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Array deconvolution is commonly used in aeroacoustic analysis to remove the influ-
ence of a microphone array’s point spread function from a conventional beamforming map.
Unfortunately, the majority of deconvolution algorithms assume that the acoustic sources
in a measurement are incoherent, which can be problematic for some aeroacoustic phe-
nomena with coherent, spatially-distributed characteristics. While several algorithms have
been proposed to handle coherent sources, some are computationally intractable for many
problems while others require restrictive assumptions about the source field. Newer gen-
eralized inverse techniques hold promise, but are still under investigation for general use.
An alternate coherent deconvolution method is proposed based on a wavespace transfor-
mation of the array data. Wavespace analysis offers advantages over curved-wave array
processing, such as providing an explicit shift-invariance in the convolution of the array
sampling function with the acoustic wave field. However, usage of the wavespace transfor-
mation assumes the acoustic wave field is accurately approximated as a superposition of
plane wave fields, regardless of true wavefront curvature. The wavespace technique lever-
ages Fourier transforms to quickly evaluate a shift-invariant convolution. The method is
derived for and applied to ideal incoherent and coherent plane wave fields to demonstrate
its ability to determine magnitude and relative phase of multiple coherent sources. Multi-
scale processing is explored as a means of accelerating solution convergence. A case with a
spherical wave front is evaluated. Finally, a trailing edge noise experiment case is consid-
ered. Results show the method successfully deconvolves incoherent, partially-coherent, and
coherent plane wave fields to a degree necessary for quantitative evaluation. Curved wave
front cases warrant further investigation. A potential extension to nearfield beamforming
is proposed.

Nomenclature

Dimensions
kx, ky Wavespace dimensions
kξ, kη Conjugate-power wavespace dimensions
x, y Spatial dimensions
ξ, η Conjugate-power spatial dimensions

Symbols
a Relaxation parameter
A Example system matrix
B Matrix used in iteration stability analysis
C Matrix used in iteration stability analysis
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CFD Acronym for Computational Fluid Dynamics
CSM Acronym for Cross-Spectral Matrix
c0 Isentropic speed of sound
D Matrix used in iteration stability analysis
e Vector of wavespace transform terms
E Expected value operation
err Normalized solution error
f Temporal frequency
FFT Acronym for Fast Fourier Transform
G Example cross-spectral matrix
GPU Acronym for Graphics Processor Unit
I Identity matrix
j imaginary unit
kmax Maximum extent of wavespace grid
M Total number of microphones in array
ng Number of grid points in a beam map
nk Number of grid points in a given dimension in wavespace
ns Number of grid points in a given dimension required for linear convolution
p (x, y) Sampled pressure field on array face
pm Pressure sampled at microphone m for a given narrowband frequency
p̃ (kx, ky) Wavespace transform of sampled pressure field
P (ξ, η, x, y) Spatial cross-spectrum

P̃ (kξ, kη, kx, ky) Measured wavespace cross-spectrum
PSF Array point spread function
q (x, y) Continuous pressure field on array face
q̃ (kx, ky) Wavespace transform of true pressure field

Q̃ (kξ, kη, kx, ky) Wavespace cross-spectrum of true pressure field

Q̂ Forward transform of Q̃
rσ Spectral radius of a matrix
res Solution residual

R̃ (kξ, kη, kx, ky) Convolution of source field with array response

R̂ Forward transform of R̃
s (x, y) Array sampling function in space
s̃ (kx, ky) Wavespace transform of array sampling function

S̃ (kξ, kη, kx, ky) Wavespace cross-power sampling function

Ŝ Forward transform of S̃
x Vector of example sources
y Vector of example observations
∆k Grid point spacing in wavespace
δ (~x− ~xm) Dirac delta function
Ψ Wavespace averaging function

Subscripts and Superscripts
()u Index of average bin in wavespace
()H Hermitian transpose
()(i) Current iteration number
()∗ Complex conjugate
()′ Shifted coordinate

() Wavespace average
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I. Introduction

The limitations of conventional beamforming impede the ability to extract quantitative information from
traditional beam maps. Simple integration techniques can be used to provide approximate field values,

but in general the inverse array problem of deconvolution must be solved to extract quantitative information
from array data. Many frequency-domain deconvolution algorithms exist for incoherent source fields, for ex-
ample DAMAS,1 DAMAS2,2 SC-DAMAS,3 and CLEAN-SC.4 However, when a source field contains regions
of coherence, there are fewer algorithm selections. Methods such as MACS are computationally reasonable,
but assume a sparse source field.5 Similarly, LORE is a quick algorithm but only solves for a subset of the
scan grid.6 DAMAS-C has the potential to evaluate coherent sources over the entire scan grid of interest, but
to do so is computationally challenging, even for small source fields.7 Generalized inverse methods involving
either eigenvalue subsets of the CSM8 or the entire CSM of an array data set9 may resolve distributed,
partially-coherent source fields, but the range of applicability and limitations of these methods have yet to
be completely addressed.

Deconvolution is fundamentally the inversion of a linear system, expressed in Eq. (1), with the application
of constraints. For a vector of observations y and a matrix A modeling acoustic propagation, assuming the
observations are uncontaminated by measurement noise, deconvolution attempts to solve

y = Ax (1)

for x, representing the sources which pass through the system matrix to generate the observations. For
many problems of interest, A is nearly singular, so direct inversion may not be possible, or yield a false
solution. Algorithms such as DAMAS and DAMAS2 handle this inversion process iteratively, where an
initial guess of x is multiplied by A and then subtracted from y to compute a residual. This residual is used
to update the guess of x. DAMAS2 makes a shift-invariant assumption, allowing the use of a Fourier-based
technique to perform a fast convolution of x with A.2 Individual iterations of DAMAS2 are significantly
faster than DAMAS for a given problem, but depending on the validity of the shift-invariant assumption and
desired convergence criteria, more iterations of DAMAS2 may be required and accuracy may be limited. A
smoothing filter may be used with DAMAS2 to favor certain solution sets and accelerate convergence.

