International Journal of Remote Sensing

Evaluation of detector-to-detector and mirror side differences for Terra MODIS reflective solar bands using simultaneous MISR observations

Aisheng Wu a, Xiaoxiong Xiong b, A. Angal a & W. Barnes c

a Science Systems and Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, MD, 20706, USA
b Sciences Exploration Directorate, NASA/GSFC, Greenbelt, MD, 20771, USA
c University of Maryland, Baltimore County, Baltimore, MD, 21250, USA

Available online: 06 Feb 2011

To cite this article: Aisheng Wu, Xiaoxiong Xiong, A. Angal & W. Barnes (2011): Evaluation of detector-to-detector and mirror side differences for Terra MODIS reflective solar bands using simultaneous MISR observations, International Journal of Remote Sensing, 32:2, 299-312

To link to this article: http://dx.doi.org/10.1080/0143116090346138

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Evaluation of detector-to-detector and mirror side differences for Terra MODIS reflective solar bands using simultaneous MISR observations

AISHENG WU*†, XIAOXIONG XIONG‡, A. ANGAL† and W. BARNES§
*†Science Systems and Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, MD 20706, USA
‡Sciences Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771, USA
§University of Maryland, Baltimore County, Baltimore, MD 21250, USA

(Received 30 September 2008; in final form 16 April 2009)

The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System (EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 μm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometre resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 μm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage.

*Corresponding author. Email: aisheng.wu@sigmaspace.com

International Journal of Remote Sensing

This material is published by permission of the Science and Systems Applications, Inc. for the National Aeronautics and Space Administration of the U.S. under Contract No. [NAS5-02041]. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
1. Introduction

The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for the National Aeronautics and Space Administration’s (NASA) Earth-Observing System (EOS) missions (Salomonson et al. 1989, Barnes and Salomonson 1993, Barnes et al. 2003). Its proto-flight model was launched on-board the Terra spacecraft on 18 December 1999 in a near Sun-synchronous descending polar orbit that crosses the equator at 10:30 a.m. local time. Since launch, it has been continuously providing global observations of the Earth’s land, oceans and atmosphere and generating a broad range of science data products (Esaias et al. 1998, Justice et al. 1998, King et al. 2003, Moody et al. 2005). MODIS has 36 spectral bands with wavelengths from 0.41 to 14.4 μm and makes observations at three nadir spatial resolutions: 0.25, 0.5 and 1 km. MODIS bands are located on four focal plane assemblies (FPAs): the visible (VIS), near infrared (NIR), short-wave and mid-wave infrared (SW/MWIR) and long-wave infrared (LWIR) FPA, aligned in the cross-track direction. For each 0.25, 0.5 and 1 km band, there are 40, 20 and 10 detectors, respectively. The detectors in each spectral band are aligned in the along-track direction. MODIS collects data using a two-sided paddle-wheel scan mirror. The rotation of the scan mirror allows continuous measurements to be made from the on-board calibrators (OBCs) and the underlying Earth scenes. The scan angle range of the Earth view is between +55° and −55° from the instrument nadir, which covers a swath of 10-km (nadir) along-track by 2330-km cross-track each scan.

MODIS OBCs include a solar diffuser (SD), a solar diffuser stability monitor (SDSM), a spectral-radiometric calibration assembly (SRCA), a blackbody (BB) and a space view (SV) port that provides a clear view of dark space for measuring instrument background and detector offsets. SD/SDSM calibration data have shown that the Terra MODIS system response in the visible spectral region has a significant wavelength dependent degradation over time (Guenther et al. 2002, Xiong et al. 2002b, 2003a,b, 2007, Xiong and Barnes 2006). After more than 7 years of on-orbit operation, detector responses have changed by 20%, 15%, 3% and 1% for the spectral bands at wavelengths of 0.47 μm (band 3), 0.56 μm (band 4), 0.65 μm (band 1) and 0.85 μm (band 2), respectively. The SD calibration is performed at a scan mirror angle of incidence (AOI) of 50.2°. Comparison of the SD calibration results with response trending from SRCA (AOI = 38.0°) and lunar observations (AOI = 11.2°) shows that the optical degradation is AOI dependent. In addition, the degradation rates between the two sides of the scan mirror are different, with mirror side 2 degrading faster than side 1 (Xiong et al. 2002b, 2003a, Sun et al. 2003, 2007, Xiong and Barnes 2006).

