study site of the 

University of Maryland College Park campus.  

2.1 Model background on i-Tree Eco 

 The i-Tree Eco model was originally developed as the Urban Forest Effects (UFORE) 

model by the US Forest Service Northern Research Station in the mid- to late 1990s. This 

model estimates ecosystem services and values provided by urban trees and has been 

incorporated within a suite of urban forest models called i-Tree (www.itreetools.org), 

which is free software developed and supported by the US Forest Service and several 

partners. i-Tree incorporates local vegetation data and local hourly meteorological and 

pollution-concentration measurements to quantify location-specific information about 

http://www.itreetools.org/�
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vegetation structure and associated ecosystem services over a one-year period. The model 

currently estimates: 1) forest structural attributes such as number of trees, species 

composition, tree density, tree health, leaf area, leaf biomass, 2) hourly volatile organic 

compound emissions from trees, 3) carbon storage and annual carbon sequestration by 

trees, 4) hourly air pollution removal by trees (ozone, sulfur dioxide, nitrogen dioxide, 

carbon monoxide, and particulate matter less than 10 microns), and 5) tree effects on 

annual building energy use (Nowak et al. 2008). The first step in conducting an i-Tree Eco 

assessment is to determine the purpose of the study, as the purpose determines the 

number of tree attributes required and area to be sampled, and therefore the project’s 

costs. Once objectives are determined, tree data are measured within randomly located 

sample plots  throughout the study area to provide the base tree information for the model 

(Nowak, Hoehn, Crane, Stevens, Walton and Bond 2008).  

Field data collection within plots includes land use, ground and tree cover, shrub 

characteristics, as well as individual-tree attributes of species, stem diameter at breast 

height (1.37 m), tree height, height to base of live crown, crown width, percent crown 

dieback, and distance and direction from buildings (Nowak et al. 2008). Field data are 

entered into the i-Tree Eco program and processed based on a server-based application 

that incorporates local hourly weather (derived from National Climatic Data Center data) 

and pollution data (derived from U.S. Environmental Protection Agency monitors). Model 

outputs include standard tables, graphs and a report, all of which can exported and 

customized.  

 i-Tree Eco methods can be applied to areas of any size and to non-urban areas. Model 
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results have been cross-checked and verified against test data sets and field measurements. 

The model also translates ecological measurements such as kilograms of carbon 

sequestered per year into estimated economic savings, helping to link model information to 

the scientific and policy-making communities (Nowak, Hoehn, Crane, Stevens, Walton and Bond 

2008). 

 The i-Tree results from the 2008 analysis were derived from data from 101 field plots 

located throughout University of Maryland (Keen et al. 2010). 

 Key findings for the UMCP campus were: 

• Number of trees: 166,000 

• Tree cover: 29.2% 

• Most common species: red maple (14.3 percent), sweetgum (10.4 percent), black 

tupelo (10.3 percent). 

• Percentage of trees less than 6" (15.2 cm) diameter: 67.5% 

• Pollution removal: 17 metric tons/year1

• Carbon storage

 ($91.3 thousand/year in 2008 dollars) 

2

• Carbon sequestration

: 22,400 metric tons ($510 thousand) 

3

• Building energy savings: $87.7 thousand / year 

: 683 metric tons/year ($15.6 thousand/year) 

• Avoided carbon emissions: $3,530 / year 

• Structural values4

                                                             
1 Metric ton: 1000 kilograms 

: $81.5 million 

2 Carbon storage: the amount of carbon bound up in the above-ground and below-ground parts of woody vegetation 
3 Carbon sequestration: the removal of carbon dioxide from the air by plants through photosynthesis 
4 Structural value: value based on the physical resource itself (e.g., the cost of having to replace a tree with a similar 
tree) 
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2.2 Model background on Biome-BGC 