Coherent deconvolution, where elements of x are statistically related to each other, is also modeled by
Eq. (1). In this case, cross-spectral terms between grid points are included in x and y, and A updated
accordingly. Constraints on these additional elements are defined by a cross-spectral inequality,10 rather
than a positivity constraint, and in general the terms will be complex. Unfortunately, scaling of general
coherent deconvolution becomes problematic. If a beam map of interest has ng grid points, x and y each
have n2

g elements, and A has n4
g elements. For example, a 20× 20 beam map has ng = 400 grid points. This

means x and y each have 204 elements to account for all possible auto- and cross-spectral terms, meaning
A has 208, or 25.6 billion, elements. Conjugate-symmetry reduces the number of independent cross-spectral
terms by a factor of two, but the scaling remains. If cross-spectral relationships between all of the grid points
are considered, A is generally not sparse. While such a matrix of this size is possible to generate and store,
it does not lend itself to efficient computation nor to more realistic grids.

To make the evaluation of Ax more tractable for this form of deconvolution, it would be helpful to
define the problem such that every element of A does not need to be computed and stored. Additionally,
a fast convolution technique similar to that used by DAMAS2 is desired. A formulation of the coherent
deconvolution process which does this is presented. A shift-invariance assumption, where the element of A
relating a given element of y to an element of x is dependent only on the spatial separation of the two points,
is applied to the coherence problem, just as with DAMAS2. This is done by analyzing the array data in
wavenumber space, equivalent to plane wave beamforming. The analysis sacrifices the depth perception of
nearfield beamforming due to the plane wave assumption.

The general problem of a transformation of a coherent pressure field to wavespace is first discussed in
Section II. Basic implementation details are then addressed in Section III. Potential methods for accelerating
convergence through faster computation or iteration count reduction are considered in Section IV. Section
V presents results for different combinations of incoherent and coherent plane wave fields. Section VI
evaluates a simulated curved wave field generated by a point source, as well as data from a trailing edge noise
measurement. Finally, a method for nearfield beamforming involving the transformation of the deconvolved
wavespace spectrum is proposed.
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II. Formulation

A formulation of the wavespace deconvolution problem which follows the form of Eq. (1) is necessary.
Here, y is the set of array observations transformed to wavespace, and A is the model of the array sam-
pling function. This array sampling function in wavespace is first constructed in regular space in terms of
sampling theory, such that the true pressure field in space is multiplied by a distribution of delta functions
corresponding to microphone locations in a planar array.11 This multiplication in the spatial domain be-
comes an equivalent convolution in the Fourier transform of the spatial domain, or the wavespace domain.
The sampling function operating on the pressure field on a planar array face is given by

s (x, y) =

M∑
m=1

δ (x− xm, y − ym) . (2)

The sampled, temporally-Fourier transformed narrowband pressure field (frequency-dependence suppressed)
is then given by

p (x, y) = s (x, y) q (x, y)

=

M∑
m=1

pmδ (x− xm, y − ym) . (3)

The 2-D spatial Fourier transforms of these quantities are thus

s̃ (kx, ky) =

∫∫
s (x, y) e−j(kxx+kyy)dxdy =

1

M

M∑
m=1

e−j(kxxm+kyym) (4)

and

p̃ (kx, ky) =

∫∫
s̃
(
kx − k′x, ky − k′y

)
q̃
(
k′x, k

′
y

)
dk′xdk′y (5)

=
1

M

M∑
m=1

pme
−j(kxxm+kyym),

where the normalization by M is included such that a unit-magnitude plane wave in physical space has unit
magnitude in wave space. Note that no kz transform is performed as all microphones are assumed co-planar.

Eq. (5) is a formulation of the basic wavespace sampling problem for a single block of data. To handle
the stochastic nature of the pressure field, auto- and cross-powers are used to represent the ensemble-average
characteristics of the field. A CSM contains the auto- and cross-powers of the array microphones in the
frequency domain ensemble-averaged across many blocks of data, and is represented by

G =


E [p∗ (x1, y1) p (x1, y1)] E [p∗ (x1, y1) p (x2, y2)] . . . E [p∗ (x1, y1) p (xM , yM )]

E [p∗ (x2, y2) p (x1, y1)] E [p∗ (x2, y2) p (x2, y2)] . . . E [p∗ (x2, y2) p (xM , yM )]
...

...
. . .

...

E [p∗ (xM , yM ) p (x1, y1)] E [p∗ (xM , yM ) p (x2, y2)] . . . E [p∗ (xM , yM ) p (xM , yM )]

 . (6)

Note that the 2-D CSM contains 4-D spatial covariance information,

P (ξ, η, x, y) = E [p∗ (ξ, η) p (x, y)] . (7)

The CSM could be directly transformed to wavespace through a 4-D Fourier transform,

F {P (ξ, η, x, y)} =

∫∫∫∫
P (ξ, η, x, y) e−j(kξξ+kηη+kxx+kyy)dξdηdxdy. (8)

However, for this discussion the wavespace cross-spectrum is the desired quantity, which is defined by

P̃ (kξ, kη, kx, ky) = E [p̃∗ (kξ, kη) p̃ (kx, ky)] . (9)
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This can be determined by substituting the first line of Eq. (5) into Eq. (9),

P̃ (kξ, kη, kx, ky) = E [p̃∗ (kξ, kη) p̃ (kx, ky)]

= E

[∫∫
s̃∗
(
kξ − k′ξ, kη − k′η

)
q̃∗
(
k′ξ, k

′
η

)
dk′ξdk

′
η×∫∫

s̃
(
kx − k′x, ky − k′y

)
q̃
(
k′x, k

′
y

)
dk′xdk′y

]
(10)

=

∫∫∫∫
s̃∗
(
kξ − k′ξ, kη − k′η

)
s̃
(
kx − k′x, ky − k′y

)
×

E
[
q̃∗
(
k′ξ, k

′
η

)
q̃
(
k′x, k

′
y

)]
dk′ξdk

′
ηdk′xdk′y

=

∫∫∫∫
S̃
(
kξ − k′ξ, kη − k′η, kx − k′x, ky − k′y

)
Q̃
(
k′ξ, k

′
η, k
′
x, k
′
y

)
dk′ξdk

′
ηdk′xdk′y.

This shows that the measured wavespace cross-spectrum is the convolution of the wavespace cross-power
sampling function S̃ and the true wavespace cross-spectrum, Q̃.

The measured wavespace cross-spectrum P̃ can be computed by substituting the second line of Eq. (5)
into Eq. (9), giving

P̃ (kξ, kη, kx, ky) = E [p̃∗ (kξ, kη) p̃ (kx, ky)]

= E

[
1

M

M∑
n=1

p∗ne
j(kξξn+kηηn) 1

M

M∑
m=1

pme
−j(kxxm+kyym)

]
(11)

=
1

M2

M∑
n=1

M∑
m=1

E [p∗npm] ej(kξξn+kηηn)e−j(kxxm+kyym).