MODIS OBC data are collected at a fixed AOI with well characterized source targets. In order to study MODIS performance over its complete AOI range between 10.5° and 65.5°, it is necessary to use the Earth view observations. However, the scene-associated variations, such as those due to the occurrence of clouds and vegetation, complicate the direct use of scene observations. In order to reduce the impact due to scene variations, it is helpful to use observations over relatively homogeneous surface targets such as deserts and oceans (Thome et al. 1997, Rao and Chen 1999). An alternative approach is to use another sensor, serving as a transfer radiometer, for reference to track the sensor performance (Cao and Heidinger 2002, Wu et al. 2003, 2008, Xiong et al. 2008b). The advantage of this approach is that it can significantly reduce the impact of scene-associated variations if observations from both sensors match well in terms of temporal, spatial and spectral characteristics.
Also on-board the Terra spacecraft are the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR) and Measurements of Pollution in the Troposphere (MOPITT) (King and Greenstone 1999). In this study, we use MISR to help characterize MODIS reflector solar band (RSB) detector-to-detector and mirror side differences. MISR has nine cameras, each with four reflective solar spectral bands (RSBs), which are closely matched to MODIS bands 1–4 (Diner et al. 1998). The MISR cameras are off-set from one another in a push-broom configuration, enabling observations to be made at a broad range of angles in the track direction. MISR nadir camera data are collected near simultaneously with MODIS data, in a narrow swath of 370 km.

In this study, a ratio approach is applied to co-located MODIS and MISR pixel pairs obtained from near-simultaneous Earth scene observations. This approach determines MODIS relative detector-to-detector and mirror-side differences with the help of MISR. It focuses on MODIS nadir observations at an AOI of 38.0°, due to a narrow MISR swath. The results of this study provide a direct assessment of the calibration impact on MODIS nadir observations in the current version 5 Level 1B (L1B) RSB data products, which are determined from the SD and lunar observations obtained at two different AOIs.

2. MODIS and MISR instrument calibration

2.1 MODIS

MODIS’s 36 spectral bands are distributed on four separate focal plane assemblies with central wavelengths from 0.41 to 0.55 μm on the visible (VIS) focal plane, 0.64 to 0.94 μm on the NIR focal plane, 1.20 to 2.30 μm and 3.60 to 4.50 μm on the SW/MWIR focal plane and 6.50 to 14.40 μm on the LWIR focal plane. The calibration of these bands is based on on-board measurements from the SD, SDSM, SRCA and BB. Instrument background signals are provided by the detector’s view of deep space through the SV port and removed from measured total detector responses. Bands 1–19 and 26 with spectral wavelengths from 0.41 to 2.2 μm are the RSBs and are calibrated by the SD and SDSM. The SD is a flat plate of space grade Spectralon®, which acts as a near-Lambertian reflector. During the SD calibration period, the SDSM alternately measures reflected light off the SD and direct solar irradiance to monitor the SD degradation. The SRCA is primarily used for all band spatial characterization through band-to-band registration and for RSB spectral characterization and radiometric stability monitoring. The BB provides a scan-by-scan calibration of the thermal emissive bands (TEB), based on a temperature controlled blackbody (Xiong et al. 2002a).

Based on calibration measurements from the SD/SDSM, the reflectance factor $\rho_{EV} \cos(\theta_{EV})$ is given by

$$\rho_{EV} \cos(\theta_{EV}) = m_1 C_{EV} d_{ES}^2 (1 + k_{inst} \Delta T)/R_{EV} \tag{1}$$

where θ_{EV} is the Earth view (EV) solar zenith angle, m_1 is the calibration coefficient determined from the SD/SDSM measurements, C_{EV} is the detector response to the top-of-the-atmosphere radiance, d_{ES} is the Earth–Sun distance in AU’s (astronomical units), k_{inst} is the instrument temperature correction coefficient (Xiong et al. 2006), ΔT is the difference of the instrument temperature from its reference value and R_{EV} is the response
versus scan angle at the EV AOI. The k_{inst} coefficient values are based on pre-launch thermal vacuum tests, in which the instrument is set at different temperatures in order to evaluate the impact of changes in instrument temperature. Values of R_{EV} are referenced to the value at the SD AOI of 50.2°, and the change of the R_{EV} as a function of AOI is determined based on the response differences between the SD and lunar (11.2°) AOI.

