TWO-PHOTON OR HIGHER-ORDER ABSORBING OPTICAL MATERIALS AND METHODS OF USE

Inventors: Seth Marder, Pasadena, CA (US); Joseph Perry, Pasadena, CA (US)

Assignee: The California Institute of Technology, Pasadena, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 534 days. This patent is subject to a terminal disclaimer.

Applicant No.: 09/918,874

Filed: Jul. 30, 2001

Prior Publication Data

Related U.S. Application Data
Continuation of application No. 08/965,945, filed on Nov. 7, 1997, now Pat. No. 6,267,913.

Provisional application No. 60/029,443, filed on Nov. 12, 1996, provisional application No. 60/029,437, filed on Nov. 12, 1996, provisional application No. 60/030,141, filed on Nov. 12, 1996.

Int. Cl.
G03C 1/00 (2006.01)
G03C 1/73 (2006.01)
G03G 7/00 (2006.01)
G03G 5/00 (2006.01)
G02F 1/361 (2006.01)
G02B 5/22 (2006.01)
C07C 39/12 (2006.01)
C07C 39/205 (2006.01)
G09H 1/00 (2006.01)
H01S 3/09 (2006.01)
H01S 3/094 (2006.01)
FOREIGN PATENT DOCUMENTS

JP 2187734 7/1990 252/582

OTHER PUBLICATIONS

CA indexed Structures corresponding to registry numbers CA online @ www.cas.org/, STN file REG, RN # 588-56-7, 588-59-0, 621-96-5, 646-5-3, 705622-3, 1588-49-4, 2039-68-1, 2042-99-1, 2765-14-2, 3960-21-2, 3900-12-2, 4705-34-4, 4752-74-3, 5121-74-4, 6299-62-2, 10374-80-8, Columbus, OH (downloaded May 24, 2010).

Two-Photon Absorption: A Promising Tool for Nonlinear Optical Applications

Abstract

Two-photon absorption (TPA) is a nonlinear optical effect where an input beam of two photons is absorbed by a material, exciting it to a higher energy state. This process is significant in various applications due to its potential for high sensitivity and selectivity in detection techniques. In this manuscript, we delve into the fundamental aspects of TPA, its mechanisms, and its applications across diverse fields.

Introduction

Two-photon absorption (TPA) was first observed in 1964 as a nonlinear optical effect. It has since gained prominence due to its unique properties, particularly in the realms of microscopy and non-linear optical devices. TPA involves the absorption of two photons, each carrying a fraction of the energy required to excite an electron from the ground state to an excited state. This dual-photon absorption process is particularly advantageous in optical microscopy, as it allows for deeper penetration into samples due to reduced stimulated emission.

Mechanisms of Two-Photon Absorption

The TPA process is governed by the transition dipole moment and the molecular structure of the absorbing material. Techniques such as time-resolved TPA spectroscopy have been instrumental in elucidating the dynamic aspects of TPA. These studies have revealed that the energy and momentum conservation laws are not violated in TPA, unlike in the case of one-photon absorption.

Applications of Two-Photon Absorption

TPA finds applications in a myriad of fields, including microscopy, molecular engineering, and material science. In microscopy, TPA microscopy, also known as two-photon microscopy, offers superior depth resolution compared to conventional optical microscopy. This is due to the ability of TPA to selectively excite fluorophores at specific depths within the sample, making it an invaluable tool in live-cell imaging.

Material Science and Engineering

In the realm of material science, TPA is utilized in the development of new materials with enhanced optical properties. For instance, the design of polymers for nonlinear optical applications leverages the principles of TPA to tailor materials for specific optical functionalities. This includes the development of materials for optical storage and processing, where TPA plays a crucial role in enabling two-dimensional data storage.

Biological Applications

The biocompatibility and high contrast offered by TPA imaging have led to its application in biological sciences. In addition to traditional microscopy, TPA is used in nanoscale drug delivery, where the precise targeting of drugs at specific locations within biological systems is crucial.

Conclusions

Two-photon absorption remains a vibrant field of research with numerous applications across various disciplines. The development of materials and techniques to optimize TPA for specific applications continues to be an area of active investigation. As technology advances, the potential of TPA is likely to expand, making it an increasingly important tool in the field of nonlinear optics.

Acknowledgments

This work was supported by the National Science Foundation under grant number DMR-1507818. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Authors

Daniel S Metzmaier
David W Maher

Corresponding author: Daniel S Metzmaier

Department of Chemistry, University of California, Berkeley, CA 94720, USA

Received: December 10, 2014; Revised: February 20, 2015; Accepted: March 3, 2015

Keywords: Two-photon absorption, nonlinear optics, material science, biology

Abbreviations: TPA, two-photon absorption, NLO, nonlinear optical, FWM, frequency up-converted mid-IR generation, SOC, second-order coherence.

Suggested Reading:

Further Information

For more information on two-photon absorption and its applications, please refer to the following sources:

Supporting Information

Contact Information

Daniel S Metzmaier
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: dmetzmaier@berkeley.edu

David W Maher
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: damaher@berkeley.edu

Acknowledgments

This research was supported by the National Science Foundation under grant number DMR-1507818. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Abbreviations: TPA, two-photon absorption, nonlinear optics, material science, biology

Keywords: Two-photon absorption, nonlinear optics, material science, biology

Further Information

Contact Information

Daniel S Metzmaier
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: dmetzmaier@berkeley.edu

David W Maher
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: damaher@berkeley.edu

Acknowledgments

This research was supported by the National Science Foundation under grant number DMR-1507818. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Abbreviations: TPA, two-photon absorption, nonlinear optics, material science, biology

Keywords: Two-photon absorption, nonlinear optics, material science, biology

Further Information

Contact Information

Daniel S Metzmaier
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: dmetzmaier@berkeley.edu

David W Maher
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: damaher@berkeley.edu

Acknowledgments

This research was supported by the National Science Foundation under grant number DMR-1507818. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Abbreviations: TPA, two-photon absorption, nonlinear optics, material science, biology

Keywords: Two-photon absorption, nonlinear optics, material science, biology

Further Information

Contact Information

Daniel S Metzmaier
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: dmetzmaier@berkeley.edu

David W Maher
Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: damaher@berkeley.edu

Acknowledgments

This research was supported by the National Science Foundation under grant number DMR-1507818. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.
FIG. 1

Two-photon Absorption

hv_A

Fluorescence

h_F

S_0

S_1

S_2

S_n

T_0

T_1

T_2

T_n

intersystem crossing

FIG. 2

E(1/2) vs. Fch/Fch`

R, R' = Ph, m-tol
R, R' = n-Bu2

where Ph = phenyl
m-tol = meta-tolyl
n-Bu = normal-butyl

RR'N

RR'N

RR'N

RR'N

RR'N

RR'N

RR'N

NRR' NRR' NRR' NRR' NRR' NRR' NRR' NRR'
FIG. 3
Scheme: Synthesis of piperidine stilbenes.

![Scheme](image)

FIG. 4

Scheme: Synthesis of 4-[N-(t-Butoxycarbonyl)]-piperazine-benzaldehyde.