This is similar to the derivation given by Capon12 which relates the cross-spectrum between two points
to their separation in physical space and the wavespace spectrum, but in a form of a forward transform
instead of an inverse. As a 4D representation of 2D wavespace, this representation captures the coherence
relationship between wavespace locations. The term E [p∗npm] in Eq. (11) is an entry in the CSM . Thus,
the double-summation can be re-expressed as

P̃ (kξ, kη, kx, ky) =
1

M2
eHGe, (12)

with the Hermitian transpose of e given by

eH =
[
ej(kξξ1+kηη1) ej(kξξ2+kηη2) . . . ej(kξξM+kηηM )

]
. (13)

Similarly, the wavespace cross-power sampling function can be constructed as

S̃ (kξ, kη, kx, ky) =
1

M2
eH


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 e. (14)

Note that when diagonal removal13 is applied, the normalization should change from M2 to M2 −M to
maintain unit response in the transformation as m = n terms are neglected.

As previously stated, formulation of the problem is desired which follows Eq. (1). In this section, a
model is constructed in which P̃ contains the information in the observation vector y, and S̃ contains the
information in the system matrix A. Taking the source field Q̃ as the solution vector x, the problem of
interest is to find the source field which best fits the data in the observation vector, obeying the given
constraints and avoiding explicit computation or storage of the entirety of A.

III. Implementation

To solve this problem, P̃ and S̃ are first constructed for a discrete set of coordinates in wavespace.
For simplicity, a hypercube grid is considered, with each coordinate set spanning kξ = kη = kx = ky =
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[−kmax : ∆k : kmax] for a total grid size of nk × nk × nk × nk. The selection of the parameters kmax, ∆k
and nk are discussed subsequently, but are dependent on the array, the problem of interest and available
computational resources.

An iterative solution of Eq. (1) can take the form of

x(i+1) = x(i) +
1

a

(
y −Ax(i)

)
. (15)

Constraints are enforced after every iteration. The general constraints considered for DAMAS-C are adapted.7

A real positivity constraint is applied to autospectral terms,

<
{
Q̃ (kx, ky, kx, ky)

}
≥ 0 (16)

=
{
Q̃ (kx, ky, kx, ky)

}
= 0.

Cross-spectral terms must obey the cross-spectral inequality and follow appropriate conjugate behavior,∣∣∣Q̃ (kξ, kη, kx, ky)
∣∣∣2 ≤ Q̃ (kx, ky, kx, ky) Q̃ (kξ, kη, kξ, kη) (17)

Q̃ (kx, ky, kξ, kη) = Q̃∗ (kξ, kη, kx, ky) .

After each iteration, autospectral constraints are applied first, followed by cross-spectral constraints.
The algorithm takes the same structure as that used with DAMAS2, where the equivalent evaluation

of Ax(i) from Eq. (15) is computed as a function evaluation through the use of Fourier transforms, rather
than an explicit linear algebra operation.2 Unlike DAMAS2, no regularization filter is applied at this stage
of research, as the effect this may have on phase relationships is unclear.

1. Forward-transform S̃ to Ŝ via a 4-D transform like Eq. (8).

2. Initialize Q̃ to zeroes.

3. Iterate (to convergence or maximum desired function evaluations)

• Forward transform Q̃(i) to Q̂, again using Eq. (8).

• Compute the product R̂ = ŜQ̂.

• Inverse transform R̂ to R̃ to obtain the effective convolution of S̃ with Q̃(i).

• Update Q̃(i+1) = Q̃(i) + 1
a

(
P̃ − R̃

)
.

• Enforce constraints.

Note that for linear convolution, Q̃ must be zero-padded, and S̃ must be constructed on the larger, padded
grid scale. Here, the grid coordinates all span [−2kmax : ∆k : 2kmax], for a total grid size of ns×ns×ns×ns.
If nk is selected to be odd such that the plane wave bin Q̃ (0, 0, 0, 0) is in the solution set, then ns = 2nk − 1

and the total grid size is (2nk − 1)
4
, or approximately 16 times the size of the baseline grid. Q̃ must be

padded to this size prior to convolution, and the appropriate subset of grid points selected in the P̃ − R̃ step
of the algorithm.

The relaxation parameter, a, is a critical component of the algorithm, as the iterative update is completely
unstable without it. With DAMAS2, this parameter is specified as the sum of the absolute value of the 2D
array response within the baseline grid domain. Extended to this 4D problem, it is computed by

a =

kmax∑
kξ=−kmax

kmax∑
kη=−kmax

kmax∑
kx=−kmax

kmax∑
ky=−kmax

∣∣∣S̃ (kξ, kη, kx, ky)
∣∣∣ . (18)

This value is effectively the maximum row sum of absolute values of the A representation of S̃ in Eq. (15).
This corresponds to the matrix norm ||A||1.14 As the spectral radius of a square matrix must be less than or
equal to its operator norms, normalizing the iterative process by this norm is a conservative way to stabilize
the solution procedure.
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While this algorithm bypasses explicit storage of A, which would have a size of n8
k, problem scaling can

still be an issue. Specifically, n4
s problem scaling is still non-trivial. For example, if nk = 25, each n4

s-sized
array, where ns = 49, contains 5.8 million elements. While this has moderate storage requirements, 46 MB
for single-precision complex, it is still a significant amount of data to handle with an algorithm which may
require a significant number of iterations. Hardware-tuned FFT algorithms15 can help mitigate this expense,
but the cost of a given problem size is still a driving concern, since based on Eq. (18), larger problems will
in general require greater relaxation parameters for a given array resolution.