 Biome-BGC is used primarily by ecosystem scientists to model the flows of carbon, 

nitrogen, and water in various ecosystems (White et al. 2000). Biome-BGC has been used to 

study carbon sequestration, the hydrologic cycle, and the effects of disturbances such as 

forest fires in various natural ecosystems (White et al. 2002). Biome-BGC outputs quantify 

carbon, nitrogen and water fluxes in a study area over time. Outputs are in carbon, nitrogen 

or water mass per area per day, and interpretation of results is left up to the scientists 

conducting the study. One of the strengths of the model is its simulation modeling 

capabilities. Researchers can experiment with Biome-BGC by changing its inputs and 

mathematical parameters and critically examining the changes in simulated ecosystem 

development that accompany their manipulations (Milesi et al. 2003). Biome-BGC is poorly 

suited to accommodate urban or other human-developed land covers, so it is primarily 

used in studies of natural ecosystems. 

Biome-BGC is a simulation process-model that uses general vegetation and soil 

parameters in conjunction with meteorological data and land characteristics to estimate 

daily fluxes and states of carbon, water, and nitrogen within an ecosystem (Running and 

Coughlin 1988, Running and Gower. 1991, Running and Hunt 1993). Biome-BGC is a point 

model that can be run as a grid model if continuous data layers are available. 

When run as a grid model, Biome-BGC’s calculations do not take into account 

interactions between cells. Depending on type of vegetation, land topographical 

characteristics, soil characteristics, and meteorological data, Biome-BGC simulates the 

development of plant biomass in an ecosystem at a daily time step. On each simulated day, 
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Biome-BGC simulates the transfer passes a certain amount of carbon, nitrogen, and water 

between different atmospheric, soil, and biomass pools. The amount of nutrient moved 

between the pools is based on meteorological data and process models of the carbon cycle, 

nitrogen cycle, and hydrologic cycle specific to the biome type being simulated.  

 Vegetation cover is classified according to one of seven general biomes. The forested 

biomes are broken into four subcategories based on leaf type and phenology: evergreen 

needle leaf and broadleaf, deciduous needle leaf and broadleaf.  The grass biomes are 

divided into two distinct types of grasses depending on the species’ photosynthesis 

process. A shrub biome type is also supported by Biome-BGC. Each of the seven biome 

types is simulated using a complete set of ecophysiological parameters which were 

determined through compilation of a broad literature survey quantifying allocation 

parameters and characteristics of nutrient cycles within different species (White et al., 

2000) (Figure 1). The user has a choice to use either the average values compiled for a 

given biome or to use ecophysiological parameters characteristic of an individual species 

or species composition. Biome-BGC does not explicitly support a biome representing 

biomass or other abiotic or biotic climate processes in urban areas but can be adapted to 

simulate processes in urban ecosystems through appropriate parameterization (Milesi et al. 

2005).  

The first step to conducting a Biome-BGC study is determining a study area and 

gathering initialization parameters such as biome type, land topographic information, and 

soil characteristics. These parameters can be interpreted from previously mapped data, 

field studies of the study area, or field studies of similar areas. When the initialization 
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parameters have been collected, historical daily meteorological data including maximum 

and minimum temperature, precipitation, and solar radiation must also be supplied. Spinup 

simulations are required to bring the amount of carbon stored in the soils in equilibrium 

with the local climate. 

 In this study we implemented Biome-BGC over the University of Maryland’s College 

Park campus (Latitude 38.996, Longitude -76.934).  We ran the Biome-BGC version 4.2 

program for a thirty-year time period, from 1978 to 2008, with 6000 years of spin-up and 

based on climate data from College Park derived from Daymet (Thornton et al. 1997, Kimball 

et al. 1997).  The results in Figure 2 shows the annual net biome production (NBP) on the 

University of Maryland site, denoting the amount of carbon that remains at the site after 

subtracting respiratory and non-respiratory (e.g. fires) losses.  Although NBP is considered 

an appropriate concept for analyzing long-term and large-scale changes to the carbon cycle 

through changes in land use, it may not be directly comparable to carbon calculations from 

i-Tree Eco.   