A.

\[
\text{HN} \begin{array}{c}
\text{N} \\
\text{N}
\end{array} + \begin{array}{c}
\text{NC} \\
\text{Ph}
\end{array} \rightarrow \text{Et}_3\text{N/MeOH} \rightarrow \begin{array}{c}
\text{Ph} \\
\text{N}
\end{array} \quad (92\%)
\]

1. tBuLi/THF
2. DMF

FIG. 5
Scheme showing the synthesis of dimethacrylate substituted bisdonor-stilbenes.

\[\begin{align*} \text{Scheme showing the synthesis of dimethacrylate substituted} \\ \text{bisdonor-stilbenes.} \\
\end{align*} \]

FIG. 6

\[\begin{align*} \text{FIG. 7} \\
X = \text{p-NO2, p-CN, p-OMe, 3,5-Dinitro} \\
\end{align*} \]
Formaldehyde (38%) + Triphenylphosphine + KI, Acetic Acid
\[\text{H}_2\text{O}, \text{CHCl}_3 \]
Reflux, 24h
42%

\[\text{Ph}_3\text{P} \text{~CN} \text{~CN} \]

\[\text{EtOH} + \text{NaOEt} \text{~CN} \text{~CN} \]
Reflex, 8h
\(~12\%\)

\[\text{Et}_2\text{O} \text{~NH}_2 \]

\[\text{FIG. 8} \]
FIG. 9
FIG. 10

FIG. 11
FIG. 12
Compounds

Exposure time (sec) required for polymerization

FIG. 15
MeO \text{hv, two photon absorption} \rightarrow ROH + \text{MeO Ph}

or

\text{MeO} \text{hv, two photon absorption} \rightarrow \text{ROH}

\text{NO}_2 \text{CH} \text{hv, two photon absorption, Elimination ROH} \rightarrow \text{O}_2 \text{N Ph}

R' = \begin{align*}
\text{or} & \\
\text{or} & \\
\text{where * is the point of attachment.}
\end{align*}

FIG. 16
Optical limiting by two-photon induced excited state absorption in 4-dimethylamino-4' dibutylaminostilbene (MBDAS) (points). Straight line corresponds to the linear transmission of %96.

FIG. 17
Two-photon optical limiting responses of 0.01 and 0.134 M solutions of 4,4'-bis(dibutylamino)stilbene for 5-ns, 600 nm pulses. The straight line corresponds to the linear transmission (96%) of the 0.134 M solution.

FIG. 18
Linear transmission spectrum (solid line) of a mixture of 4,4′-bis(dibutylamino)stilbene and 4,4′-bis(diphenylamino)stilbene for a total molecular concentration of 0.1M. Spectra of effective two-photon absorption cross sections for 4,4′-bis(di-n-butylamino)stilbene (triangles) and 4,4′-bis(diphenylamino)stilbene (squares).

FIG. 19
Nonlinear transmission data showing enhanced effective two-photon absorption in a 1-(4-dimethylaminophenyl)-10-(4-dibutylaminophenyl)deca-1,3,5,7,9-pentane (squares) as compared to the 4,4’-bis(di-n-butylamino)stilbene (circles). Measurements were performed at 598 nm using 0.01M solutions.

FIG. 20
TWO-PHOTON OR HIGHER-ORDER ABSORBING OPTICAL MATERIALS AND METHODS OF USE

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 08/965,945 filed Nov. 7, 1997, now U.S. Pat. No. 6,267,913 and claims the benefit of U.S. Provisional Application No. 60/029,443 entitled “Two-Photon Optical Limiting Materials,” U.S. Provisional Application No. 60/029,437, entitled “Two-Photon Absorbing Polymerization Initiators” and U.S. Provisional Application No. 60/030,141, entitled “Two-Photon Absorbing Optical Materials”, all filed Nov. 12, 1996, the disclosure of each of which is incorporated herein by reference.

ORIGIN OF INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Public Law 96-517 (35 U.S.C. 202) in which the Contractor has elected to retain title. The invention was also partially supported by the United States Government through the Office of Naval Research (ONR Grant No. N00014-95-1-1319 and NAV00149611097), Air Force Office of Scientific Research (AFSOF Grant No. AF05-4960-97-104200) and the National Science Foundation (NSF Grant No. CHE 94-08701, Amendment 001).

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to materials which exhibit nonlinear absorptive properties. More particularly, the invention relates to materials which have high two-photon or higher-order absorptivities and methods for their use.

2. Description of the Related Art

Molecular two-photon absorption was predicted in Göppert-Mayer, M., Ann. Phys. 1931, 9, 273. Upon the invention of pulsed ruby lasers in 1960, experimental observation of two-photon absorption became reality. In years since, multi-photon excitation has found application in biology and optical data storage, as well as in other fields.

Although interest in multi-photon excitation has exploded, there is a paucity of two-photon absorbing dyes with adequately strong two-photon absorption in the correct spectral region for many applications.

There are two key advantages of two-photon (or higher-order) induced processes relative to single-photon induced processes. Whereas single-photon absorption scales linearly with the intensity of the incident radiation, two-photon absorption scales quadratically. Higher-order absorptions will scale with yet a higher power of incident intensity. As a result, it is possible to perform multi-photon processes with three dimensional spatial resolution. Further, because these processes involve the simultaneous absorption of two or more photons, the chromophore is excited with a number of photons whose total energy equals the energy of a multi-photon absorption peak, although each photon individually has insufficient energy to excite the chromophore. Because the exciting light is not attenuated by single-photon absorption in this case, it is possible to excite selectively molecules at a greater depth within a material than would be possible via single-photon excitation by use of a beam that is focussed to that depth in the material. These two advantages also apply to, for example, excitation within tissue or other biological materials. In multi-photon lithography or stereolithography, the nonlinear scaling of absorption with intensity can lead to the ability to write features below the diffraction limit of light and the ability to write features in three dimensions, which is also of interest for holography.

The ability to realize many of the possible applications of two-photon or higher-order absorption by molecules rests on the availability of chromophores with large two-photon or higher-order absorption cross sections.

SUMMARY OF THE INVENTION

Many of the compounds useful according to the invention can be described by one of four structural motifs. These compounds exhibit enhanced two-photon or multi-photon absorptivities and allow one to control the position of two-photon or multi-photon absorption bands. The motifs may be generally categorized as follows:

a) molecules in which two donors are connected to a conjugated π (pi)-electron bridge (abbreviated “D-π-D” motif);

b) molecules in which two donors are connected to a conjugated π (pi)-electron bridge which is substituted with one or more electron accepting groups (abbreviated “D-A-D” motif);

c) molecules in which two acceptors are connected to a conjugated π (pi)-electron bridge (abbreviated “A-π-A” motif);

d) molecules in which two acceptors are connected to a conjugated π (pi)-electron bridge which is substituted with one or more electron donating groups (abbreviated “A-D-A” motif).

We have found that molecules which take these forms can be designed to operate in methods wherein the compounds undergo simultaneous two-photon (or higher-order) absorption, forming compositions which include molecules in an electronically excited state. These excited state species can be used in a great variety of subsequent method steps.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood by reference to the following drawings, in which:

FIG. 1 schematically illustrates an intersystem crossing from the singlet manifold of states to the triplet manifold of states according to the invention;

FIG. 2 is a graph of oxidation potentials for two series of diamines according to the invention;

FIG. 3 illustrates a Wittig reaction scheme for synthesis of bis-donor-substituted stilbene and bis-donor-substituted diphenylylenes according to the invention;

FIG. 4 illustrates a reaction scheme for the synthesis of piperidine stilbenes according to the invention;

FIG. 5 illustrates a reaction scheme for the synthesis of 4-[N-(t-butoxycarbonyl)]-piperazine benzaldehyde according to the invention;

FIG. 6 illustrates a reaction scheme for the synthesis of dimethacrylate-substituted bis-donor stilbenes according to the invention;

FIG. 7 illustrates a reaction scheme for the synthesis of bis-(diakylamino)stilbenes substituted with benzotate esters according to the invention;

FIG. 8 illustrates a reaction scheme for the synthesis of an cyanogen-substituted and primary amino-substituted stilbene according to the invention;

FIG. 9 illustrates a reaction scheme for the synthesis of an amine biotin substituted two-photon absorbing stilbene;
FIG. 10 illustrates the reaction of 1,4-bis(cyanomethyl) benzene with 4-diphenylaminobenzaldehyde and 4-di-n-buty laminobenzaldehyde to form 1,4-bis(β-cyano-4'-diphenylaminostyryl)benzene and 1,4-bis(β-cyano-4'-di-n-buty laminostyryl)benzene according to the invention;

FIG. 11 illustrates the condensation of 1,4-dibromo-2,5- bis[methylene(triphenylphosphonium)]benzene dibromide, 1,4-dicyano-2,5-bis[methylene(triphenylphosphonium)] benzene dibromide and 4-diphenylaminobenzaldehyde to yield 1,4-dibromo- and 1,4-dicyano-2,5-bis(4'-diphenylaminostyryl)benzenes;

FIG. 12 illustrates a reaction scheme for the synthesis of molecules following the A-D-A motif;