Previous research1 indicates that in deconvolution the grid spacing should be between approximately 5%
and 20% of the sampling pattern’s 3-dB main lobe. In wavespace, this sets an effective maximum value for
∆k for a given array. The maximum wavenumber kmax of interest is highly problem-dependent. In a limiting
case of plane waves arriving within a limited cone of directions, kmax can simply be selected to properly
encompass the appropriate region within wavespace. However, for a general problem where no information
is known about the acoustic field kmax will need to meet, if not exceed, the acoustic wavenumber, 2πf/c0
(rad/m), or f/c0 (m−1). These constraints, combined with the aforementioned scaling issue, currently limit
the method to either problems with limited direction of arrival, or low frequencies. For example, the 0.74 m
aperture outer array used at the University of Florida Aeroacoustic Flow Facility (UFAFF)16 can adequately
capture the entire acoustic radiation circle with a ∆k of 17% of the sampling pattern’s 3-dB main lobe, 2
m−1, at f = 1 kHz with nk = 17. An individual transform of a grid required for this scale is reasonably
quick, and thus can be considered for analysis. Higher frequencies become an issue, as acoustic wavenumber
scales linearly with frequency. To maintain a given ∆k, this means that nk must also scale linearly with
frequency, so the overall problem scales as the fourth power of frequency. Similarly, extending kmax beyond
the acoustic wavenumber to evaluate subsonic hydrodynamic contamination can only be considered for very
low frequencies.

As formulated above and tested, the algorithm worked for simple simulated problems. However, for a grid
with nk = 9, approximately 500,000 iterations were required to converge for an ideal point source, defined
by

err(i+1) = ||P̃ − R̃||. (19)

The residual change in solution is also followed, defined by,

res(i+1) = ||Q̃(i+1) − Q̃(i)||, (20)

Numeric convergence is achieved when the error reaches the minimum unit-round based on floating-point sin-
gle precision.14 For larger grids, numeric convergence never occurred, although reasonable-looking solutions
were achieved. For these, the residual was tracked until it became small relative to the solution magnitude.
Changing to double-precision did not appear to improve convergence behavior for the nk = 9 grids, and
came with a significant run time and memory cost. At this stage of research, the effect of floating-point
precision on the convergence behavior of larger grids was not considered.

IV. Solution Acceleration

To improve the utility of this deconvolution technique, acceleration methods must be explored. Three
possibilities are considered: reducing the operating time of an individual iteration, using a more aggressive
relaxation parameter a, and improving the initial solution guess Q̃(0).

Computation Time

A direct reduction in iteration time is easiest to consider, as 500,000 iterations may appear reasonable if the
total code run time is 10 seconds. Hardware-optimized FFT algorithms are continuously improving, and
some companies are now offering pre-made libraries for GPU computing,17 potentially providing significant
performance improvements. Additionally, pruned FFT methods can be considered. The majority of the
elements in Q̃ are zeros to meet padding requirements. The majority of the elements in R̃ are thrown away
prior to subtraction from P̃ . Hardware implementations of pruned FFTs exist18 and may provide significant
benefits in cases of 4-dimensional zero-padding. However, neither these nor GPU methods are explored at
this stage of the research.

One potential algorithm was considered. The 4-dimensional FFT is, as previously mentioned, a fast
mechanism for evaluating the Ax(i) term from Eq. (15) without storing the entirety of A. Alternative fast
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convolution techniques exist. One such technique takes advantage of the fact that, with appropriate element
ordering, A has a multilevel block-Toeplitz structure. It is possible to store only the unique elements of this
matrix in a vector and perform a fast convolution with an appropriately-padded x, providing an alternative
storage-free fast convolution.19 The algorithm as cited was implemented, with some modifications to the
zero-padding code and element access for performance. It was found to perform slightly better for some grid
sizes and slightly worse for others. While it may hold some promise for improvement, the method is not
further explored here.

Relaxation

The relaxation parameter computed in Eq. (18) is a conservative one. With some effort, a more aggressive
parameter which maintains stability may be derived, following the method presented by Atkinson.14 Eq.
(1) can be re-structured by splitting A,

A = B −C, (21)

and re-writing as
Bx = y + Cx. (22)

The iterative method is thus given as
Bx(i+1) = y + Cx(i). (23)

Matrix D can be defined as
D = B−1C. (24)

The stability criterion for the (unconstrained) iteration method is then given as

rσ (D) < 1. (25)

With some rearrangement, Eq. (15) yields B = aI and C = aI −A. This gives D = I − 1
aA. Since

rσ (D) is the magnitude of the largest eigenvalue of D, finding this eigenvalue and iterating a until the
spectral radius drops below unity should yield a more aggressive value for a. This may appear problematic
at first as the goal of this method is to avoid computing and storing matrices of size A, which would be
necessary to determine all of the eigenvalues of D. However, there are methods for computing the largest
eigenvalue of D as a function call evaluating the matrix vector product Dx for a given input vector x, rather
than using D itself. Specifically, the MATLAB function eigs can output the largest eigenvalue of a large,
dense, non-symmetric complex matrix modeled by a function call. As used with these function calls, eigs
fails to converge when the eigenvalue of D drops below unity, so the smallest value of a for which eigs fails
to give a converged output is used. For this study, the value varies between one-half and one-twentieth of
the value given by Eq. (18) for the modeled arrays and grids, and appears stable for the cases considered.
The reduced relaxation parameter significantly improves the convergence behavior of the algorithm. Cases
with nk = 9 reach acceptable convergence in 50,000 iterations rather than 500,000.

Initial Guess

Additional improvement is desired for larger grids. An improved initial guess can have a significant impact
on the direction and rate of convergence of the method, and is worth investigating. A variety of initialization
methods were considered (e.g. Wiener filtering, initializing with DAMAS3,2 starting from P̃ ). However,
these techniques yielded behavior generally worse than starting with Q̃ = 0. However, one method which
did show improvement for some situations is multiscale analysis. Analyzing problems on multiple scales is
common in many fields such as CFD20 and image processing21.22 Full multigrid solution methods have even
been applied to seismic data deconvolution.23 Currently, only the simple case is explored, whereby coarse
scales are used to initialize fine scales.

The construction of scales for deconvolution analysis requires some care. If the coarse grids have very
few points per beamwidth, the deconvolution results may be unreliable. This can be due to both the limited
resolution of the array response’s main lobe, as well as the discrete sampling pattern missing side lobes. In
an attempt to mitigate this coarse-grid limitation, formulations for an average wavespace pressure field and
average array response are derived and used instead of those given by Eqs. (12) and (14).
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For the moment, consider a one-dimensional wavespace transform of the pressure field measured by a
linear array,

p̃ (kx) =
1

M

M∑
m=1

pme
−jkxxm . (26)

For a grid spacing ∆k, the average value of the wavespace transform at grid point kx,u is

p̃ (kx,u) =
1

∆k

∫ kx,u+∆k/2

kx,u−∆k/2

1

M

M∑
m=1

pme
−jkxxmdkx

=
1

M

M∑
m=1

pm

∫ kx,u+∆k/2

kx,u−∆k/2

e−jkxxm

∆k
dkx. (27)

=
1

M

M∑
m=1

pmΨ (kx,u,∆k, xm)

When xm = 0, Ψ = 1. When xm 6= 0,

Ψ (kx,u,∆k, xm) =
1

−jxm∆k
e−jkxxm

∣∣∣∣kx,u+∆k/2

kx,u−∆k/2

(28)

=
1

−jxm∆k

[
e−jxm(kx,u+∆k/2) − e−jxm(kx,u−∆k/2)

]
.

