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RECURSIVE IMPLEMENTATIONS OF THE CONSIDER FILTER

Renato Zanetti∗ and Chris D’Souza†

One method to account for parameters errors in the Kalman filter is to
consider their effect in the so-called Schmidt-Kalman filter. This work
addresses issues that arise when implementing a consider Kalman filter as
a real-time, recursive algorithm. A favorite implementation of the Kalman
filter as an onboard navigation subsystem is the UDU formulation. A new
way to implement a UDU consider filter is proposed. The non-optimality
of the recursive consider filter is also analyzed, and a modified algorithm
is proposed to overcome this limitation.

INTRODUCTION

Consider analysis was introduced by S. F. Schmidt of NASA Ames in the mid 1960s as a
means to account for errors in both the dynamic and measurement models due to uncertain
parameters [1]. The consider Kalman filter, also called the Schmidt-Kalman filter resulted
from this body of work. The consider approach is especially useful when parameters have
low observability or when the extra computational power to estimate them is not deem
necessary [2].

Schmidt’s approach is based on minimum variance estimation, Jazwinski [3] details the
derivation of the optimal consider Kalman filter. In Section 8.2 of his book, Bierman [4]
disputes the optimality of the Schmidt-Kalman filter, at least in its sequential implementa-
tion. Nevertheless the Schmidt-Kalman filter has received considerable attention in recent
years. Tapley et al. [5] give an ample description of the consider Kalman filter, they pro-
vide a different methodology then Jazwinski and arrive to a different formulation. Wood-
bury et al. provide new insight into considering parameters in the measurement model [6].
Equivalent formulations to the consider filter were also studied [7, 8] and applied to Mars
entry navigation [9] and orbit determination [10].

While the Schmidt-Kalman filter is very well known, not much attention has been given
to actual implementations of it in a real-time recursive estimation algorithm. Onboard es-
timators commonly utilize the UDU formulation, which guarantees symmetry and positive
definiteness of the covariance. To date there is no direct way of including a consider update
into the UDU formulation, this paper provides a simple algorithm to obtain this capability.
Another common practice is to process measurements one at the time (which is inevitable
when utilizing the UDU algorithm). When processing measurements one at the time in the
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Schmidt-Kalman filter the order in which they are processed affects the final result. This
work analyzes this phenomenon and proposes a globally optimal consider filter, which ad-
dresses the objections raised by Bierman.

THE KALMAN FILTER UPDATE

This work assumes linear measurements and dynamics, the extension to the nonlinear
case can be readily obtained using standard extended Kalman filter techniques. Let y be a
set of measurements of a state vector x corrupted by zero mean noise η with covariance R

y = Hx + η, (1)

where H is the measurement mapping (or sensitivity) matrix. Let x̂− be an unbiased es-
timate of x with corresponding estimation error covariance given by P−. The a priori
estimation error is given by

e− = x− x̂−. (2)

The unbiased linear update based upon x̂− and y produces the a posteriori estimate given
by

x̂+ = x̂− + K
(
y −Hx̂−

)
, (3)

where K is some determinist matrix of appropriate dimensions to be determined. The a
posteriori estimation error expressed as

e+ = x− x̂+ = (I−KH)e− −Kη. (4)

Assuming that the measurement error η and the a priori estimation error, e− are uncorre-
lated and each are zero mean, we find that the a posteriori estimation error covariance is
given by the so-called Joseph update:

P+ = E
{(

x− x̂+
) (

x− x̂+
)T
}

= (I−KH)P−(I−KH)T + KRKT, (5)

where I is the identity matrix of appropriate dimension and R is the measurement error
covariance matrix.

Defining the covariance of the measurement residuals, W, as

W
∆
= HP−HT + R, (6)

the updated (a posteriori) covariance is equivalently written as

P+ = P− −KHP− −P−HTKT + KWKT. (7)

Notice that up to now no assumptions have been made as to the choice of K and the Joseph
update equation is valid for all K, as is Eq. (7). The standard Kalman gain Kopt minimizes
the trace of the updated covariance matrix, P+

Kopt = P−HTW−1. (8)
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Substituting this into Eq. (7) it follows that

P+
opt = P− −KoptHP− (9)

= P− −KoptWKT
opt (10)

= P− −P−HTW−1HP− (11)

These equations are only valid for the optimal gain, Kopt.