FIG. 13 illustrates nonlinear absorption spectra of 4,4'-bis(di-n-butylamino)stilbene (squares), 4-(di-n-butylamino)-4'-(dimethylamino) diphenyl-butadiene (circles) and 4-(di-n-butylamino)-4'-(dimethylamino)diphenylhexatriene (triangles) in toluene solution;

FIG. 14 illustrates nonlinear absorption spectra of 4,4'-bis (di-n-butylamino)stilbene (squares) and 4,4'-bis(diphenylamino)stilbene (circles);

FIG. 15 illustrates induction times for two-photon polymerization of a triacrylate monomer (SR9008) with 2 mJ, 8 ns, 594 nm pulses;

FIG. 16 illustrates two specific examples of photodeprotecting schemes according to the invention;

FIG. 17 illustrates two-photon optical limiting in 4-(dimethylamino)-4'-(dibutylamino)stilbene according to the invention;

FIG. 18 illustrates two-photon optical limiting responses of 0.01 and 0.134 M solutions of 4,4'-bis(dibutylamino)stilbene for ~5 ns, 600 nm pulses;

FIG. 19 shows the nonlinear absorption peaks for 4,4'-bis(di-n-butylamino)stilbene and 4,4'-bis(diphenylamino)stilbene and the linear transmission of a mixture of these compounds at a total concentration of 0.1 M; and

FIG. 20 illustrates nonlinear transmission data showing enhanced two-photon absorption in a 1-(4-dimethylaminophenyl)-10-(4-dibutylaminophenyl)-deca-1,3,5,7,9-pentane (squares) as compared to the 4,4'-bis(di-n-butylamino) stilbene (circles).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

To ensure a complete understanding of the invention, the following definitions are provided:

By the term "bridge", it is meant a molecular fragment that connects two or more chemical groups.

By the term "donor", it is meant an atom or group of atoms with a low ionization potential that can be bonded to a π (pi)-conjugated bridge.

Exemplary donors, in order of increasing strength, are:

1=Br<Cl<F<OC(0)R<SH=OH=SR=OR=NH(0)
R=NH2<NR<SC<SO

Other donors that have donating strength greater than SR include:

Other donors that have donating strength greater than SR include:
By the term "acceptor", it is meant an atom or group of atoms with a high electron affinity that can be bonded to a π (π)-conjugated bridge. Exemplary acceptors, in order of increasing strength, are:

\[\text{C(O)NR}, < \text{C(O)NH}, < \text{C(O)OR}, < \text{C(O)OH}, < \text{C(O)H}, < \text{CN}, < \text{SO}_2, < \text{NO}_2 \]

Other acceptors that have accepting strength greater than C(O)R include:

Where R is as defined below in Note 3B, and X(O) indicates that the element oxygen is double bonded to the element X and * indicates the point of attachment to the π-conjugated bridge.

A more complete description of what is meant by electron donors or donating groups and electron acceptors or electron accepting groups can be found in J. March, *Advanced Organic Chemistry: Reactions, Mechanisms and Structure*, Fourth edition, Wiley-Interscience, New York, 1992, Chapter 9, which is incorporated herein by reference.

By the phrase "aromatic group", it is meant a carbocyclic group that contains 4n+2π electrons where n is an integer.

By the phrase "heteroaromatic group", it is meant a cyclic group of atoms, with at least one atom within the ring being an element other than carbon, that contains 4n+2π electrons where n is an integer. A more complete description of aromaticity and heteroaromaticity can be found in J. March, *Advanced Organic Chemistry: Reactions, Mechanisms and Structure*, Fourth edition, Wiley-Interscience, New York, 1992, Chapter 2, which is incorporated herein by reference.

By the term "chromophore", it is meant a molecule, a molecular fragment, or aggregate of molecules that can absorb electromagnetic radiation.

By the term "simultaneous", it is meant that two events that occur within the period of \(10^{-14}\) sec or less.

By the phrase "excited state", it is meant an electronic state of a molecule wherein electrons populate an energy state that is higher than another energy state for the molecule.

By the phrase "two-photon absorption", it is meant the process wherein a molecule absorbs two quanta of electromagnetic radiation to reach an excited state.

By the phrase "multi-photon absorption", it is meant a process wherein a molecule absorbs two or more quanta of electromagnetic radiation to reach an excited state.

By the phrase "optical limiting", it is meant a process wherein the optical transmission of a body decreases with increasing incident optical intensity or fluence such that the intensity or fluence transmitted by the body does not exceed a prescribed level for a prescribed range of incident optical intensity or fluence.

A "π-conjugated bridge" contains covalent bonds between atoms that both have σ bonds and π bonds formed between two atoms by overlap of their atomic orbitals (σ bond; p atomic orbitals for π bonds) with two orbitals \(\sigma^*, \sigma^*, \sigma^*\) overlapping end-to-end to
form a bond lying directly between the nuclei. In particular, when two π orbitals are standing perpendicular to the σ-bonded skeleton and overlapping sideways, a π bond is formed. When there are adjacent π orbitals on each side of an atom, and they overlap with the π orbital on that atom, a situation is created such that a more extended π orbital is formed in which the electrons in the orbital are no longer confined between two atoms, but rather are delocalized, over a greater number of nuclei. For this to occur, each successive atom bearing a π orbital for overlap must be adjacent to the last. (Sideways overlap of π orbitals is not significant for atoms more than a bond length apart, that is, >1.5 Å.)

This delocalization of π electrons is of central importance to the chemical and physical properties of unsaturated molecules. In particular, a π-conjugated bridge is one having a formal structure consisting of double or triple bonds alternating with single bonds where the double and triple bonds are capable of further π overlap with each other. Such bridges are said to be π-conjugated and include conjugated double or triple bonds.

Introduction

The invention generally provides compositions of matter that have large two-photon or higher-order absorptivities and in some cases large fluorescence quantum yields, leading to efficient two-photon or higher-order excited fluorescence. By two-photon or higher-order absorption, we refer to the initial simultaneous absorption of two or more photons (also referred to as multi-photon absorption), without the actual population of an excited state by the absorption of a single photon. Subsequent to the initial absorption of two or more photons by the molecule, it is possible for the molecule to absorb additional photons from the state populated by the initial absorption event or from a state to which the molecule relaxes.

If sufficient total energy is absorbed by the molecule, it is possible to photoionize the molecule, thereby creating a radical cation of the molecule and an unbound electron. Conversion of a molecule to an excited state by two-photon or higher-order absorption according to the invention enables many applications which can be induced from such an excited state, as described below.

For example, we have found that stilbene, diphenylpolyene, phenylene vinylene oligomers, and related molecules having two or more electron donor groups, such as amino or alkoxy groups, connected to aromatic or heteroaromatic end groups as part of a π (π)-electron bridge (the combination referred to herein as “D-π-D” molecules) exhibit unexpectedly and unusually high two-photon or higher-order absorptivities in comparison to unsubstituted dyads such as stilbene, diphenylpolyenes, phenylene vinylene oligomers and related molecules, respectively. In addition, the strength and position of the two-photon or higher-order absorption of these molecules can be tuned and further enhanced by appropriate substitution of the π-electron bridge with electron donating groups, such as methoxy, to form “A-D-A” molecules.

General Description of Structural Motifs

As a feature of the invention, we have discovered that the aromaticity of the π-bridge in the electronic ground state is important in determining the energetic position of the electronic state which is responsible for multi-photon absorption relative to the state responsible for one-photon absorption. In particular, having donors attached to aromatic groups or heteroaromatic groups, i.e., D-π-D and D-A-D structures, is conducive to the occurrence of the highly absorbing two-photon state energetically above that of the strongly fluorescent one-photon state, which is essential for the molecule to exhibit a high multi-photon fluorescence excitation efficiency. In D-A-D molecules, upon absorption of photons, charge is redistributed from the electron donor groups toward the π-electron bridge, thereby enhancing the molecules’ photon absorption characteristics.

In addition, having acceptors attached to aromatic groups or heteroaromatic groups, i.e., A-π-A and A-D-A structures, is conducive to the occurrence of the highly absorbing two-photon state energetically above that of the strongly fluorescent one-photon state. In A-D-A molecules, upon absorption of photons, charge is transferred from the π-electron bridge toward the electron accepting groups, thereby enhancing the molecules’ photon absorption characteristics.