Using the definition from Eq. (28), the average 4-dimensional wavespace cross-spectrum is constructed as

P̃ (kξ,u, kη,u, kx,u, ky,u) =
1

M2

M∑
n=1

M∑
m=1

E [p∗npm]× (29)

Ψ (kξ,u,∆k,−ξn) Ψ (kη,u,∆k,−ηn) Ψ (kx,u,∆k, xm) Ψ (ky,u,∆k, ym) ,

where the negative sign on the conjugate-dimension coordinates in Ψ accounts for the conjugate phase of
the integration. Similarly, the average cross-power sampling function is given by

S̃ (kξ,u, kη,u, kx,u, ky,u) =
1

M2

M∑
n=1

M∑
m=1

(30)

Ψ (kξ,u,∆k,−ξn) Ψ (kη,u,∆k,−ηn) Ψ (kx,u,∆k, xm) Ψ (ky,u,∆k, ym) .

As with the non-averaged formulations, the M2 denominator term is replaced with M2 −M when diagonal

removal is applied and m = n terms neglected. As a final correction, both P̃ and S̃ are normalized by

S̃ (0, 0, 0, 0), since this value is no longer unity except for very fine grids (where Eqs. (29) and (30) collapse
to Eqs. (12) and (14), respectively). As the correction is effectively applied to both sides of Eq. (1), equality
of the equivalent system of equations is maintained.

With modified equations defined, a means of transitioning from more coarse grids to more fine grids must
now be determined. If some knowledge of the source field Q̃ is available a-priori, a model-based interpolation
scheme would be preferable. However, in constructing a general deconvolution method, such knowledge
cannot be assumed. For example, in the case of discrete plane waves, the source field is discontinuous. To
mitigate the influence of discontinuities on blind interpolation, a linear interpolation scheme is considered.
To account for potential incoherent source regions in the interpolation scheme, autospectral terms of Q̃ are
upscaled separately from cross-spectral terms. This interpolation dependency is shown schematically for
a two-dimensional conjugate-power case in Figure 1, where a 3x3 grid is upscaled to a 5x5 grid. In this
representation, the wavespace autospectrum exists on the grid diagonal, with cross-spectral terms elsewhere.
Note that conjugate symmetry exists between the upper and lower triangular portions of the grid.

V. Plane Wave Results

Results for simulated plane wave fields, which are identically shift-invariant, are presented. Fields of
varying complexity are considered. All simulations use the microphone layout of the outer UFAFF array16
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(a) Pre-interpolation grid (b) Interpolation dependencies

Figure 1. Linear grid interpolation for 2-D problem upscaling.

mentioned in Section III. Details of the array can be found in the reference, but in brief the array is a 0.74
m aperture, 5-arm log spiral based on the methodology of Underbrink24 consisting of 40 total microphones.

The array’s average autospectrum sampling function S̃ (kx, ky, kx, ky) is shown for two different resolutions
in Figure 2. The 3-dB beamwidth of the autospectrum of the sampling function is 1.47 m−1. The coarse
grid with ns = 17 points thus has 3 points per beamwidth, while the fine grid with ns = 33 points has 5
points per beamwidth. Diagonal removal is applied for all cases. For array response plots, the color scale is
in dB referenced to the array response center value of unity. For plots of pressure and source spectra, the
color scale is in dB ref 20 µPa. As pressure autospectra can contain negative values with diagonal removal,
these values are set to −∞ dB for plotting.

(a) ns = 17 points (b) ns = 33 points

Figure 2. Autospectrum of average sampling function S̃ for two different resolutions.

Isolated Plane Wave

The first case considered is a single, broadside plane wave, corresponding to a point source in wavespace with
kx = 0 m−1 and ky = 0 m−1. The plane wave is simulated with an amplitude of 100 dB. The simulation
parameters use the more coarse sampling grid from Figure 2a, corresponding to nk = 9 points and ns = 17
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points, with kmax = 2.92 m−1. The average wavespace auto-spectrum P̃ (kx, ky, kx, ky) for this case is plotted
in Figure 3a. As expected for a centered point source, it appears as a scaled version of the average sampling

function. The average cross-spectrum magnitude
∣∣∣P̃ (0, 0, kx, ky)

∣∣∣ is shown in Figure 3b.

After 10,000 iterations, single-precision convergence as defined by Eq. (19) occurs, requiring 100 seconds
of runtime on a 2.2 GHz Core i7 MacBook Pro for code utilizing the FFTW engine present in MATLAB

2011b. The resultant auto- and cross-spectra, Q̃ (kx, ky, kx, ky) and
∣∣∣Q̃ (0, 0, kx, ky)

∣∣∣, are shown in Figures 3c

and 3d. As expected, only one source is observed in the spectrum and no cross-powers are evident.

(a) Average autospectrum P̃ (kx, ky , kx, ky) (b) Average cross-spectral magnitude
∣∣∣P̃ (0, 0, kx, ky)

∣∣∣

(c) Source autospectrum Q̃ (kx, ky , kx, ky) (d) Source cross-spectral magnitude
∣∣∣Q̃ (0, 0, kx, ky)

∣∣∣
Figure 3. Broadside plane wave pressure and source spectra.