2.2 MISR

MISR observes the Earth’s surface simultaneously at nine widely separated angles, at and off nadir, in the along-track direction (Diner et al. 1998, 2002). MISR has four RSBs at blue, red, green and near-infrared wavelengths with a resolution of 275 m at nadir. Its central wavelength and effective bandwidths are compatible to four MODIS bands, as listed in table 1.

The MISR calibration is provided by its on-board calibrators (M-OBCs) and vicarious calibration experiments conducted using desert targets in the southwestern United States (Bruegge et al. 1993, Chrien et al. 2002, Bruegge et al. 2007). The M-OBCs consist of two Spectralon diffuse panels and six sets of photodiode detectors, which are used to measure incoming and reflected solar irradiance from the panels. These measurements are regressed against the camera’s digital output to provide the MISR radiometric calibration for each of the 1504 charged-coupled device (CCD) detector elements in each band. It is believed that MISR prelaunch tests might not adequately account for the out-of-band spectral response. So the absolute radiometric calibration at launch is a big concern. However, MISR observed EV trending results suggest M-OBC calibration data provide accurate camera-relative, band-relative and pixel-to-pixel calibrations (Abdou et al. 2002). Due to uncertainties with the M-OBC absolute calibration, periodic vicarious calibration experiments are conducted to adjust the calibration of the nadir camera (Bruegge et al. 1998, Chrien et al. 2002, Bruegge et al. 2007).

3. Methodology

3.1 Pixel-by-pixel co-location

Each MISR scene can be co-located with a MODIS near nadir scene since MISR and MODIS are on the same platform with a similar viewing geometry (figure 1). A MISR data granule includes the four spectral bands for the entire daylight side of the Earth over a single orbit. There is a separate granule for each of the nine cameras. The data

<table>
<thead>
<tr>
<th>MODIS</th>
<th>MISR</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_c (µm)</td>
<td>$\Delta \lambda$ (µm)</td>
</tr>
<tr>
<td>0.469</td>
<td>0.020</td>
</tr>
<tr>
<td>0.555</td>
<td>0.020</td>
</tr>
<tr>
<td>0.645</td>
<td>0.050</td>
</tr>
<tr>
<td>0.858</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Note: λ_c is the central wavelength and $\Delta \lambda$ is the bandwidth.
files for the nadir camera (AN files) are provided in the Georectified Radiance Product (GRP). There are two kinds of GRP AN files: Ellipsoid-projected and Terrain-projected. The difference between Ellipsoid and Terrain GRP radiances is in the altitude data used at each location on the grid. In the Ellipsoid product, the altitude is represented by the WGS84 ellipsoid. The Terrain product uses the altitude of the Earth’s terrain. All MISR granules use a special form of the Hierarchical Data Format - Earth Observing System (HDF-EOS) grid format called the stacked block format. They are divided into 180 blocks, each being 370 km in the cross-track dimension by 140 km in the along-track dimension. This study uses AN datasets at a reduced resolution of 1.1 km (also called reduced AN pixels). Further details on the MISR data product are available from the MISR website, http://www-misr.jpl.nasa.gov/mission/pub.html.

Unlike a MISR granule, which covers a single orbit, a MODIS granule is limited to a 5-minute interval containing only 203 scans in the along-track direction, corresponding to a distance of 2330 km. To collect co-located MODIS and MISR pixels, MISR blocks overlapping with MODIS scans are extracted. To make sure that

Figure 1. An example of simultaneous observations of the 0.6 μm bands over the northern African region (13.5–31.6° N, 0.0–22.0° E) at 10:00 (Greenwich Mean Time, GMT) on 12 September 2000 from (a) the Moderate Resolution Imaging Spectroradiometer (MODIS) and (b) the Multi-angle Imaging Spectroradiometer (MISR) of the Terra platform. The overlapping area of the MODIS and MISR observations is in the middle portion of the MODIS image.
consistent datasets are used from both MODIS and MISR observations, all MODIS granules are from the Version-5 L1B product and all MISR granules are from a single version number (F03-024).