Accordingly, the combination of the intrinsically high fluorescence quantum efficiency for these molecules and the rapid relaxation of the two-photon excited molecule from the two-photon state to the lower lying fluorescent one-photon state makes the molecules according to the invention highly efficient multi-photon excitable fluorescent emitters.

As a result of their large multi-photon absorptivities, molecules according to the invention can be used for two-photon or higher-order sensitization by exploiting various photophysical or photochemical mechanisms such as energy transfer or charge transfer. The two-photon or higher-order absorber may directly sensitize various reactions or may transfer energy or charge to another sensitizer which itself sensitizes a further chemical reaction. Applications which would exploit these novel two-photon or higher-order sensitization properties would include photo-deprotection, photocaging or uncaging of biological molecules, photoinitiated polymerization, photochromism, photodissociation, photodimerization, photoisomerization, photoinduced electrolytic rearrangement and photodeposition of various materials including metals, ceramics, ceramic-polymer composites, metal oxides, and metal chalcogenides.

In particular, any photochemical reaction which could be carried out by energy transfer or electron transfer could be performed by taking advantage of the associated benefits of two-photon or multi-photon absorption provided that either the S0, S1, ..., S, S1, T1, T2, ..., Tn (where S refers to a singlet state and T refers to a triplet state and have the usual meaning as described in N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cumming Publishing Company, Menlo Park, 1978, which is incorporated herein by reference) excited states of the molecule were populated by said two-photon or multi-photon absorption or subsequent relaxation and had sufficient energy and/or reducing potential and/or oxidizing potential to foster the desired reaction.

If the reaction or sensitization process occurs from the triplet state, it is necessary to employ any of a number of well-known mechanisms to foster intersystem crossing from the singlet manifold of states to the triplet manifold of states as shown in FIG. 1. Mechanisms to foster such intersystem crossing processes include, but are not limited to, the inclu-
sion of heavy atoms with large spin-orbit coupling coefficients, the attachment of aromatic ketones to the π-bridge electronic system of the multi-photon absorbing chromophores and attachment of paramagnetic groups. The advantageous combination of strong multi-photon absorption and the ability to sensitize, catalyze, initiate or otherwise render possible chemical reactions, changes of state of materials and emission of light, allow the compounds described here to have a great variety of novel and useful applications including, but not limited to, those described below.

These new two-photon or multi-photon absorbing molecules may be used as fluorophores in microscopy, biological imaging, photodynamic therapy, pathology assays and medical diagnostics.

These new two-photon or multi-photon absorbing molecules may be used as fluorophores in thin films and materials for imaging and analysis, especially in paint compositions, laminants, dental fillings or other coatings.

These new two-photon or multi-photon absorbers may be used for two-photon generation of charge carriers, especially in photorefractive polymers.

These new two-photon or multi-photon fluorophores may be used in three dimensional light emitting displays.

These new two-photon or multi-photon absorbers may be used in holographic recording materials involving the use of a single or two different optical wavelengths for the recording process.

These new two-photon or multi-photon fluorophores may be used for sensing applications including, but not limited to, sensing of metal ions and other species in solution, to electric fields or changes thereof (as in measurements of membrane potentials), viscosity of the surrounding environment and changes thereof, dielectric constants of the environment and changes thereof, biologically relevant organic molecules including, but not limited to, drugs, DNA sequences, antibodies, metabolites, hormones, explosives and neurotoxins. Such sensing relies on the fact that the fluorescence properties of these molecules, including their emission wavelength, efficiency and lifetimes, are all parameters known to be sensitive in a quantifiable manner to external perturbations.

These new two-photon or multi-photon absorbers may be used as fluorophores for imaging of flow fields and diffusional fronts in gels or other porous media, especially in electrophoretic gels.

These new two-photon or multi-photon absorbers may be used for two-photon or multi-photon two-dimensional or three-dimensional optical lithography and three dimensional optical memory.

These new two-photon or multi-photon absorbers may be used for optical limiting and optical switching.

These new two-photon or multi-photon absorbers may be used to access photochemistry that would ordinarily be enabled by single-photon absorption. Thus, any photochemical reaction that can be carried out either by charge or electron transfer can be performed by taking advantage of the associated benefits of two-photon or higher-order absorption provided that the S₁, S₂ or S₄ excited state, Tₐ, Tₜ or Tₜₜ excited state (where S refers to singlet and T refers to triplet) of the molecule has sufficient energy and/or redox potential to foster the desired reaction.

A more extensive listing of applications that would be rendered substantially more useful by virtue of the large two-photon or multi-photon absorptivities of the compounds described herein can be found, for example, in U.S. Pat. Nos. 4,228,861, 4,238,840, 4,471,470, 4,333,165, 4,466,080 and 5,034,613, which are incorporated herein by reference. Additional examples of photochemical reactions that could be induced by the excited states that can be populated by multi-photon absorption by the compounds described herein can be found in N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cumming Publishing Company, Menlo Park, 1978, incorporated herein by reference.

Correlation of Structure and Function

Another feature of molecules in one embodiment of the invention is that molecules “end capped” with electron donor substituents, i.e., D-π-A and D-A-D structures, have relatively low oxidation potentials, E₁₂ (in tetrahydrofuran) for the ground-state as exemplified for the series of diamines having increasing length of π-conjugated bridge in FIG. 2.

Upon multi-photon excitation, these molecules become very strong excited state reducing agents and can therefore be used as multi-photon excited electron donors. Such materials can transfer electrons to electron acceptors (which may be covalently attached to the multi-photon absorbing chromophore or could be in a region of space near the multi-photon absorbing chromophore, as would be the case in a concentrated fluid solution or solid solution) to create a radical cation, in the case of the multi-photon absorbing dye and a radical anion, in the case of the acceptor.

Another feature of some molecules in one embodiment of the invention is that molecules “end capped” with electron accepting substituents, i.e., A-π-A and A-D-A structures, have relatively high electron affinities in the ground-state form. Furthermore, upon multi-photon excitation, these molecules become very strong excited state oxidizing agents and can therefore be used as multi-photon excited electron acceptors. Such materials can accept electrons from electron donors (which may be covalently attached to the multi-photon absorbing chromophore or could be in a region of space near the multi-photon absorbing chromophore as would be the case in a concentrated solution or solid solution) to create a radical anion, in the case of the multi-photon absorbing dye, and a radical cation, in the case of the donor.

Such radical cations and anions may have different spectroscopic properties from their neutral counterparts and therefore may be used as transient photochromic materials for optical limiting and optical signal processing.

In addition, these radical ion species generated upon multi-photon absorption can be chemical reactants. For example, these multi-photon absorbing materials can be used to initiate polymerization of monomers which can be polymerized either by radical or ionic mechanisms in the presence or absence of polymerization promoters, including chain transfer agents. Examples of monomers which can be polymerized in these ways include, but are not limited to, vinyl monomers including acrylonitriles, acrylates, diacrylates, triacrylates, polyacrylates, styrenes, trifunctional isocyanurates substituted with acrylates, vinyl- and allyl-containing monomers, divinylbenzene and polymers which are end-capped with or have these groups attached to the carbon backbone such as polyurethanes, polyesters and polyolefins. Additional examples of polymerizable monomers may be found in G. Odian, Principles of Polymerization, Second Edition, John Wiley and Son, New York, 1981, page 181, which is incorporated herein by reference.

Another feature of the invention is that the oxidation potential, reduction potential and the energy difference between the ground state and the fluorescent excited state can be precisely tuned such that the excited state reduction or oxidation potential can also be tuned. In this manner, using the theory for
Another feature of the invention is that it is possible to tune both the forward electron transfer rate and charge recombination rate (G. J. Karvaros and N. J. Turro, Chem. Rev. 86, 401-449, 1986). This tunability allows control of, for example, the initiation rate of polymerization or the time constants for generation of absorption changes and recovery in transient photochromic materials.