2.3  Comparing i-Tree Eco and Biome-BGC 

i-Tree Eco and Biome-BGC are different in their intended applications, intended 

users, model theory, and program structure, but these differences are potential strengths 

waiting to be fully developed. i-Tree Eco, an urban forest model, is intuitively targeted 

towards landscape managers and policymakers who need to understand the wider effects 

of the landscaping decisions made in their areas of interest. Biome-BGC, a comprehensive 

ecosystem model, simulates the study area’s development through time, but assumes a 

natural, non-urban ecosystem and does not interpret its outputs beyond specific mass 
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flows of water and carbon. Each distinct attribute can be conceivably integrated into the 

opposite model for a stronger and more versatile modeling framework. Table 1 lists key 

strengths and weaknesses of these two programs for the urban manager. 

3.0 Estimating nitrogen uptake in urban forests 

In temperate ecosystems nitrogen (N) is a commonly considered the primary 

limitation on primary productivity (Vitousek and Howarth 1991). In Biome-BGC, 

availability of nitrogen determines the amount of carbon sequestered by the vegetation.  

Human activities have increased N inputs into a number of previously N-limited 

ecosystems (Vitousek et al 1998). While increased N inputs have alleviated N limitation, 

they have also led to significant ecological problems resulting from the leaching of excess N 

to adjacent waterways, as well as loss of essential base cations from soils, increased 

production of N-based greenhouse gases and shifts in community composition leading to 

decreased diversity (Vitousek et al. 1997).  Trees and forests in urban areas are particularly 

vulnerable to wet air deposition of nitrogen. The adverse environmental and ecological 

effects of N pollution result from the contributions of nitrogen in four major areas: (1) 

acidic deposition, ground-level ozone (O3) formation, and visibility loss; (2) acidification 

and overfertilization of forest ecosystems; (3) acidification and fertilization of fresh waters; 

and (4) coastal eutrophication (Driscoll et al. 2003).  

A number of important changes in forest ecosystem function accompany N 

saturation, including (a) increased nitrification and nitrogen oxide–leaching, with 

associated acidification of soils and surface waters; (b) depletion of soil nutrient cations 

and development of plant nutrient imbalances; and (c) forest decline and changes in 
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species composition (Driscoll, Whitall, Aber, Boyer, Castro, Cronan, Goodale, Groffman, 

Hopkinson, Lambert, Lawrence and Ollinger 2003). The rate and extent to which these 

symptoms develop are controlled in part by the capacity of the biota and soils in forest 

ecosystems to retain deposited N (Aber et al. 1998). 

In Biome-BGC, nitrogen (N) availability regulates rates of carbon sequestration 

under the assumption that N availability limits primary production. In contrast, i-Tree Eco 

currently does not explicitly consider N. Though the models consider N in a completely 

separate context, the same biological processes govern nitrogen uptake by plants in both 

contexts. The addition of a module estimating urban forest nitrogen uptake to i-Tree Eco 

would be valuable to both scientists and urban landscape managers. Urban forests, 

particularly those in riparian zones, function as nitrogen sinks (Groffman et al. 2002). In an 

urban ecosystem with large proportions of impervious surface, the capacity of trees to 

remove mobile forms of N from the soil solution and sequester it in biomass is a significant 

ecosystem service. Including a N-uptake estimation component to i-Tree Eco could quantify 

this service provided by urban trees. In terms of carbon, i-Tree assumes no N limitation in 

urban areas and uses average tree growth for a region that is adjusted by tree competition 

and condition, and soon to be adjusted by species. 

 

3.1 Module schematics 
  Based on the carbon-nitrogen dynamics simulated in Biome-BGC we developed an N 

module, which could be added to i-Tree Eco.  We added an estimate of N held in foliage, but 

this N is largely returned to the soil each year with leaf senescence. This new N uptake 
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module produces estimates for leaves, but should also be developed for N in woody 

biomass to be more comprehensive for total N estimation. The N calculations in Biome-BGC 

are incorporated primarily to support a more accurate C cycle in which C sequestration is 

limited by N availability. A schematic of the coupled C and N dynamics in Biome-BGC is 

shown in Figure 3.  The focus of the analysis would be to incorporate information on 

nitrogen to permit i-Tree to determine if the urban area in question is nitrogen limited and 

if so, by how much.  