THE SCHMIDT-KALMAN FILTER UPDATE

Suppose now that we partition x into ns “estimated” states, s, and np “consider” param-
eters, p as

x
∆
=

[
s
p

]
, (12)

preserving the fact that nx = ns + np, i.e. the total number of states is unchanged. Let us
now partition the relevant matrices accordingly. Thus,

P =

[
Pss Psp

Pps Ppp

]
(13)

H =
[
Hs Hp

]
(14)

Kopt =

[
Ks,opt

Kp,opt

]
=

[
P−ssH

T
s + P−spHT

p

P−psH
T
s + P−ppHT

p

]
W−1. (15)

As in the previous section

W = HP−HT + R

= HsP
−
ssH

T
s + HsP

−
spHT

p + HpP−psH
T
s + HpP−ppHT

p + R (16)

The updated portions of the covariance are

P+
ss = P−ss−KsH

[
P−ss
P−ps

]
−
[
P−ss
P−ps

]T

HTKT
s +KsWKT

s (17)

P+
sp = P−sp−KsH

[
P−sp
P−pp

]
−
[
P−ss
P−ps

]T

HTKT
p +KsWKT

p (18)

P+
ps = P−ps−KpH

[
P−ss
P−ps

]
−
[
P−sp
P−pp

]T

HTKT
s +KpWKT

s (19)

P+
pp = P−pp−KpH

[
P−sp
P−pp

]
−
[
P−sp
P−pp

]T

HTKT
p +KpWKT

p (20)

These equations are derived from Eq. (7) and are therefore valid for any choice Ks and Kp.

We now choose the Ks and Kp carefully such that the gain for the states is the optimal
value Ks,opt from Eq. (15) and allowing Kp to be (as yet) unspecified. Thus, substituting
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for the value of Ks,opt for the three components in Eqs. (17)–(19), it becomes

P+ =


P−ss −Ks,optWKT

s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s,opt P−pp−KpH

[
P−sp
P−pp

]
−
[
P−sp
P−pp

]T

HTKT
p +KpWKT

p


(21)

This equation is valid for any value of Kp. Notice that there is no Kp in the cross-
covariance between s and p. Therefore, what is remarkable about this equation is that
once the optimal Ks,opt is chosen, the cross-covariance between s and p is independent of
the choice of Kp. We will take advantage of this property in due course.

We note that the updated (a posteriori) state is given by[
s+

p+

]
=

[
s−

p−

]
+

[
Ks

Kp

] (
y −Hsŝ

− −Hpp̂−
)
, (22)

a consider filter is one in which the parameters, p, are not updated. From Eq. (22) it is
observed that this can be achieved by taking Kp = O. With this in mind, we start again
from the most general covariance update given in Eq. (7) and we obtain that the a posteriori
consider covariance matrix is

P+
con =


P−ss−KsH

[
P−ss
P−ps

]
−
[
P−ss
P−ps

]T

HTKT
s +KsWKT

s P−sp−KsH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s P−pp

 (23)

To find the optimal consider Ks we take the derivative of the trace of the covariance matrix
with respect to Ks and set it to zero

∂

∂Ks

(
trace

[
P+
con

])
= −

[
P−ss
P−ps

]T

HT −
[
P−ss
P−ps

]T

HT + KsoptW
T + KsoptW = O. (24)

The result is the same as for the globally optimal Kalman filter, so that the optimal consider
Kalman filter, also called the Schmidt-Kalman filter can be conveniently calculated from
the optimal filter by zeroing out the rows corresponding to the consider states.