Another feature of the invention is that it is possible to selectivity control the position of the multi-photon absorption peak in these molecules by controlling the substituents on the electron donor groups. For example, replacement of the alkyl groups with phenyl groups on the amine of 4,4'-diaminostilbene results in a minimal shift of the linear absorption edge to a longer wavelength, but a shift of the multi-photon absorption maximum 90 nm to longer wavelength.

Another feature of this invention is that it is possible to control the position of the multi-photon absorption peak in these molecules by controlling the number of conjugated double bonds between the two donor-substituted aromatic or heteroaromatic end groups for Class 1 compounds (described below), or between the two electron acceptor-substituted aromatic or heteroaromatic end groups for Class 2 compounds (described below). Increasing the number of double bonds leads to a considerable shift of the multi-photon absorption band to longer wavelength. Incorporation of phenylene-vinylene groups between the end groups has a similar effect.

In most cases, these shifts also result in considerable shifts of the emission maxima to lower energy, which is useful for tuning the multi-photon induced energy transfer properties. This is the case because in the Forster energy transfer mechanism, the energy transfer rate depends upon the degree of overlap of the fluorescence band of the multi-photon absorbing energy donor with the absorption band of the energy-accepting molecule. Control of the location of the multi-photon absorption band and the two-photon excited fluorescence band is also of use in regard to excitation and detection of emission from molecules in an absorbing or scattering medium. For example, absorption and scattering in tissue gives rise to a transmission band at ~700-950 nm, thus molecules can be tailored for optimal two-photon excitation and fluorescence detection efficiency at depth in biological tissue.

Another feature of this invention is that it is possible to tune the lipophilicity, hydrophilicity and overall solubility of the molecules by controlling the substituents on the electron donor groups. For example, 4,4'-bis-dimethylaminostilbene and 4,4'-bis(diphenyl)aminostilbene are sparingly soluble in nonpolar organic solvents whereas 4,4'-bis(di-n-butylamino)stilbene and 4,4'-bis(di-(4-n-butylphenyl)aminostilbene are very soluble, i.e., are lipophilic. In contrast, the hydrochloric acid adduct of the bis-lysyl ester of 4-diethylaminol 4'-diethanolaminostilbene and the bis-lysyl ester of 1-(4-dimethylaminophenyl)-4-(4'-diethanolaminophenyl) buta-1,3-diene shown below are hydrophilic. In each case, the molecules maintain their fluorescence in organic and aqueous solution.
media described above may have strong single-photon absorption, labeling of these media with multi-photon absorbing chromophores or derivatives thereof provides a mechanism to selectively excite the multi-photon absorbing chromophores without interfering absorption by the other (i.e., single-photon absorbing) chromophores which do not have the multi-photon absorption features of chromophores according to the invention. This selective excitation is particularly important for the use of these molecules in biological tissue, for example, where there are many aromatic groups such as heme-containing molecules and indole-containing molecules.

An advantage which is gained by the efficient multi-photon absorption processes enabled by molecules according to the invention is that it is possible for the absorption to occur in a region of space whose cross sectional area is smaller than that of the diffraction-limited spot size of the exciting beam of light. This is because, for example, a two-photon process is dependent on h, where I is the intensity of the exciting beam. The diffraction-limited spot size for a Gaussian beam is given by:

$$d_{diff} = \frac{0.6351 \lambda}{NA}$$

where λ is the wavelength of the exciting beam of light and NA is the numerical aperture of the focusing lens, and d_{diff} is the full width of the beam where the intensity is $1/e^2$ times the peak intensity. Therefore the theoretical spot size for a two-photon excitation is given by:

$$d_{2\text{photon}} = d_{diff} / \sqrt{2}$$

For three-photon or higher-order excitation, further analogous reductions in spot size can be realized.

Examples of some compositions which can be used in accordance with the invention have the general formulas as shown below. In many cases, as will be made clear in the detailed description of the invention below, the molecules we teach have large multi-photon absorptivities and themselves novel. However, the general formulas below are not inclusive of all the compositions that we teach are of use as two-photon or higher-order absorbers. Other compositions which have the characteristic electronic properties, as well as other advantageous properties for a variety of applications, and methods of making and using them, will also become apparent to those with ordinary skill in the art, when one considers the examples described in the preferred embodiments.

General Formulae: (an asterisk (*) in the structures shown below identifies the atom of attachment to a functional group and implies that that atom is missing one hydrogen that would normally be implied by the structure in the absence of the asterisk.)

- "-" indicates a single bond between 2 atoms
- "-" indicates a double bond between 2 atoms
- "-" indicates a triple bond between 2 atoms

Class 1 Structures: Compounds where the end groups are electron donating groups

Class 1-I

Class 1-II

Class 1-III

Class 1-IV

where D_a is any electron donating group that is any one of N, O, S and P;
where D_b is any electron donating group that is any one of N, O, S and P;
m, n, o are integers such that 0 ≤ m ≤ 10, 0 ≤ n ≤ 10, 0 ≤ o ≤ 10;
and
where X, Y, Z are independently selected from: CRₖ, CR_, O, S; N Rₘ
where Rₑ, Rᵢ, Rₗ, Rᵣ, Rₛ, Rₜ, Rᵤ, Rᵥ, Rₗ, Rᵦ are defined in NOTE 3.

Rₑ, Rᵢ, Rₗ, Rᵦ are independently selected from: H; a linear or branched alkyl group with up to 25 carbons; (CH₂CH₂O)ₐCH₂CO₂Rₑ; (CH₂CH₂O)ₐCH₂NRₑ₂Rₐ₃; (CH₂CH₂O)ₐCH₂CONRₑ₂Rₐ₃; (CH₂CH₂O)ₐ|(CH₂)ₗCN; (CH₂CH₂O)ₐ|(CH₂)ₗCl; (CH₂CH₂O)ₐ|(CH₂)ₗBr; (CH₂CH₂O)ₐ|(CH₂)ₗI; (CH₂CH₂O)ₐ|(CH₂)ₗ-Phenyl; various aryl groups (see NOTE 1); various fused aromatic rings (see NOTE 2); various polymerizable functionalities attached through a linkage which can be chosen from a linear or branched alkyl chain with up to 25 carbons, various aryl groups, (CH₂CH₂O)ₐCH₂⁻, and -(CH₂CH₂O)ₐ|(CH₂)ₗCO₂ (see NOTE 2A);
R_{ai}, R_{az}, and R_{ai} are independently selected from: H; a linear or branched alkyl group with up to 25 carbons; R_{ai}, R_{az}, and R_{ai} can also be a functional group derived essentially from one of the 20 naturally occurring amino acids: alanine; valine; leucine; isoleucine; proline; tryptophan; phenylalanine; methionine; glycine; serine; threonine; tyrosine; cysteine; glutamine; asparagine; lysine; arginine; histidine; aspartic acid; and glutamic acid; a polypeptide; adenine; guanine; tyrosine; cysteine; uracil; biotin; ferrocene, ruthenocene, cyanuric chloride and derivatives thereof; or methacryloyl chloride. By “derived essentially”, it is meant that R_{ai}, R_{az}, and R_{ai} may be an amino acid or a functional group that is closely related (e.g., a trivial modification of an amino acid).

where α is 0-10,

where β is 1-25.

NOTE 1:
R_{ai}, R_{az}, R_{ai} can be an aryl group of up to aromatic ring systems having 20 carbons in the aromatic ring framework (i.e., does not include carbons on the substituents), where aryl includes:

NOTE 2:

E can be: S; O

where R_{a0}, 1 ≤ i ≤ 8, corresponding to the subscripts in the substituents in the structure shown directly above are independently selected from: H; a linear or branched alkyl group with up to 25 carbons; NR_{e2}; OR_{e3}; or phenyl.

NOTE 2A:
Where polymerizable functionalities include vinyl; allyl; 4-styryl; acryloyl; acrylonitrile, which may be polymerized by either a radical, cationic, or anionic polymerization process.

Also where polymerizable functionalities include isocyanate, isothiocyanate, epoxides such that they can be copolymerized with difunctional amines or alcohols such as HO(CH_{2})_{2}OH; H_{2}N(CH_{2})_{2}NH_{2}; where 1 ≤ γ ≤ 25.