Carbon to nitrogen (C:N) ratios have been presented in the literature for litter, soil, 

and aboveground biomass pools of temperate forest ecosystems. In the natural ecosystems 

that Biome-BGC was designed to study, nitrogen is often a limiting nutrient, and the 

amount of nitrogen available dictates how much carbon can be stored in plant tissue. C:N 

ratios are also key to calculating amounts of nitrogen stored in urban plants. 

There are several modeling styles that could be used to estimate N uptake by urban 

forests. While process models exist that estimate vegetation N, such as TREEDYN3 (Bossel 

1996), this approach differs from the i-Tree-Eco allometric  method for carbon. As 

described above, Biome-BGC takes a process modeling approach, in which the N cycle is 

coupled with the C cycle through established C:N ratios. These ratios could be used in i-

Tree -Eco to calculate N storage as a proportion of the C storage, which is already 

calculated by i-Tree Eco. This is a very simple calculation method.  

In this study, we developed a new module in i-Tree Eco, which calculates total leaf N 

using regression equations developed by Reich et al (2007). The module will utilize 

equations based upon Global Plant Trait Network (GLOPNET) database, which includes 
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data collected over 175 sites with 2548 species-site combinations, 2021 different species in 

total, with 342 species occurring at more than one site (Reich et al. 2007, Wright et al. 

2005, Wright et al. 2004).  At the different sites, mean annual temperature ranged from -16 

to 27.5oC, and mean annual rainfall ranged from 133 to 5300 mm per year.   

The GLOPNET dataset was selected because it fits well into the statistical and 

modular approach taken in the existing i-Tree Eco modules. This methodology will allow 

users of i-Tree Eco to model foliar N pools (Nmass in g/m2 ) as a function of phylogeny, 

growth form (grasses, forbs, shrubs, and trees), leaf habit (deciduous or evergreen), and 

site specific climate variables including mean annual temperature (MAT), mean annual 

solar radiation, annual site rainfall, and mean annual vapor pressure deficit (VPD).  Future 

work could include woody biomass, which would give N storage rather than just uptake by 

leaves through building a database of C:N values for woody tissue in temperate trees. 

 All leaf-traits in the original GLOPNET database were approximately log-normally 

distributed across the data set, as were site rainfall and VPD. Therefore, these variables 

were log-10 transformed for all analyses.  Solar radiation and MAT were not changed 

because their distribution was approximately normal.  The N pool held in an individual tree 

canopy can be calculated by multiplying the N concentration value for that species by the 

leaf biomass value from i-Tree Eco of the corresponding tree and adjusting it for the tree 

condition, as shown in Equation 1.  

      Eq. 1 

3.2 Carbon release: calculating daily mortality fraction 
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Biome-BGC simulates plant mortality as a daily fraction of carbon and nitrogen 

stored in pools related to plant anatomy: leaf, stem, coarse root, and fine root pools. Each 

plant anatomy pool is divided into sections corresponding to its component proportions of 

plant tissue types. Biome-BGC includes labile, cellulose, unshielded cellulose, and lignin 

tissue.  After the daily mortality fraction of each plant anatomy pool is calculated, the 

fraction is divided between plant tissue pools corresponding to the appropriate type of 

plant anatomy. The mortality fraction is then subtracted from its original living plant 

anatomy pool. In the case of woody biomes, fire-related mortality is calculated and carbon 

and nitrogen fluxes transferred between living and litter pools in the same fashion. 

Figure 3 shows the mortality process described above in a simplified schematic of 

carbon cycling in the broader program. Litter pool carbon gradually flows into the 

decomposition (or microbial) pools, after which carbon dioxide is released back into the 

atmosphere, in turn to be fixed back into plants during photosynthesis. Fixed carbon is 

allocated to different plant anatomy pools in proportions dictated by biome-specific ratios, 

and once again transferred to litter pools as plant mortality takes place. 