For a MISR pixel with a longitude $X_{\text{MISR}}(i, j)$ and a latitude $Y_{\text{MISR}}(i, j)$ and a MODIS pixel with a longitude $X_{\text{MODIS}}(k, l)$ and a latitude $Y_{\text{MODIS}}(k, l)$, the distance between the two pixels can be expressed as

$$d = \sqrt{\left[X_{\text{MISR}}(i, j) - X_{\text{MODIS}}(k, l) \right]^2 + \left[Y_{\text{MISR}}(i, j) - Y_{\text{MODIS}}(k, l) \right]^2}$$

(2)

where i and j are the cross-track and along-track indices for a 1.1-km MISR block data file, and k and l are the cross-track and along-track indices for a 1-km MODIS granule data file. We can control the quality of pixel match-up co-location by selection of the minimum allowed value of d. Smaller values for d correspond to larger areas of overlap between the MODIS and MISR pixel pair. A value of d equals to 0.0025 (corresponding to a distance of 250 m between the centres of two pixels) is used in equation (2). With this restriction, approximately 10% of the total overlapping data points are matched.

3.2 MODIS to MISR ratio

In this study, the four MODIS bands (1 to 4) that are spectrally matched with the four MISR bands, as shown in table 1, are used. For each co-located MODIS and MISR pixel pair, a ratio of reflectance between MODIS and MISR, r, is calculated by

$$r_n(b, d, m) = \rho_n^{\text{MODIS}}(b, d, m)/\rho_n^{\text{MISR}}(b) \quad (n = 1, 2, 3, \ldots, N)$$

(3)

where N is the total number of matched pixel pairs extracted from each overpass. For MODIS, the reflectance of a 1-km pixel is determined for each band b, detector d and mirror side m. For MISR, the reflectance of a 1.1-km pixel is only dependent on band.

MODIS detector-to-detector difference ΔD is determined by

$$\Delta D(b, d) = \langle r_n(b, d, m) \rangle_{n,m,d}/\langle r_n(b, d, m) \rangle_{n,m,d}$$

(4)

MODIS mirror side difference ΔM is determined by

$$\Delta M(b) = \langle r_n(b, d, m) \rangle_{n,d,m=2}/\langle r_n(b, d, m) \rangle_{n,d,m=1}$$

(5)

where $\langle \ldots \rangle_{n,m}$ is the average of all available points at both mirror sides for each MODIS detector, $\langle \ldots \rangle_{n,m,d}$ is the average over all available points at both mirror sides of all MODIS detectors, and $\langle \ldots \rangle_{n,d,m=1}$ and $\langle \ldots \rangle_{n,d,m=2}$ are the average over all available points of all MODIS detectors at mirror sides 1 and 2, respectively.

4. Results

4.1 MODIS detector-to-detector differences

This study focuses on MODIS 1-km pixels, as they are used in most L1B data products. Thus, for MODIS bands 1 and 2 (0.25-km resolution, 40 detectors), detector ‘1’ is actually the average of detectors 1–4 (MODIS Level 1 B 1-km product), detector ‘2’ is the average of detectors 5–8 and so on. For MODIS bands 3 and 4 (0.50-km resolution, 20 detectors), detector ‘1’ is the average of detectors 1 and 2, detector
‘2’ is the average of detectors 3 and 4 and so on. For the corresponding MISR bands, each 1.1-km pixel is an average of \(4 \times 4\) 275-m pixels.

Values of \(\Delta D\) determined by equation (4) are used to examine detector-to-detector differences. If values of \(\Delta D\) are close to 1.0 for all detectors, there are no detector-to-detector differences. Observations collected over the North African desert region are used to examine MODIS detector-to-detector differences. The location of these observations is not fixed at a specified geolocation but confined to be within the Libyan to Sudan Desert region. The advantage of using this desert region is that it provides a relative uniform and stable surface with high reflectance. Historic reflectance trends observed over the same area are used for vicarious calibration for sensors such as the National Oceanic and Atmospheric Administration (NOAA) series of AVHRR (Advanced Very High Resolution Radiometer), due to a lack of onboard calibrators. Figure 2 plots the normalized ratios versus detector number for bands 1 to 4 after averaging sampled pixels from multiple overpasses over the desert region from 2000 to 2007. There is a general decline in the ratios as the detector number increases, indicating a possible calibration bias. The variation between adjacent detectors (i.e. from one scan line to the next) is within 0.2%. The maximum relative difference between detectors 1 and 10 ranges from 0.5% to 0.8%, which appears to be dependent on band wavelength, with shorter wavelength bands showing larger relative detector difference. This is consistent with wavelength-dependent degradation trends found at