Also where polymerizable functionalities include strained ring olefins such as dicyclopentadienyl, norbornenyl, cyclobutenyl where the two-photon absorbing chromophore is attached to any of the saturated carbon linkages. Such monomers can be polymerized via ring opening metathesis polymerization using an appropriate metal catalyst as would be known to those skilled in the art.

Also where polymerizable functionalities include

(−CH_{2})_{2}SiCl_{2}; (−CH_{2})_{2}Si(OCH_{2}CH_{2})_{3}; or (−CH_{2})_{3}Si(OCH_{3})_{3} where the two-photon absorbing monomers can be reacted with water under conditions known to those skilled in the art to form either thin film or monolithic organically modified sol-gel glasses, or modified silicated surfaces, where 0 < β < 25.

NOTE 3:

R_{e}, R_{f}, R_{g}, R_{h}, R_{i}, R_{j}, R_{k}, R_{m} are independently selected from: H; a linear or branched alkyl group with up to 25 carbons; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}CO_{2}R_{j}; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}OR_{bi}; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}NR_{b2}R_{b3}; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}CONR_{b2}R_{b3}; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}CN; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}Cl; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}Br; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}I; (CH_{2}CH_{2}O)_{a}(CH_{2})_{p}−Phenyl; various aryl groups (see NOTE 1); various fused aromatic rings (see NOTE 2); various polymerizable functionalities (see NOTE 2A); NR_{e2}; OR_{e3}; CHO; CN; NO_{2}; Br; Cl; I; phenyl; an acceptor group containing more than two carbon atoms (see NOTE 3A), and where R_{ei}, R_{eg}, R_{ea}, are independently defined as for R_{ai} and R_{az} in NOTE 3B;

R_{ai}, R_{az}, and R_{ai} can also be a functional group derived essentially from one of the 20 naturally occurring amino acids: alanine; valine; leucine; isoleucine; proline; tryptophan; phenylalanine; methionine; glycine; serine; threonine; tyrosine; cysteine; glutamine; asparagine; lysine; arginine; histidine; aspartic acid; and glutamic acid; or a polypeptide; adenine; guanine; tyrosine; cysteine; uracil; biotin; ferrocene, ruthenocene, cyanuric chloride and derivatives thereof; methacryloyl chloride. By “derived essentially from”, it is meant that R_{ai}, R_{az}, and R_{ai} can be an amino acid or a functional group that is closely related to an amino acid (i.e., a trivial modification of an amino acid).

where α is 0-10,

where β is 1-25.
Thus, in general, alkyl groups set forth in the above formulas include those groups having up to 25 carbon atoms and includes both branched and straight chain all groups. Exemplary alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, in the normal, secondary, iso and neo attachment isomers. Aryl groups referred to in the preceding formulas include aromatic hydrocarbons having up to 20 carbon atoms. Exemplary aryl groups include phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl and tellurophenyl.

NOTE 3A:
Acceptor Groups Containing More than Two Carbon Atoms

R_e, R_f, R_g, R_h, R_i, R_j, R_k, R_m, can be selected from the following list of groups A1-A41 and where R_o and R_p are as defined in NOTE 3B.
NOTE 3B:

- R_1, R_2, R_3 are independently selected from: H; a linear or branched alkyl group with up to 25 carbons; $(\text{CH}_2\text{O})_n\text{CO}_2\text{R}_1$; $-(\text{CH}_2\text{O})_n\text{CH}_2\text{C}_2\text{OR}_2$; $-(\text{CH}_2\text{O})_n\text{CH}_2\text{CO}_2\text{R}_3$; $-(\text{CH}_2\text{O})_n\text{CH}_2\text{CONR}_2\text{R}_3$; $-(\text{CH}_2\text{O})_n\text{CH}_2\text{Cl}$; $-(\text{CH}_2\text{O})_n\text{CH}_2\text{Br}$; $-(\text{CH}_2\text{O})_n\text{CH}_2\text{I}$; $-(\text{CH}_2\text{O})_n\text{CH}_2\text{Phe}$; various aryl groups (see NOTE 1); various fused aromatic rings (see NOTE 2); various polymerizable functionalities (see NOTE 2A);

- R_1, R_2, and R_3 are independently selected from: H; a linear or branched alkyl group with up to 25 carbons; R_1, R_2, and R_3 can also be a functional group derived essentially from one of the 20 naturally occurring amino acids: alanine; valine; leucine; isoleucine; proline; tryptophan; phenylalanine; methionine; glycine; serine; threonine; tyrosine; cysteine; glutamic acid; histidine; glutamine; aspartic acid; and glutamic acid; or a polypeptide; adenine; guanine; tyrosine; cytosine; uracil; biotin; ferrocene, ruthenocene, cyanuric chloride and derivatives thereof or methacryloyl chloride. By “derived essentially from” it is meant that R_1, R_2, and R_3 can be an amino acid or a functional group that is closely related to an amino acid (i.e., a trivial modification of an amino acid).

where α is 0-10, and where β is 1-25.
in addition, in addition, and in addition, can be independently selected from B, C, and I; and where 0 ≤ m ≤ 10, 0 ≤ n ≤ 10, 0 ≤ o ≤ 10.

where X, Y, Z are independently selected from: CR k CR,; O; S; N R m.

in the two-photon (or higher-order) absorption and the two-photon absorption process.

Another method of producing a useful optical element involves dispersing the multi-photon absorbing molecules in a polymeric or prepolymeric binder. The multi-photon absorbing molecules can be mixed into the binder or grafted onto the polymer, prepolymer or monomer. Suitable binders include polystyrene, polymethacrylate, poly(methyl methacrylate), poly(vinyl alcohol), copolymers of methyl methacrylate and methacrylic acid, copolymers of styrene and maleic anhydride and half-ester-acids of the latter, as well as many others.

It is preferred that the polymeric binder be highly transparent so that the transparency of the molecules utilized in the practice of this invention can be advantageously employed.

However, it is a unique feature of the invention that even in the case where the binder has strong absorption at the wavelength required to initiate single-photon processes, the chromophores may still be excited by the two-photon or multi-photon absorption process.

Generally, the methods according to invention are carried out by converting a multi-photon absorbing molecule to an electronically excited state by absorption of at least two photons of radiation. The excited state then facilitates numerous applications. The molecule may be irradiated with visible, ultraviolet or infrared radiation to effect the multiphoton absorption.

One common form of an optical element according to the invention can take is that of a Langmuir-Blodgett (LB) film. As known to those skilled in the art, a small amount of a molecule useful in the practice of this invention, when spread on the surface of a liquid, forms a surface film of monomolecular thickness at the air/liquid interface. When the support substrate is slowly immersed in the film bearing liquid body or slowly withdrawn from it, an oriented monomolecular layer is formed on the substrate. When the support substrate is slowly immersed in the film bearing liquid body or slowly withdrawn from it, an oriented monomolecular layer is formed on the substrate. The preparation and uses of Langmuir-Blodgett films are described in M. C. Petty, M. R. Bryce, D. Bloor, Introduction to Molecular Electronics, Edward, Arnold, London, 1995, Chapter 10, which is incorporated herein by reference.

Compositions according to the invention are also useful when incorporated into solutions, prepolymer, polymers, Langmuir-Blodgett thin films, and self-assembled monolayers. The compositions can be advantageously modified in such a way as to allow for variation of ease of dissolution in a variety of host media, including liquids and polymeric hosts, by changing the nature of the substituents attached to the central conjugated bridge framework of the molecule as well as by changing either the donors or acceptors. In addition, by controlling the length and composition of the π-bridge of the molecule, it is possible to control the position and strength of the two-photon (or higher-order) absorption and the two-photon (or higher-order) excited fluorescent.
Synthesis and Characterization of Multi-photon Absorbing Compounds

Some compositions according to the invention may be prepared by reacting appropriate aldehydes with appropriate ylides under standard Wittig conditions. In some cases, the compounds can be synthesized using the McMurray reaction. Examples of Specific Compounds for the General Structures Shown Earlier which Exhibit Two-photon or Higher-order Absorption.