Ksopt =
(
P−ssH

T
s + P−spHT

p

)
W−1 (25)

So that the consider gain is

Kcon =

[
P−ssH

T
s + P−spHT

p

O

]
W−1 =

[
Ks,opt

O

]
(26)

The state update is

s+ = s− + Ks

(
y −Hsŝ

− −Hpp̂−
)

(27)
p+ = p−. (28)
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It must be stated emphatically that the full updated covariance matrix (the a posteriori
matrix) must be calculated by means of the Joseph update. We cannot use Eq. (11), for
that equation was valid only for the optimal gain; we have a chosen a sub-optimal gain or
a non-globally optimal gain (i.e. the optimal gain corresponding to Kp = O). Substituting
Ks,opt into Eq. (23) we obtain

P+
con =


P−ss −Ks,optWKT

s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s,opt P−pp

 (29)

Several comments are in order:

1. When using the Schmidt-Kalman filter, the a priori and a posteriori covariance of
the parameters (Ppp) are the same.

2. The a posteriori covariance matrix of the states and the cross-covariance between the
states and the parameters are the same regardless of whether one uses the Schmidt-
Kalman filter or the optimal Kalman filter.

It follows that the a posteriori consider covariance can be obtained from the a posteriori
optimal covariance by replacing P+

pp with P−pp.

Finally, item (2) above does not mean that Pss from the optimal Kalman filter will be
the same for all time as for the Schmidt-Kalman filter. Rather, it means that given the same
a priori covariance the two algorithms will produce the same a posteriori covariance for
Pss and Psp. However, since Ppp is different between the two algorithms, after the very
first update, the subsequent a priori covariances will be different henceforth, producing
different results. We will expand to this point in due time.

THE UDU UPDATE

A common strategy to implement covariances in real-time flight software is to use theUDU
formulation [11]. Thus, the covariance matrix is decomposed as

P = UDUT (30)

where U is an upper triangular matrix with ones on the main diagonal, and D is a diagonal
matrix. In order to efficiently update U and D with measurements, the so-called ‘rank-one’
update proposed by Agee and Turner is sometimes used [12]. The rank-one (covariance)
update requires that measurements are processed one at a time and has the form

P+ = P− + caaT (31)

where c is a scalar and a is a vector. If we let P+ = U+D+(U+)T and P− = U−D−(U−)T,
then the update must have the form

U+D+(U+)T = U−D−(U−)T + caaT (32)
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The algorithm for the rank-one update is backwards-recursive for U+ and D+, starting
with the (n, n) element (Dnn) and ending with the (1, 1) element (D11) and it is seen in
Table 1.

For j = n, n− 1, . . . , 3, 2 set cn = c and recursively calculate:
D+
jj = D−jj + cja

2
j

ak := ak − ajU−kj k = 1, 2, . . . j − 1

U+
kj = U−kj + ckajak/D

+
jj k = 1, 2, . . . j − 1

cj−1 = cjD
+
jj/D

−
jj

and finally compute
D+

11 = D−11 + c1a
2
1

Table 1. Backwards-Recursive Rank-One Update

For scalar measurements H and K become vectors and W is a scalar. We recall that
from Eq. (11) that the optimal update of the covariance matrix is

P+
opt = P− −P−HTW−1HP−

Thus,

U+D+(U+)T = U−D−(U−)T −U−D−(U−)THTW−1HU−D−(U−)T

= U−
[
D− − 1

W
D−(U−)THTHU−D−

]
(U−)T

Defining

a
∆
= D−(U−)THT (33)

c
∆
= − 1

W
(34)

U+D+(U+)T becomes

U+D+(U+)T = U−
[
ID−I + caaT

]
(U−)T,

where I is the identity matrix (which is upper triangular with ones on the diagonal). We now
proceed with the rank-one update of the term in the square bracket, defining an intermediate
step to the solution as

ŨD̃ŨT ∆
= ID−I + c aaT

The updated matrices are given by

U+ = U−Ũ and D+ = D̃ (35)
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Since c is negative, this measurement update involves the potential loss of precision due
to subtraction of two positive numbers which are close to one another, a modification of
the rank-one update is due to Carlson [13], resulting in a forward-recursive algorithm, one
which is numerically stable. This modified algorithm is only valid for the optimal Kalman
update, Kopt. The updated U and D (U+ and D+, respectively) and the optimal Kalman
gain matrix, Kopt, are produced by this algorithm, which is detailed in Table 2.