![Figure 2](image.png)

Figure 2. MODIS relative detector-to-detector differences \(\Delta D\) in (a) band 1, (b) band 2, (c) band 3, (d) band 4. Results are obtained by averaging multiple overpasses over the North African desert region from years 2000 to 2007. Also shown is the range of the standard error (1 sigma).
the system level for detector response; there is more degradation in shorter wavelength bands than in longer wavelength bands. Error bars (1 sigma) are determined from all sampled ΔD. To justify our current ratio approach as applied to MODIS and MISR reflectances, values of ΔD are re-calculated using MODIS measurements only. This is achieved by removing the term ρ^{MISR} used in equation (3). Results of the re-calculated ΔD are shown in figure 3. A comparison of the results of figures 2 and 3 shows that the error bars without MISR measurements are significantly larger, confirming the benefit of the ratio approach in reducing the variations in the ΔD results. The good agreement of ΔD results for the cases with and without MISR measurements justifies the approach of the direct use of MODIS Earth view observations for other AOIs beyond the nadir. Figure 4 shows the yearly trending results of the detector-to-detector difference since the launch of the instrument for each of the four bands. There is no significant relative change in ΔD among all 10 detectors over 7 years, confirming the stability of the calibration of each detector.

The existing small but noticeable detector-to-detector differences carried since the launch of the MODIS instrument are considered to be caused by a systematic calibration bias due to the use of the SD. The SD is made of pressed polytetrafluoroethylene. The bi-directional reflectance distribution (BRD) of the SD is the primary calibration component and any on-orbit SD reflectance degradation is tracked by the SDSM. The SD BRD was measured during prelaunch tests, while the on-orbit validation of the BRD was performed through a relative comparison early in the mission using spacecraft yaw manoeuvres. Since the yaw BRD results agree well with those obtained from

Figure 3. Same as figure 2, except the results are re-calculated by removing the ρ^{MISR} term applied in equation (3).
prelaunch tests, no on-orbit SD BRD adjustment has been applied. However, the SD door was fixed in the open position since 2 July 2003 leading to an increased rate of degradation of the SD. No yaw manoeuvres have been performed after the SD door anomaly to further validate the results obtained from the previous yaw manoeuvres. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the detector performance for MODIS collection 5 data products. To support future MCST data re-processing, this analysis will be extended to include more spectral bands and temporal coverage.

The current ratio approach used to examine MODIS detector differences is based on the assumption that MISR pixel-relative calibration is stable. Measurements from M-OBC show that MISR pixel-relative calibration differences are maintained to be within 0.5% (Bruegge et al. 1998, 2002). Since MISR pixel-relative differences are considered to be a random source of uncertainty, the use of 4×4 pixel averaging further reduces their pixel-relative uncertainties, which are estimated to be around only 0.2% (Bruegge et al. 1998). Thus, MISR pixel-relative uncertainties should have a negligible impact on the calculation of MODIS detector-to-detector differences. Our studies from highly reflective snow surfaces, such as the Dome C site in Antarctica, also show similar results (Xiong et al. 2008c). For the highly absorbing water surface, the visible band signals become extremely small and the results are less stable.
4.2 MODIS mirror side reflectance ratio

By separating MODIS/MISR reflectance ratios between the two MODIS mirror sides with no separation among detectors and then taking a ratio between the two (equation (5)) gives us the ratio of the reflectance of MODIS mirror side 1 to mirror side 2. Since MISR uses common optics for the adjacent observations, this ratio approach should have little impact on the MODIS mirror side ratio, while removing most scene variations. This approach is effective for the MODIS bands that are matched spectrally with the MISR bands. The small reflectance difference due to existing mismatch of MODIS and MISR spectral response functions is cancelled in this ratio approach. Figure 5 shows trending results of the MODIS mirror side reflectance ratios for bands 1 to 4. These results show that the ratios are within 0.2% of 1.0 for all bands except for band 3 at 0.446 μm (the shortest wavelength band of the four) near the end of the trending period, where the ratio shows a seasonally-related fluctuation of 0.5% to 1.0% after 2006 (after day 2500).