A prototype i-Tree Eco nitrogen code was developed that provided insight into 

potential integrations between i-Tree Eco and Biome-BGC and potential obstacles in the 

way of developing an integration design.  i-Tree Eco could use the forest sample to generate 

initial storage values for some plant anatomy carbon pools used in Biome-BGC’s mortality 

function, but many of the more specific and technical carbon pools could not be filled in by 

i-Tree Eco. As i-Tree Eco generates carbon pools based on specific tree species and 

structure rather than more general biome-wide values, i-Tree Eco estimates of carbon 
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stored in the pools might be more accurate than Biome-BGC’s initial estimates of carbon 

storage. This quandary highlighted the differences between the two programs, but also 

their potential to supplement each other. 

3.3 University of Maryland leaf nitrogen estimation 

Leaf nitrogen (N) pool values were calculated for the University of Maryland, College 

Park, to provide an illustrative example of the method described. Using the field data for 

1336 trees from the UMD i-Tree Eco study conducted in 2008 (Keen 1994), Nmass for each 

tree was calculated using climate data for 2008, and average foliar nitrogen concentration 

values from the literature and the GLOPNET database. For species without reported foliar 

N concentration values, genus averages were used, if present, otherwise the average 

GLOPNET database value was used.  

 GLOPNET is a database of foliar characteristics developed by a large group, it 

includes leaf specific area, leaf mass per unit area, longevity and N concentration in percent 

among other traits for thousands of species..  Foliar N concentration varies between 1 and 

4% of total leaf biomass with most values near 2% common in systems that are neither 

extremely N limited nor fertilized (Table 2). 

 The iTree-N module calculated an average value of Nmass across all the trees of 

1.98%. The value is close to the reported values in GLOPNET. Values for species found in 

this study representing various leaf habit and phylogeny combinations are shown in Table 

2.   Biome-BGC uses a foliar carbon ratio of 24 for the biome, and assuming a carbon 

concentration of 47%  (McGroddy et al. 2004), then the Biome BGC foliar N concentration is 

1.96%.  Thus the two measurements are very similar for the UMCP study site.  
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4.0 Discussion 

Nitrogen is one of the deterministic nutrients of plant growth, making it important for i-

Tree Eco to analyze nitrogen uptake in plants. If the module developed here was integrated 

into i-Tree Eco, users could improve their understanding of nitrogen requirements and 

issues of over-supply of nitrogen in their urban ecosystems.  Having a leaf nitrogen value 

would allow users to be better able to understand how urban ecosystems act as nitrogen 

sinks and possible buffers for the prevention of dead zones in aquatic resources due to a 

quantitative assessment of their uptake of nitrogen. Although GLOPNET only has data on 

foliar characteristics, the model also could be extended to include nitrogen in woody 

biomass, which functions as a longer term sink with much lower variability than in foliar 

tissue using a database approach with values from the literature.   

While the new i-Tree-N module proposed in this paper provides a feasible method 

of quantifying nitrogen in tree leaves, its capabilities are limited. The model provides 

estimates of uptake by leaves and not the entire tree. Hence, the value of the module is only 

a fraction of the actual nitrogen content in the trees. Furthermore, the regression equations 

used in the model were derived from a database of species all over of the world, and might 

not be as accurate when used in urban areas. This is because urban trees under N 

deposition and associated urban environmental conditions might differ from values for 

trees in ‘natural’ conditions, especially N limited conditions.  The new N module in i-Tree, 

therefore, serves as the stepping-stone that brings two different ecosystem models 

together, and would encourage further developments in this area. 

 Other integrations between i-Tree and Biome-BGC could be useful.  The method 

used by ecosystem models to integrate over time could be accommodated by the i-Tree 
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model.  i-Tree has developed a time-series component that is being tested now and planned 

for release in a future version, but could potentially gain from investigating the mechanics 

of the Biome-BGC modeling system.  Biome-BGC could be improved with access to the large 

database of 0.04 ha sampling frames that i-Tree measurements have accumulated over the 

past decade. i-Tree’s database of observations and resulting allometric relationships could 

provide a means for validation and uncertainty reduction in Biome-BGC (Korol et al. 1991). 