Given H, Ū, D̄, R = R
f = ŪTHT

v = D̄ f
K̄1 = [ v1 0 · · · O ]T

α1 = R + v1f1

d1 = d11 =
(
R
α1

)
d̄11

For j = 2, 3, . . . , n, recursively calculate:
αj = αj−1 + vjfj

dj = djj =
(
αj−1

αj

)
d̄jj

λj = −(fj/αj−1)
Uj = Ūj + λjK̄j−1

K̄j = K̄j−1 + vjŪj

and finally compute
Kopt = K̄n/α

Table 2. The Forward-Recursive Modified Rank-One Update

The updated state is computed as before, i.e.

x+ = x− + Kopt

(
y −Hx−

)
(36)

THE SCHMIDT-KALMAN FILTER UDU UPDATE

Recall that the Schmidt-Kalman update to the covariance matrix due to the measurements
was stated in Eq. (29) as

P+
con =


P−ss−Ks,optWKT

s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s,opt P−pp


Unfortunately, the structure of the matrix in Eq. (37) does not allow for a rank-one update

as we developed earlier. We stated earlier that to obtain the updated consider covariance
we can begin with the updated optimal covariance and replace P+

pp with P−pp. Now, from
Eqs. (10) and (11), we have

P+
opt = P− −KoptWKT

opt (37)
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From these relations, we see that the optimal a posteriori covariance is equal to the a priori
covariance minus a delta covariance. We can, therefore, harness this idea to help us along.
With the optimal value for Kp, we obtain

P+
opt =


P−ss −Ks,optWKT

s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s,opt P−pp −Kp,optWKT

p,opt

 (38)

This, of course can be written as

P+
opt =


P−ss −Ks,optWKT

s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s,opt P−pp

−
[
Ons×ns Ons×np

Onp×ns Kp,optWKT
p,opt

]
(39)

Thus, we can rewrite Eq. (39) as

P+
opt = P+

con −
[
Ons×ns Ons×np

Onp×ns Kp,optWKT
p,opt

]
(40)

Recalling from Eq.(15) that the optimal gain is partitioned as

Kopt
∆
=

[
Ks,opt

Kp,opt

]
.

Defining S as

S
∆
=

[
Ons×ns Ons×np

Onp×ns Inp×np

]
(41)

Eq. (40) becomes

P+
opt = P+

con −W (SKopt) (SKopt)
T (42)

We note that S is an nx × nx matrix (recalling that nx = ns + np) and Kopt is an nx × 1
vector, because we are processing the measurements as scalars. Therefore SKopt is an
nx × 1 vector. Therefore,

P+
con = P+

opt +W (SKopt) (SKopt)
T (43)

This has the same form as the rank-one update as found in Eq. (31), i.e. P+ = P−+ caaT.
While earlier the scalar was negative for the optimal update creating potential numerical
issues, now

a = SKopt (44)
c = W. (45)
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With this in mind, we can use the (un-modified) rank-one update which is a backward-
recursive update. If, for example, all the consider parameters are in the top part of the
state-space, we can effectively reduce the computations because the second update will not
modify the columns of U and D corresponding to the estimated states.

Finally, the states (and the consider parameters) are updated as

s+ = s− + Ks

(
y −Hsŝ

− −Hpp̂−
)

(46)
p+ = p− (47)

Of course, this is identical to what was obtained in Section 3.

Therefore, the procedure is as follows: first perform a complete rank-one measurement
update with the optimal Kalman Gain (Kopt) according to the modified rank-one update (as
in Table 2) – on the full covariance matrix. Second, perform another rank-one update with
a = SKopt and c = W , according to the (un-modified) rank-one update (as in Table 1). If
the consider parameters are always the same across flight we place them conveniently to
reduce computations.