Although such fluctuations in the mirror side reflectance ratio are still well within the 2% calibration uncertainty reported previously (Esposito et al. 2004), it is unlikely that this is caused by the SD/SDSM calibration. Examination of the trending results of m_1 (equation (1)) obtained at the SD AOI of 50.2° shows that the gain ($1/m_1$) of band 3 decreases by 25%, compared with a decrease of 15% for band 4 and a small change of only 3% for band 1 (figure 6). The MODIS gain is proportional to the

![Figure 5. Trends of MODIS mirror side reflectance ratios ΔM (reflectance of mirror side 2 divided by mirror side 1) obtained from observations over the North African desert region for (a) band 1, (b) band 2, (c) band 3, (d) band 4.](image-url)
mirror reflectance, aft optics transmission, detector efficiency and electronic amplification. Previous studies have shown that the MODIS VIS/NIR degradation is primarily due to changes in mirror reflectance. Since the mirror reflectance is wavelength and AOI dependent, its change also shows similar dependency (Xiong et al. 2002b, 2007, 2008a). The mirror side difference in Terra MODIS (very small in Aqua MODIS) is likely due to the mirror contamination (not the same on both sides) and occurred during sensor pre-launch characterization (Kwiatkowska et al. 2008). It is also noted that the differences in m_1 between the two mirror sides are wavelength dependent with larger differences at shorter wavelengths. However, no seasonally related fluctuations occur for either trends of m_1 for each mirror side or the ratio of m_1 between the two mirror sides. Given the fact that there is a significant drop in gain response for bands with wavelengths ranging from 0.4 to 0.5 μm, other factors such as polarization may affect radiance/reflectance products. Currently, polarization corrections have not been applied in the MODIS RSB calibration scheme.

5. Summary

Calibration of the MODIS RSBs is performed for each band, detector and mirror side based on on-board measurements using the SD/SDSM. Historic calibration trending results indicate that the rate of the RSB degradation is not only wavelength-

![Figure 6. Trends of gain response $1/m_1$ for the Moderate Resolution Imaging Spectroradiometer (MODIS) band 1 (a), band 2 (b), band 3 (c) and band 4 (d). The solid line is for mirror side 1 and the dotted line for mirror side 2. The two vertical lines correspond to the times of two major changes in the instrument electronic configuration.](image-url)
dependent, but is also different between the two sides of the scan mirror. Comparisons of the calibration results from the SD/SDSM, SRCA and lunar observations show that the degradation rate also changes with the AOI.

This study uses MODIS observed Earth scene reflectances to determine the detector-to-detector and mirror side differences. To reduce the effects of scene variations, a ratio approach based on co-located MODIS and MISR pixel pairs, obtained from near-simultaneous overpasses, is used. Results show that adjacent detector-to-detector differences are less than 0.2% and the maximum differences between edge detectors range from 0.5% to 0.8%, depending on the band, indicating a possible calibration bias. The differences between the two mirror sides are extremely small. For MODIS band 3 at 0.446 nm, the shortest wavelength band among the four MODIS and MISR spectrally matching bands, results indicate that the mirror side ratio shows a seasonally-related fluctuation of about 1% after year 2006.

The results of this study demonstrate that a ratio approach applied to Earth scene observations is able to reduce most scene-associated variations occurring in the dataset. This allows us to study MODIS in-band detector quality, biases and mirror side differences. Another important aspect of combining MISR observations is to provide an evaluation of the calibration at the nadir AOI, which is determined based on calibration results obtained from two off nadir AOI angles used for SD and lunar observations.

Acknowledgements
The authors wish to acknowledge the useful clarifications by Brian Wenny and helpful grammatical corrections by Jennifer Dodd made to the manuscript. Both of them are from the MODIS Characterization Support Team.

References