Improving the ground sampling, increasing understanding of the diversity of tree species 

types, and obtaining information on carbon and other nutrients currently stored in the 

environment would help ecosystem models reduce errors currently inherent in the model. 

 Biome-BGC could be augmented if some aspects from i-Tree were incorporated into 

the process model. For example, showing how increasing forest cover over a century would 

improve air quality in a region as the forest leaf biomass increases would be a valuable 

contribution. Another potential way to improve Biome BGC would be to incorporate more 

species-specific information, for example, come up with reasonable N uptake based on 

dominant species and tree size.  The species level detail is one of i-Tree Eco’s strengths and 

though that level of detail would be impossible to incorporate into Biome BGC, there are 

ways to include more specificity to the model. 

 End users of model output from both i-Tree Eco and Biome-BGC are likely to include 

organizations that focus on forest management.  The Baltimore Washington Partners for 

Forest Stewardship (BWPFS) is an organization that brings together federal, state and 

municipal land managers in Maryland to improve forest management and ensure best 

practices.  The original partners, including the Maryland Department of Natural Resources, 

the Center for Chesapeake Communities, the U.S. Department of Agriculture Beltsville 
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Agricultural Research Center, the U.S. Fish and Wildlife Service Patuxent Research Refuge, 

the NASA/Goddard Space Flight Center and the U.S. Army Fort George G. Meade, formed the 

BWPFS through a Memorandum of Understanding (MOU) in 2006.  Collectively, these 

agencies own and manage over 40 square miles of land, 64% of which is either forested or 

wetlands.   

On June 23, 2011, at a MOU signature ceremony and tree planting event, hosted by 

the City of Greenbelt, the BWPFS will welcome the City of Greenbelt, the University of 

Maryland, the U.S. Secret Service, the U.S. Forest Service and the U.S. Geological Survey as 

new members, expanding the area of contiguous managed landscape to nearly 47 square 

miles. Through the interaction of Federal land managers with local, state and national 

organizations in the region, the models presented here can contribute to understanding 

forest sustainability and the effect of climate on local forest resources by improving the 

understanding of dynamic relationship between management strategies and forest 

response. 

5.0 Conclusions  

Trees have a significant role in mitigating climate change effects. To quantify the 

benefits of trees accurately it is important that different ecosystem model approaches learn 

from each together. In this paper, we contrasted two different ecosystem models: i-Tree 

Eco and Biome-BGC, and based upon this comparison outlined integration designs that 

would greatly improve both programs. Through the illustrative example of a new nitrogen 

uptake model in i-Tree Eco, we provide concrete evidence of the benefits of bridging 

different ecosystem models. We hope that the work brought forth in this paper will inspire 
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growth among ecosystem models and provide a basis to draft environmental policies in the 

interest of protecting the ecosystem from impending climate change. 
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Table 1. Strengths and weaknesses of UFORE and Biome-BGC 
 

 I-Tree Eco Biome-BGC 

Strengths 

• High resolution  
• Species Specific 
• User-friendly 
• Incorporation of local meteorological 

and pollution data 
• Applicable to small and large regions 

 

• Applicable to large regions  
• Simulates development over time   
• Includes detailed carbon allocation 

information 

Weaknesses 

• Labor Intensive field data collection 
requirements 

• Error estimation based only on 
sampling error  

• Simulates data only for one year 
• Does not provide carbon allocation 

information          

• Not user friendly  
• Requires output interpretation   
• Does not quantify economic value of 

ecosystem services 

 

Table 2: A set of example data used in the N module of iTree, taken from the GLOPNET 
database.  