Coherent Plane Wave Pair

A two source configuration is now analyzed. Here, a field of two plane waves arriving from opposite directions
is simulated. The waves are defined to correspond to kx = ±1.46 m−1, ky = 0 m−1. These values are
selected to co-locate with grid-point centers. The plane waves are defined as being perfectly coherent, with
the kx = 1.46 m−1 wave having a π/2 radian phase lag behind the kx = −1.46 m−1 wave. Wave magnitudes
are set to 100 dB. The average wavespace auto- and cross-spectra are respectively plotted in Figures 4a and
4b. The coordinates of the reference point for the cross-spectrum are selected to show the relationship of
the first wave to the second.
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Convergence is reached after 150,000 iterations, showing a dramatic increase over the single point source
case. Computation time scales similarly. The resultant source auto- and cross-spectra are shown in Figures
4c and 4d. The source plots again behave as expected for perfectly-coherent sources, where the cross-spectral
magnitude matches the autospectral magnitudes for equal-power sources. The phase angle between the two
sources ∠Q̃ (−1.46, 0, 1.46, 0) matches π/2 to the third decimal place with a value of 1.5709 radians, or a
relative error of 8.7× 10−5.

(a) Average autospectrum P̃ (kx, ky , kx, ky) (b) Average cross-spectral magnitude
∣∣∣P̃ (−1.46, 0, kx, ky)

∣∣∣

(c) Source autospectrum Q̃ (kx, ky , kx, ky) (d) Source cross-spectral magnitude
∣∣∣Q̃ (−1.46, 0, kx, ky)

∣∣∣
Figure 4. Coherent plane wave pair pressure and source spectra, nk = 9.

Multiscale

This solution is upscaled to an nk = 13 point grid (4 points per beamwidth) for the same wavespace extent
kmax = 2.92 m−1 and benchmarked. 1.5 million iterations are required for convergence at this scale. The
upscaling method is attempted again with a reduction parameter of (∆knk=13)

2
/ (∆knk=9)

2
. Since Q̃ is a

4-D space of 2-D power spectra, this is equivalent to scaling power-spectral densities. This method fares no
better with regard to numeric convergence, but does show correct results visually in fewer iterations.

Conversely, when the solver is started from a Q̃ = 0 condition for the same grid, only 500,000 iterations
are required for convergence. This type of behavior is observed for most of the discrete, ideal plane wave cases
considered. Based on observation of intermediate solution states, upscaling appears to bring the solution
close to the correct value far more quickly than a zero-condition start. However, the solver takes a very long
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time to completely remove interpolation artifacts, so numerical convergence requires more iterations than
the zero-start condition. Upscaling by the scaled solution reduces the influence of the interpolation artifacts,
but shifts the initial guess of the correct bin further from the solution. This is sensible, as interpolating
these single-wavenumber spatial tones to a more refined grid can be considered analogous to interpolating a
temporal tone to a more refined spectrum with power-spectral density scaling. The level shift from the scaling
causes a significant offset in the tone level. Upscaling is thus not considered for the remaining ideal plane
wave simulations, as these are all defined as discrete spatial tones. However, power-spectral density-based
upscaling is revisited in Section VI, where distributed field behavior is evident.

The 500,000 iteration zero-start case on the nk = 13 grid required just under 3 hours of run-time.
The average pressure auto- and cross-spectra are respectively plotted in Figures 5a and 5b. The resultant
source auto- and cross-spectra are shown in Figures 5c and 5d. The phase angle between the two sources
∠Q̃ (−1.46, 0, 1.46, 0) shows slightly worse agreement with the true input, as it has a value of 1.5697 radians,
or a relative error of 7.0× 10−4.

(a) Average autospectrum P̃ (kx, ky , kx, ky) (b) Average cross-spectral magnitude
∣∣∣P̃ (−1.46, 0, kx, ky)

∣∣∣

(c) Source autospectrum Q̃ (kx, ky , kx, ky) (d) Source cross-spectral magnitude
∣∣∣Q̃ (−1.46, 0, kx, ky)

∣∣∣
Figure 5. Coherent plane wave pair pressure and source spectra, nk = 13.

Mixed-Coherence Isolated Plane Waves

On the nk = 9 point grid, this two source configuration is further complicated with the addition of two
incoherent sources to the field. The new plane waves again arrive from opposite directions, this time defined
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at kx = 0 m−1, ky = ±1.46 m−1. The average auto- and cross-spectra are plotted in Figures 6a and 6b.
The resultant source auto- and cross-spectra are shown in Figures 6c and 6d. Numeric convergence requires
500,000 iterations. As shown, the method properly separates the coherent and incoherent sources in the
field. The phase angle ∠Q̃ (−1.46, 0, 1.46, 0) is again matched to the third decimal place with a value of
1.5706 radians, or a relative error of 1.2× 10−4.

(a) Average autospectrum P̃ (kx, ky , kx, ky) (b) Average cross-spectral magnitude
∣∣∣P̃ (−1.46, 0, kx, ky)

∣∣∣

(c) Source autospectrum Q̃ (kx, ky , kx, ky) (d) Source cross-spectral magnitude
∣∣∣Q̃ (−1.46, 0, kx, ky)

∣∣∣
Figure 6. Pressure and source spectra for pair of coherent and pair of incoherent sources.

Line Source with Decaying Coherence

The final ideal plane wave case considered consists of a line of sources located along the kx axis, at values of
kx = −1.46,−0.73, 0, 0.73, 1.46 m−1 and ky = 0 m−1. As before, all of the source auto-powers are set to 100
dB. However, the sources are defined to have decaying coherence relative to the center of the line. Defining
a coherence-squared function as

γ2 (kξ, kη, kx, ky) =

∣∣∣Q̃ (kξ, kη, kx, ky)
∣∣∣2

Q̃ (kξ, kη, kξ, kη) Q̃ (kx, ky, kx, ky)
, (31)

the values referenced to the center are set to γ2 (0, 0,±0.73, 0) = 0.5 and γ2 (0, 0,±1.46, 0) = 0.25. The phase
angles of the coherent powers relative to the center source are set to ∠Q̃ (0, 0,±0.73, 0) = ∓π/4 radians and
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∠Q̃ (0, 0,±1.46, 0) = ∓π/2 radians.
The average pressure autospectrum is plotted in Figure 7a. The average pressure cross-spectral magnitude

is plotted in Figure 7b. A strong interaction between the sources is present, as the peak value of the pressure
field is 6 dB higher than any of the input sources. This interaction is evident in both the auto- and cross-
spectra.

The algorithm is run for 5 million iterations and numerical convergence is not achieved, although residual
levels are close to the convergence value. There is clearly a very strong convergence dependence on source
field complexity. However, the results after 5 million iterations, plotted for the source field autospectrum
in Figure 7c and cross-spectral magnitude in Figure 7d, show the expected source behavior, aside from one
spurious source 20 dB below peak in the cross-spectrum. All of the autospectral values are at 100 dB, and
the cross-spectral values decay from 100 dB at kx = 0 m−1 to 97 dB at kx = ±1.46 m−1.