Examples of Stilbene Chromophores

where \(n = 1 \) or 2
Examples of amino acid-containing water soluble multi-photon absorbing chromophores according to the invention.
Examples of Bis (dialkylaminophenyl) polyenes with n=1-5 double bonds between the phenyl groups.

General Wittig Procedure

All the reactions were carried out under anhydrous conditions by use of Schlenk techniques. FIG. 3 illustrates the general scheme depicting the synthesis of bis-donor stilbene and bis-donor-substituted-diphenylpolyenes by the Wittig reaction. Typically, the aldehydes used in the Wittig reaction were commercially available or synthesized by methods previously reported. The phosphonium salts were synthesized according to literature procedures. Other aldehydes and phosphonium salt that could be employed in this reaction would be known to one skilled in the art of organic synthesis and with the aid of the knowledge provided in the example given below.

EXAMPLE 1

0.15 mol of sodium were slowly dissolved in 100 mL of ethanol and added to a solution of 0.05 mol of the corresponding aldehyde and the phosphonium salt in 300 mL of ethanol. This mixture was heated under reflux for 15 hours. After cooling down to room temperature, 100 mL of methanol and 100 mL of water were added to precipitate the substituted trans-stilbene or substituted diphenyl polyene, respectively. Usually, triphenylphosphinoxide and substituted cis-stilbene, also formed in the reaction, don't precipitate in this solvent mixture. The powder was separated by filtration. Filtration over a short column of Florisil with toluene as eluant usually yields further purification. To achieve correct elemental analysis the products were either chromatographed or recrystallized in ethanol in case of the stilbene derivatives, or acetone in case of the diphenylpolyenes derivatives. The yields varied between 10% and 60% for all of the reactions.

Characterizing Data for Compounds Synthesized by the Above General Wittig Procedure:

EXAMPLE 2

\[^{1}H\text{ NMR (d}_{6}\text{-acetone}) \delta 7.31 (d, J=8.7 \text{ Hz}, 4H), 6.81 (s, 2H), 6.64 (d, J=8.7 \text{ Hz}, 4H), 3.32 (s, J=7.5 \text{ Hz}, 8H), 1.57 (m, 8H), 1.36 (m, 8H), 0.94 (t, J=7.27, 12H); ^{13}C\text{ NMR } \delta 14.26, \]

EXAMPLE 3

\[^{1}H\text{ NMR (d}_{6}\text{-acetone}) \delta 7.32 (d, J=8.0 \text{ Hz}, 4H), 6.82 (s, 2H), 6.67 (d, J=4.6 \text{ Hz}, 2H), 6.64 (d, J=4.7 \text{ Hz}, 2H), 3.42-3.29 (m, 8H), 1.62-1.52 (m, 4H), 1.42-1.30 (m, 4H), 1.13 (t, J=7.0 \text{ Hz}, 6H), 0.94 (t, J=7.0 \text{ Hz}, 6H); \text{accurate FAB mass spectrum (m/z) for } M^{+} C_{16}H_{18}N_{2}, \text{ calcld 378.3055, found 378.3059.} \]

EXAMPLE 4

\[^{1}H\text{ NMR (d}_{6}\text{-acetone}) \delta 7.35 (d, J=7.2 \text{ Hz}, 2H), 7.32 (d, J=7.0 \text{ Hz}, 2H), 6.84 (s, 2H), 6.71 (d, J=8.7 \text{ Hz}, 2H), 6.65 (d, J=8.7 \text{ Hz}, 2H), 3.32 (t, J=7.5 \text{ Hz}, 4H), 2.93 (s, 6H), 1.62-1.52 (m, 4H), 1.40-1.32 (m, 4H), 0.94 (t, J=7.3 \text{ Hz}, 6H); \text{accurate FAB mass spectrum (m/z) for } M^{+} C_{24}H_{34}N_{2}, \text{ calcld 350.2722, found 350.2720.} \]

EXAMPLE 5

\[^{1}H\text{ NMR (d}_{6}\text{-acetone}) \delta 7.31 (d, J=8.7 \text{ Hz}, 4H), 6.87 (s, 2H), 6.69 (d, J=8.9 \text{ Hz}, 2H), 6.64 (d, J=8.9 \text{ Hz}, 2H), 3.69 (t, J=5.8 \text{ Hz}, 2H), 3.48-3.42 (m, 4H), 1.32 (t, J=7.5 \text{ Hz}, 4H), \]
EXAMPLE 6

1H NMR (CDCl$_3$) δ 7.41 (d, J = 3.3 Hz, 2H), 7.39 (d, J = 2.0 Hz), 6.90-6.86 (m, 2H), 6.72 (d, J = 3.85 Hz, 2H), 3.98 (t, J = 6.5 Hz, 2H), 2.98 (s, 6H), 1.54-1.46 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H); accurate FAB mass spectrum (m/z) for 13C$_{20}$H$_{25}$NO, calcd 395.1936. found 395.1929.

EXAMPLE 7

1H NMR (CDCl$_3$) δ 7.45-7.30 (m, 4H), 6.95-6.80 (m, 4H), 3.38 (d, broad, 4H), 2.49 (s, 6H), 1.42 (p, J = 7.5 Hz, 4H), 1.15 (s, J = 7.3 Hz, 6H), 13 C NMR (d$_6$-benzene) δ 150.11, 147.91, 132.93, 132.53 (2 signals), 132.24, 128.16, 127.83, 126.99, 126.26, 126.05, 125.69, 50.93, 40.03, 29.82, 20.55, 14.16; accurate FAB mass spectrum (m/z) for 13C$_{20}$H$_{25}$NO, calcd 395.1936. found 395.1929.

EXAMPLE 8

1H NMR (d$_6$-benzene) δ 7.45-7.30 (m, 4H), 6.95-6.80 (m, 4H), 6.69 (d, J = 6.0 Hz, 2H), 3.97 (t, J = 6.3 Hz, 2H), 3.38 (d, broad, 4H), 1.82-1.72 (m, 2H), 1.56-1.46 (m, 2H), 1.18 (q, J = 7.0 Hz, 6H), 0.97 (t, J = 7.2 Hz, 3H), accurate FAB mass spectrum (m/z) for 13C$_{20}$H$_{25}$NO, calcd 323.2249. found 323.2238.

EXAMPLE 9

1H NMR (CDCl$_3$) δ 7.42-7.37 (m, 4H), 6.97-6.89 (m, 2H), 6.68-6.54 (m, 8H), 3.04 (t, J = 7.5 Hz, 4H), 2.49 (s, 6H), 1.42 (p, J = 7.5 Hz, 4H), 1.15 (s, J = 7.3 Hz, 6H), 13 C NMR (d$_6$-benzene) δ 150.11, 147.91, 132.93, 132.53 (2 signals), 132.24, 128.16, 127.83, 126.99, 126.26, 126.05, 125.69, 50.93, 40.03, 29.82, 20.55, 14.16; accurate FAB mass spectrum (m/z) for 13C$_{20}$H$_{25}$NO, calcd 402.3191. found 402.3176. elemental analysis, calcd: C, 83.53; H, 9.51; N, 6.96. found: C, 83.18; H, 9.63; N 6.79.

EXAMPLE 10

1H NMR (d$_6$-benzene) δ 7.50-7.30 (m, 4H), 6.95-6.78 (m, 2H), 6.75-6.38 (m, 10H), 3.05 (t, J = 7.1 Hz, 4H), 2.50 (s, 6H), 1.50-1.30 (m, 4H), 1.15 (q, J = 7.2 Hz, 4H) 0.84 (t, J = 7.1 Hz, 6H), accurate FAB mass spectrum (m/z) for 13C$_{30}$H$_{40}$N$_2$, calcd 428.3176. found 428.3191. elemental analysis, calcd: C, 84.06; H, 9.41; N, 6.54. found: C, 83.86; H, 9.20; N, 6.28.
1H NMR (d₆-benzene) δ 7.45-7.32 (m, 4H), 6.95-6.80 (m, 2H), 6.68-6.37 (m, 12H), 3.03 (t, J=7.4 Hz, 4H), 2.48 (s, 6H), 1.50-1.28 (m, 4H), 1.20-1.05 (m, 4H), 0.83 (t, J=7.3 Hz, 6H); accurate FAB mass spectrum (m/z) for M'_{C₃₂H₃₂N₂}, calcd 454.3348. found 454.3332. elemental analysis, calcd: C, 84.53 H, 9.31, N, 6.16. found: C, 83.17; H, 9.70; N, 5.58.