Leaf Habit Phylogeny Examples 

Species                     Nmass  

Deciduous Angiosperm Pyrus pumila  

 

2.32 

 Gymnosperm Prunus sargentii 2.13 

Evergreen Angiosperm Ilex opaca 

 

2.68 

 Gymnosperm Pinus taeda 

 

3.67 
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Figure 1: Biome-BGC soil processes- Summary of linkages between carbon and nitrogen 
(White et al 2000) 
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Figure 2. Results showing the annual net biome production from the Biome-BGC run over 
the University of Maryland College Park system 

  

 

Figure 3: A simplified schematic for carbon cycling in Biome-BGC 

 

 

 

 

 

-120 

-100 

-80 

-60 

-40 

-20 

0 

20 

40 

60 

80 
19

78
 

19
80

 
19

82
 

19
84

 
19

86
 

19
88

 
19

90
 

19
92

 
19

94
 

19
96

 
19

98
 

20
00

 
20

02
 

20
04

 
20

06
 

20
08

 

gr
am

s 
/ 

m
et

er
2/

ye
ar

 



24 
 

References 

Costanza R, d'Arge R, Groot Rd, S. F, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill R, Paruelo J, 
et al. 1997. The value of the world's ecosystem services and natural capital. Nature. 
387(15):253-260. Available  

Nowak DJ, Dwyer JF. 2007. Understanding the Benefits and Costs of Urban Forest Ecosystems. In: 
Urban And Community Forestry In The Northeast.  Heildelberg: Springer Verlag. p. 25-46. 

Bolund P, Hunhammar S. 1999. Ecosystem services in urban areas. Ecological Economics. 29:293-
301. Available  

Saxe H, Cannell MGR, Johnsen B, Ryan MG, Vourlitis G. 2001. Tree and forest functioning in response 
to global warming. New Phytologist. 149(3):369-399. Available  

Cynthia Rosenzweig WDS, Jennifer Cox, Sara Hodges, Lily Parshall, Barry Lynn, Richard Goldberg, 
Stuart Gaffin, Ronald B. Slosberg, Peter Savio, Mark Watson, Frank Dunstan. 2009. Mitigating 
New York City's Heat Island: Integrating Stakeholder Perspectives and Scientific Evaluation. 
Bulletin of the American Meteorological Society. 90(9):1297-1312. Available  

Deutschman DH, Levin SA, Devine C, Buttel LA. 1997. Scaling from trees to forests: analysis of a 
complex simulation model. Science. 277:1688. Available  

McPherson G, Simpson JR, Peper PJ, Maco SE, Xiao QF. 2005. Municipal forest benefits and costs in 
five US cities. Journal of Forestry. 103(8):411-416. Available  

Peters EB, McFadden JP, Montgomery RA. 2010. Biological and environmental controls on tree 
transpiration in a suburban landscape. Journal of Geophysical Research. 115(G04006). 
Available  doi 10.1029/2009JG001266, 2010 

Claggett PR. 2010. Human Population Growth and Land-Use Change. In: Synthesis of US Geological 
Survey Science for the Chesapeake Bay Ecosystem and Implications for Environmental 
Management.  Washington DC: US Geological Survey. 

Nowak DJ, Walton JT. 2005. Projected Urban Growth and its Estimated Impact on the U.S. Forest 
Resource (2000-2050). Journal of Forestry. 103(8):383-389. Available  

Nowak DJ, Greenfield EJ. 2012. Tree and impervious cover in the United States. Landscape and 
Urban Planning. in review. Available  

Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P. 1998. A large terrestrial 
carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and 
models. Science. 282(5388):442-446. Available  

Goetz SJ, Prince SD. 1998. Variability in carbon exchange and light utilization among boreal forest 
stands: implications for remote sensing of net primary production. Canadian Journal of Forest 
Research-Revue Canadienne De Recherche Forestiere. 28(3):375-389. Available  

Nowak DJ, Hoehn RE, Crane DE, Stevens JC, Walton JT, Bond J. 2008. A ground-based method of 
assessing urban forest structure and ecosystem services. Aboriculture & Urban Forestry. 
34(6):347-358. Available  

Keen T, Dawson A, Sullivan JH. 2010. A UFORE analysis of the urban forest of the University of 
Maryland. 