(a) Average autospectrum P̃ (kx, ky , kx, ky) (b) Average cross-spectral magnitude
∣∣∣P̃ (0, 0, kx, ky)

∣∣∣

(c) Source autospectrum Q̃ (kx, ky , kx, ky) (d) Source cross-spectral magnitude
∣∣∣Q̃ (0, 0, kx, ky)

∣∣∣
Figure 7. Pressure and source spectra for a line of partially-coherent sources.

Figure 8 shows the behavior of the line of sources in more detail. Figure 8a plots the cross-spectral

magnitude
∣∣∣Q̃ (kξ, 0, kx, 0)

∣∣∣, as all of the non-zero elements of the true solution exist on this plane. As

expected, the magnitude decays away from the autospectrum, which exists on the diagonal of the grid.
Figure 8b takes the kξ = 0 cut of this plane and compares it to the true solution. As shown on a decibel
scale, the results are close. Figure 8c then shows the cross-spectrum normalized to the coherence-squared and
compares to the input values. Finally, Figure 8d shows the resultant phase angles ∠Q̃ (0, 0, kx, 0) compared
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to the input angles. From this simulation, it is apparent that true numerical convergence is not necessary
for reasonable results. However, not shown are the partial results from the first 2 million iterations, where
spectral levels were still over 1 dB off, and phase angle errors were greater than 5%.

(a) kη = ky = 0 plane,
∣∣∣Q̃ (

kξ, 0, kx, 0
)∣∣∣ (b) Cross-spectral magnitude

∣∣∣Q̃ (0, 0, kx, 0)
∣∣∣

(c) Coherence-squared γ2 (0, 0, kx, 0) (d) Relative phase angles ∠Q̃ (0, 0, kx, 0)

Figure 8. Evaluation of line source results and comparison to inputs.

VI. Curved-Wave Beamforming

Results from Section V show that this deconvolution formulation is functional, if expensive, for ideal
discrete plane waves of varying coherence. However, under many circumstances an aeroacoustic array will
observe an acoustic field which consists of many curved wave fronts. While a true curved wave front cannot
be fully represented by a select few frequencies in wavespace, it may be possible to find a “best-fit” wavespace
spectrum to a given curved wave field.

Simulated Results

An initial simulation consists of a point source, centered over the array, located 1.5 m away from the array
center, for a source coordinate of (0,0,1.5). This location is selected as approximately twice the array aperture
to generate a moderately-curved wavefront as observed by the acoustic array. The source is scaled such that
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its acoustic field has a level of 90.5 dB at the array center, and 90.2 dB at the outer microphone ring. As
the acoustic field of this point source will appear as the superposition of many plane waves, the wavespace
spectrum must be constructed to capture the entire acoustic radiation circle. If kmax from the previous
sections is maintained and set to the radius of the radiation circle, computed as kmax = f/c0,25 this sets the

source frequency at 1 kHz. The average spectrum P̃ is constructed on three grid scales of nk = 9, nk = 13
and nk = 17. For constant kmax, this gives successively smaller ∆k values, corresponding to increasingly
large effective array apertures. Numeric convergence is not expected for these cases based on previous
results, so the algorithm is run until residuals and error no longer decrease. Figure 9a shows the average

pressure autospectrum P̃ for the nk = 9 grid, while Figure 9b shows the solution autospectrum after 500,000
iterations. This solution is then upscaled to the nk = 13 grid. The nk = 13 average pressure autospectrum
and solution autospectrum after 50,000 iterations are shown in Figures 9c and 9d. This solution is then
upscaled to the nk = 17 grid, with average pressure spectrum and solution after 20,000 iterations shown in
Figures 9e and 9f.

The plotted wavespace results appear as a cone of arrival directions centered about the broadside direction,
as expected. For this simulation, the array occupies a 28o solid angle of the source’s radiation pattern. While
explicit definition of the true solution for a spatially-varying, array-sampled, curved wavefront in wavespace
may be difficult, it would not be unreasonable to expect that the source field have the majority of its power
occupy a direction-of-arrival cone corresponding to this solid angle. For this case, the energy should reside
approximately within a circle of radius k = 0.7 m−1, which is seen for all three nk values. Quantitatively,
the total summed power within the source autospectra is 89.5 dB for nk = 9, 88.9 dB for nk = 13, and 88.4
dB for nk = 17. These values do not match the expected levels for the acoustic power observed by the array.
However, if the total source field is summed over all four wavespace dimensions, the total coherent power
sum can be computed. This total summed power within the wavespace spectrum is 90.5 dB for all three
grid densities, matching the true acoustic field power at the array center. The nk = 17 grid is restarted with
a zero-source field to evaluate the effects of upscaling. This case is run for 20,000 iterations. For brevity,
no plots are shown. The total summed power of the source field for this case is still 90.5 dB. However, the
summed autospectral power is only 80.9 dB. While there is no true solution to compare and say which result
is closer, the error as defined in Equation (19) is two orders of magnitude smaller for the upscaled case than
for the zero-start case.

Experimental Results: Trailing Edge Noise

The final case considered is taken from an existing trailing edge noise data set collected in UFAFF.26 Data
are acquired for a 0.3048 m chord, 0.74 m span NACA 0012 airfoil, in this case at a Mach number of 0.17.
Array data are acquired for an array with the same layout as that used in all previous simulations. A laser
pulse calibration technique is applied to the data CSM to calibrate the individual microphone channels and,
to first order, correct for shear layer refraction effects.16 Additional details of the experiment can be found
in the reference. A photograph of the installation is shown in Figure 10, while a legend of the illustrations
used in the baseline beam map at z = 1.13 m is shown in Figure 11. Here, flow is from right to left. The
airfoil trailing edge center span is located at (0,0,1.13) m from the array center. A conventional beam map of
the array data is shown in Figure 12. Positive x in the beam map points in the upstream direction. Positive
y points upward vertically, while positive z points out of the page. The airfoil trailing edge appears as the
dominant noise source.

The wavespace deconvolution procedure is applied to the 2 kHz narrowband CSM computed from the
experiment. This is the only frequency bin considered for the following analysis. This increase in frequency
from 1 kHz to 2 kHz requires that, to maintain beamwidth resolution, nk be increased to 33 points to account
for the increase in acoustic wavenumber and kmax.