OPTIMAL CONSIDER FILTER

Through a logic construction, Bierman [11] states that the recursive Schmidt-Kalman
filter is non-optimal because processing data as multiple batches provides a less accurate
result that processing it all at one. We now demonstrate that statement and we propose a
solution to overcome the nonoptimality of the Schmidt-Kalman filter.

Suppose we divide the measurement vector into two uncorrelated batches yT =
[
yT
a yT

b

]
.

It is well-known that processing the two batches together or sequentially using the Kalman
filter equations produces the same result [14], i.e. defining

P+
opt = (I−KoptH) P−, Kopt = P−HT

(
HP−HT + R

)−1
(48)

Pa
opt =

(
I−Ka

optHa

)
P−, Ka

opt = P−HT
a

(
HaP

−HT
a + Ra

)−1
(49)

Pb
opt =

(
I−Kb

optHb

)
Pa
opt, Kb

opt = Pa
optH

T
b

(
HbP

a
optH

T
b + Rb

)−1
(50)

then P+
opt = Pb

opt. Processing all the measurements at once using the consider gain

Kcon =

[
P−ssH

T
s + P−spHT

p

O

] (
HsP

−
ssH

T
s + HsP

−
spHT

p + HpP−psH
T
s + HpP−ppHT

p + R
)−1

we have that ŝ+, P+
ss, P+

ps have the same values for both the Schmidt-Kalman filter and the
regular Kalman filter. If we process the first batch of measurements with the consider gain
we have that Pa

ss,opt = Pa
ss,con, Pa

ps,opt = Pa
ps,opt, but Pa

pp,opt 6= Pa
pp,con = P−pp. Therefore

HsP
a
ss,conH

T
s + HsP

a
sp,conH

T
p + HpPa

ps,conH
T
s + HpPa

pp,conH
T
p + Rb ≥

HsP
a
ss,optH

T
s + HsP

a
sp,optH

T
p + HpPa

ps,optH
T
s + HpPa

pp,optH
T
p + Rb

(51)
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hence the rows of Kb
con corresponding to the estimated states will be “smaller” than the

corresponding rows of Kb
opt, resulting in a smaller update.

Previously we derived the “optimal” consider filter by minimizing the trace of the pos-
terior covariance. The optimality holds only if all measurements are processed at once and
for a given prior covariance. Processing all measurements at once is more accurate than
processing them in two batches, which in turn is more accurate that processing them in
three batches, and so on. While this result might not seem of great consequences (usually
only a few measurements are available at each given time), it has one larger implication:
the fact that processing all measurements together or in batches produces equal results it is
the key to optimality of the recursive Kalman filter. In the Kalman filter only the current
measurements are incorporated, this measurement update is followed by propagation to the
time of the next measurements. This procedure is equivalent to processing all the current
and past measurements at once. In standard aerospace applications, measurements can be
incorporated in hundreds of batches, one for each time the filter update phase is invoked. It
is therefore essential to use a recursive estimator.

In previous sections it was noticed that we can incorporate the measurements using the
regular Kalman filter update of the states, while leaving the parameters unchanged. The
full covariance can be updated first using the entire Kalman gain and we then substitute the
optimal P+

pp with the prior P−pp. Adopting this strategy we obtain exactly the same result
as the Schmidt-Kalman filter. More importantly we could update the covariance and the
states in many batches, and only after the last batch is processed we would substitute P+

pp

with P−pp.

An optimal recursive Schmidt-Kalman filter that gives identical results to a batch esti-
mator is obtained by implementing a regular Kalman filter in which the entire covariance
is updated and propagated at all times, but only the estimated states are updated using the
measurements, while the consider parameters remain unchanged across measurements. As
discussed earlier the optimal consider filter and the Kalman filter share the same estimate
of the states, their covariance, and their cross-covariance with the consider parameters. The
covariance of the parameters of this optimal consider filter does not represent their actual
uncertainty, instead it represents the uncertainty the parameters would have if they were
optimally estimated. If it is desired to know what the uncertainty of the parameters actu-
ally is, another, smaller, covariance of only the parameters needs to be carried. This “true”
covariance is never actually used by the filter nor changes in the measurement update phase.