White M, Thornton PE, Running SW, Nemani RR. 2000. Parameterization and sensitivity analysis of 
the Biome-BGC terrestrial ecosystem model: net primary production controls. Earth 
Interactions. 4:1-85. Available  

White MA, Nemani RR, Thornton PE, Running SW. 2002. Satellite evidence of phenological 
differences between urbanized and rural areas of the eastern United States deciduous broadleaf 
forest. Ecosystems. 5(3):260-273. Available  

Milesi C, Elvidge CD, Nemani RR, Running SW. 2003. Assessing the impact of urban land 
development on net primary productivity in the southeastern United States. Remote Sensing of 
Environment. 86:273-432. Available  



25 
 

Running SW, Coughlin JC. 1988. A general model of forest ecosystem processes for regional 
applications. I. Hydrological balance, canopy gas exchange and primary production processes. 
Ecological Modelling. 42:125–154. Available  

Running SW, Gower. ST. 1991. FOREST-BGC, a general model of forest ecosystem processes for 
regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology 
9:147–160. Available  

Running SW, Hunt RE. 1993. Generalization of a forest ecosystem process model for other biomes, 
BIOME-BGC, and an application for global-scale models. In: Scaling Physiologic Processes: Leaf 
to Globe.  San Diego: Academic Press. p. 141–158. 

Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR. 2005. Mapping and Modeling the 
Biogeochemical Cycling of Turf Grasses in the United States. Environmental Management. 
36(3):426-438. Available  

Thornton PE, Running SW, White MA. 1997. Generating surfaces of daily meteorology variables 
over large regions of complex terrain. Journal of Hydrology. 190:214–251. Available  

Kimball JS, Running SW, Nemani R. 1997. An improved method for estimating surface humidity 
from daily minimum temperature. Agricultural and Forest Meteorology. 85:87-98. Available  

Driscoll CT, Whitall D, Aber J, Boyer E, Castro M, Cronan C, Goodale CL, Groffman P, Hopkinson C, 
Lambert K, et al. 2003. Nitrogen Pollution in the Northeastern United States: Sources, Effects, 
and Management Options. Bioscience. 53(4):357-364. Available  

Aber J, McDowell M, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, 
Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. 
BioScience. 48:921–934. Available  

Groffman PM, Boulware NJ, Zipperer WC. 2002. Soil Nitrogen Cycle Processes in Urban Riparian 
Zones. . Environmental Science & Technology. 36(21):4547-4552. Available  

Bossel H. 1996. TREEDYN3 Forest Simulation Model. Ecological Modelling. 19:187-227. Available  
Reich PB, Wright IJ, Lusk CH. 2007. Predicting leaf physiology from simple plant and climate 

attributes: A global glopnet analysis. Ecological Applications. 17(7):1982-1993. Available  
Wright I, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets 

U, Olekysn J, et al. 2005. Modulation of leaf economic traits and trait relationships by climate. 
Geological Ecology and Biogeography. 14:411-421. Available  

Wright I, Reich PB, Westoby M, researchers G. 2004. The worldwide leaf economics spectrum. 
Nature. 428:821-827. Available  

Keen D. 1994. The Benefits of Famine: A Political Economy of Famine and Relief in Southwestern 
Sudan, 1983-1989.  Princeton: Princeton University Press. 

McGroddy ME, Daufresne T, Hedin LO. 2004. Scaling of C:N:P stoichiometry in forest ecosystems 
worldwide: Implications of terrestrial Redfield-type ratios. Ecology. 85:2390-2401. Available  

Korol RL, Running SW, Milner KS, Hunt ER, Jr. 1991. Testing a mechanistic carbon balance model 
against observed tree growth. Canadian Journal of Forest Research. 21:1098-1105. Available  

 

 


	2.0 UFORE and Biome-BGC
	2.1 Model background on i-Tree Eco
	2.2 Model background on Biome-BGC
	3.0 Estimating nitrogen uptake in urban forests
	3.1 Module schematics