The algorithm is run on a succession of grids of nk = 9, nk = 13, nk = 17, nk = 25 and nk = 33. A
surprising effect is observed for this case. While in previous cases the algorithm required a large number
of iterations at every stage, here a clean, logarithmic roll-off in the error and residual from Eqs. (19) and
(20) is observed, and relatively few iterations are required for near-total single-precision convergence. At
nk = 9, 10,000 iterations are required. However, at both nk = 13 and nk = 17, only 3,000 are necessary.
At nk = 25 15,000 are required for convergence, and finally 20,000 are needed for nk = 33. This requires
just over 7 hours of computation time. The validity of this upscaling is evaluated by running the nk = 17
grid from a zero-start. The autospectrum quickly attains a very similar shape to that seen in the upscaling

17 of 23

American Institute of Aeronautics and Astronautics



(a) P̃ (kx, ky , kx, ky), nk = 9 (b) Q̃ (kx, ky , kx, ky), nk = 9

(c) P̃ (kx, ky , kx, ky), nk = 13 (d) Q̃ (kx, ky , kx, ky), nk = 13

(e) P̃ (kx, ky , kx, ky), nk = 17 (f) Q̃ (kx, ky , kx, ky), nk = 17

Figure 9. Pressure and source autospectra for a near-array point source.
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Figure 10. NACA 0012 trailing edge noise measurement installation.

Figure 11. Facility boundary lines as drawn in beam map.
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Figure 12. Baseline beamforming for NACA 0012 experiment, z = 1.13 m.

process, but levels rise slowly and, after an initial drop, the error and residual behavior is worse. There are
many possible reasons for this. The effect may indicate that the interpolation scheme is reasonable for this
case, or that this particular wave field lends itself readily to representation by a summation of plane waves.
Alternately, the sampling grid may have better conditioning, or there could be some other numerical effect
such as floating point precision which did not matter for smaller grids, but comes into play here. Further
investigation is necessary.

The resultant average and source autospectra for the nk = 9, nk = 17 and nk = 33 grids are shown in
Figure 13. Broadside waves at kx = 0 are clearly present, as expected for an airfoil trailing edge acoustic
source located at x = 0 m. Additionally, waves arriving from downstream, located near kx = −4 m−1, are
likely due to the facility diffuser. Additional low-level sources appear outside of the radiation circle. Based
on the average pressure spectra, these may not be sensible. Additional comparison of upscaled and zero-start
solutions is likely required. The total sum power of the wavespace spectrum for the trailing edge region of
the source field for nk = 33 is 45.7 dB. The sum power of the autospectrum in this region and at this scale is
37.6 dB. The two-microphone method results from the reference, concluded to be the most accurate estimate
of the trailing edge noise for this frequency, showed a trailing edge noise level of 48 dB.

Proposed Extension to Nearfield Beamforming

Initial results for curved waves indicate that approximate source region powers may be computed by sum-
ming the appropriate subset of wavespace auto- and cross-powers for given directions-of-arrival of interest.
However, interpretation of these results is, at the moment, difficult and potentially non-intuitive depending
on source configuration. However, with a full cross-power spectrum in wavespace, a synthetic CSM may be
constructed by inverse-transforming the spectrum Q̃. This CSM can be used with conventional beamform-
ing in an attempt to further isolate sources, and possibly with cross-beamforming7 to determine regional
coherence. Initial tests with this process show qualitative success, but are far from quantitative reliability.
Further investigation of this is left to future work.

VII. Summary and Future Work

A coherent deconvolution technique is presented for a class of shift-invariant problems constructed in
wavespace. The deconvolution method is based on an iterative solver which enforces appropriate constraints
after every iteration. The solver iteratively evaluates a forward convolution utilizing a four-dimensional FFT,
providing improved scaling with problem size when compared to matrix methods. The technique is applied
to ideal plane wave cases successfully, and properly recovers both magnitude and phase of cross-spectral
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(a) P̃ (kx, ky , kx, ky), nk = 9 (b) Q̃ (kx, ky , kx, ky), nk = 9

(c) P̃ (kx, ky , kx, ky), nk = 17 (d) Q̃ (kx, ky , kx, ky), nk = 17

(e) P̃ (kx, ky , kx, ky), nk = 33 (f) Q̃ (kx, ky , kx, ky), nk = 33

Figure 13. Pressure and source autospectra for the NACA 0012 experiment.
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relationships between distinct waves of arbitrary coherence. Acceleration through an improved calculation
of a stable relaxation parameter greatly improves the behavior of the algorithm. Upscaling for an initial
guess on a given grid performs poorly for discrete plane waves when combined with linear interpolation.
However, it appears to provide an improved initial guess for true distributed noise sources.

A large amount of work remains to properly evaluate this method. First and foremost, more curved
wave simulations must be conducted with a variety of multi-source configurations. The reconstruction of
synthetic CSMs must be pursued. The upscaling procedure must be further investigated with regard to the
convergence behavior of the trailing edge noise data set. Additionally, the effect of the point source shear
layer correction on the data is not considered here, and may affect solution behavior. Experimental data
which do not require such correction should be analyzed in any future study. The effect of floating-point
precision on larger grids with real data should be considered.

Acceleration must continue to be pursued. While FFTs show favorable scaling with advances in compu-
tational technology, alternative means of improving solution times must still be sought. Multigrid methods
may prove to be the most promising for distributed noise fields, but four-dimensional interpolation of cross-
spectra must be evaluated in more detail, given the observed behavior with discrete plane waves. Careless
application of multigrid or even simple upscaling may prove problematic if both distributed noise sources and
discrete plane waves are present in a given acoustic field. Alternatively, other algorithms may be explored.
The iterative technique considered here is one of many ways to pursue what amounts to a constrained opti-
mization problem. Finding a technique which does not require tens or hundreds of thousands of iterations
to reach a low-residual solution would be of huge benefit to this deconvolution method. Finally, while this
wavespace deconvolution algorithm circumvents the full computation and storage of the coefficient matrix A,
the problem still shows poor scaling for high frequencies, especially with regards to memory consumption.
An alternative method of performing the forward convolution which avoids the storage and computation
associated with four-dimensional zero-padding could show large improvements in both computation time
and memory requirements.
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