NUMERICAL RESULTS

In this section we present a very simple numerical example to demonstrate the theory
developed in this paper. A single state s and parameter p for the state vector xT =

[
s p

]
.

The state is measured directly, while the parameter is a systematic measurement error

yk = sk + pk + ηk =
[
1 1

]
xk + ηk = Hxk + ηk (52)

where ηk is a zero mean, white sequence with variance Rk = 1 and uncorrelated from any
other error source. The true state is a random walk while the parameter is a first order
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Markov process

xk+1 = Φkxk + νk =

[
1 0

0 e−∆tk/τ

]
xk +

[
νk
µk

]
(53)

where νk and µk are zero mean, uncorrelated white sequences with variances given by
Qk = 1 and (1−e−2∆tk/τ )Ppp,ss, respectively. The steady-state value of the Markov process
variance is chosen as Ppp,ss = 1 and the time constant τ is such that e−200/τ = 0.5. An
initial unbiased estimate x̂T

0 =
[
0 0

]
of the true state vector is available and has associated

estimation error covariance given by

P0 =

[
10 3
3 1

]
. (54)

A first measurement y0 is assumed to be available at time t0 = 0 and a second measurement
y1 becomes available at time t1 = 100. A standard Kalman filter implementation performs
a first update and produces

P+
KF (t0) =

[
0.6111 0.1111
0.1111 0.1111

]
. (55)

The next step is a time update after which

P−KF (t1) =

[
1.6111 0.0786
0.0786 0.5556

]
. (56)

Finally a second update is performed that produces

P+
KF (t1) =

[
0.7522 −0.2438
−0.2438 0.4346

]
. (57)

From the discussion above and since the initial uncertainty of the parameter coincides
with its steady-state value we know that an optimal consider filter provides an estimate with
error covariance

P+
OCKF (t1) =

[
0.7522 −0.2438
−0.2438 1

]
, (58)

however applying the Schmidt-Kalman filter equations recursively we obtain after the first
update

P+
CKF (t0) =

[
0.6111 0.1111
0.1111 1

]
, (59)

after the propagation

P−CKF (t1) =

[
1.6111 0.0786
0.0786 1

]
, (60)

and finally after the second update is

P+
CKF (t1) =

[
0.8535 −0.4051
−0.4051 1

]
. (61)
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The optimal consider filter algorithm proposed in this paper carries the covariance of the
Kalman filter with the understanding the the portion corresponding to the covariance of the
consider parameters is fictitious. At any time it is desired to know the actual covariance
it can be built from the Kalman filter covariance and an externally carried covariance of
the parameters. For the simple example in this section the parameter’s covariance stays
constant at its steady state value. To demonstrate the validity of this method a Monte
Carlo simulation is performed. True initial states are obtained sampling from a Gaussian
distribution with mean x̂0 and covariance P0. Each Monte Carlo run also samples different
values for the process noise and measurement noise, with zero mean and covariance as
specified above. The propagation phase is given by

x̂k+1 = Φkx̂k. (62)

Figures 1 to 3 show the results of 100 Monte Carlo runs for each algorithm. The figures
convey that all the algorithms perform correctly since their predicted estimation error is
consistent with its actual value. Figure 4 shows a comparison of the three algorithms. All
the covariances shown in the plots are 3σ values.

CONCLUSIONS

This paper analyzes recursive implementations of the consider filter. A recursive imple-
mentation is essential for onboard estimation systems. A common strategy for aerospace
navigation is to carry the filter’s estimation error covariance utilizing the UDU formulation.
This paper introduces a formulation of the UDU consider filter. The non-optimality of the
recursive consider filter is discussed. An algorithm is proposed to overcome this limitation
and produce optimal consider filter results. A numerical example is shown to demonstrate
the validity of the proposed approach.
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Figure 1. Kalman Filter Monte Carlo Results
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Figure 2. Schmidt-Kalman Filter Monte Carlo Results
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Figure 3. Optimal Consider Filter Monte Carlo Results
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