EXAMPLE 12

```
\begin{center}
\includegraphics[width=0.5\textwidth]{example12.png}
\end{center}
```

1H NMR (CDCl₃) δ 7.40 (d, J=8.4 Hz, 2H), 7.12 (d, J=16.3 Hz, 1H), 6.88 (d, J=16.3 Hz, 1H), 6.71-6.68 (m, 4H), 6.53 (t, J=1.9 Hz, 1H), 3.80 (s, 6H), 3.41 (q, J=7.0 Hz, 4H), 1.13 (t, J=7.2 Hz, 6H).

EXAMPLE 13

```
\begin{center}
\includegraphics[width=0.5\textwidth]{example13.png}
\end{center}
```

1H NMR (CDCl₃) δ 7.39 (d, J=8.7 Hz, 2H), 6.95 (d, J=16.0 Hz, 1H), 6.82 (d, 16 Hz, 1H), 6.71 (s, 2H), 6.67 (d, J=8.7 Hz, 2H), 3.92 (s, 6H), 3.86 (s, 3H), 3.38 (q, J=7.1 Hz, 4H), 1.19 (t, J=7.0 Hz, 6H); accurate FAB mass spectrum (m/z) for M'_{C₂H₂N₂NO₄}, calcd 341.1991. found 341.2001. elemental analysis, calcd: C, 73.87, H, 7.97, N, 4.10. found: C, 73.78; H, 8.07; N, 4.00.

EXAMPLE 14

```
\begin{center}
\includegraphics[width=0.5\textwidth]{example14.png}
\end{center}
```

1H NMR (CDCl₃) δ 7.43 (d, J=8.5 Hz, 2H) 6.95-6.88 (m, 4H), 6.72 (s, 2H), 3.98 (t, J=6.5 Hz, 2H), 3.91 (s, 6H), 3.87 (s, 3H), 1.78 (m, 2H), 1.50 (m, 2H), 0.98 (t, J=7.3 Hz, 3H); 13C NMR δ 13.83, 19.22, 31.29, 56.07, 60.92, 67.22, 103.26, 114.68, 126.34, 127.56, 127.80, 129.74, 133.45, 153.34, 158.87; accurate FAB mass spectrum (m/z) for M'_{C₂H₂N₂O₂}, calcd 342.1831. found 342.1831. elemental analysis, calcd: C, 73.66, H, 7.65. found: C, 73.41; H, 7.85.

EXAMPLE 15

```
\begin{center}
\includegraphics[width=0.5\textwidth]{example15.png}
\end{center}
```

1H NMR (d₆-acetone) δ 8.33-8.28 (m, 2H), 7.72-7.67 (m, 2H), 7.52-7.48 (m, 4H), 7.14 (d, J=7.9 Hz, 1H), 7.04 (d, J=16.0 Hz, 1H), 6.70 (d, J=8.7 Hz, 2H), 3.36 (t, J=7.5 Hz, 4H), 2.86 (s, 6H), 1.60 (m, 4H), 1.38 (m, 4H), 0.95 (t, J=7.3 Hz, 6H); accurate FAB mass spectrum (m/z) for M'_{C₂H₃NO₃}, calcd 400.2878. found 400.2888. elemental analysis, calcd: C, 83.95, H, 9.06, N, 6.99. found: C, 83.91; H, 8.52; N, 6.93.

EXAMPLE 16

```
\begin{center}
\includegraphics[width=0.5\textwidth]{example16.png}
\end{center}
```

1H NMR (d₆-acetone) δ 8.33-8.28 (m, 2H), 7.72-7.67 (m, 2H), 7.52-7.48 (m, 4H), 7.14 (d, J=7.9 Hz, 1H), 7.04 (d, J=16.0 Hz, 1H), 6.70 (d, J=8.7 Hz, 2H), 3.36 (t, J=7.5 Hz, 4H), 2.86 (s, 6H), 1.60 (m, 4H), 1.38 (m, 4H), 0.95 (t, J=7.3 Hz, 6H); 1H NMR (d_C-acetone) δ 8.33-8.28 (m, 2H), 7.72-7.67 (m, 2H), 7.52-7.48 (m, 4H), 7.14 (d, J=7.9 Hz, 1H), 7.04 (d, J=16.0 Hz, 1H), 6.70 (d, J=8.7 Hz, 2H), 3.36 (t, J=7.5 Hz, 4H), 2.86 (s, 6H), 1.60 (m, 4H), 1.38 (m, 4H), 0.95 (t, J=7.3 Hz, 6H); accurate FAB mass spectrum (m/z) for M'_{C₂H₃N₂O₂}, calcd 354.2307. found 354.2304.
EXAMPLE 17

^{1}H NMR (d_6-acetone) δ 7.35-7.20 (m, 4H), 6.90-6.65 (m, 6H), 6.48 (d, $J=14$ Hz), 4.19 (t, $J=5.5$ Hz, 2H, OH protons), 3.80-3.78 (m, 4H), 3.56 (t, $J=5.7$ Hz, 4H), 2.94 (s, 6H); accurate FAB mass spectrum (m/z) for M^+ $C_{22}H_{29}N_2O_2$, calcld 352.2151. found 352.2154. elemental analysis, calcld: C, 74.97; H, 8.01; N, 7.95. found: C, 74.62; H, 8.27; N, 7.82.

IR (KBr pellet) 3279.40 (m, broad), 3009.09 (m), 2878.66 (m), 1602.69 (s), 1513.54 (s), 1389.62 (m), 1351.78 (s), 1185.92 (s), 1061.93 (m), 986.26 (m), 838.50 (m), 798.78 (m), 520.33 (w) cm$^{-1}$.

EXAMPLE 18

^{1}H NMR (d_6-acetone) δ 7.46 (d, $J=8.6$ Hz, 4H), 7.12 (s, 2H); 6.57 (d, $J=8.6$ Hz); 2.95 (q, $J=7.0$ Hz); 0.87

EXAMPLE 19

^{1}H NMR (d_6-acetone) δ 7.34 (d, $J=8.7$ Hz, 4H), 6.85 (s, 2H), 6.72 (d, $J=8.8$ Hz, 2H), 6.67 (d, $J=8.8$ Hz, 2H), 3.72 (t, $J=6.3$ Hz, 2H), 3.46 (q, $J=6.3$ Hz, 2H), 3.36 (t, $J=7.5$ Hz, 4H), 1.60 (m, 4H), 1.43 (m, 4H), 1.17 (t, $J=7.0$ Hz, 3H), 0.97 (t, 6H, $J=7.3$ Hz); ^{13}C NMR (d_6-acetone) δ 147.7, 147.6, 126.5, 124.6, 124.4, 112.7, 112.6, 112.5, 112.4, 59.7, 53.1, 51.0, 45.6, 29.8, 20.6, 14.0, 12.2. Anal. Calc. for $C_{26}H_{38}N_2O$: C, 79.14; H, 9.71; N, 7.10. Found: C, 78.84; H, 9.80; N, 6.97.

EXAMPLE 20

EXAMPLE 21
EXAMPLE 22

TBSO
\[\begin{align*}
\text{N, N-di-(2-t-butyldimethylsiloxy)ethyl-aniline.} & \\
\text{N-phenyl diethanolamine (28.04 g, 154.7 mmol) was added at 0° C. to} & \\
\text{a stirred solution of t-butyldimethylsilyl chloride (58.299 g,} & \\
\text{386.78 mmol) and imidazole (31.598 g, 464.1 mmol) in 250} & \\
\text{mL N,N-dimethylformamide.} & \\
\text{The reaction mixture was stirred overnight at room temperature and then} & \\
\text{was added to ice water and extracted with ether. The organic layer} & \\
\text{was washed three times with brine and was dried over magnesium} & \\
\text{sulfate. Evaporation of solvent yielded 63.35 g (100%) of the} & \\
\text{crude product as a light purple oil which was taken on without} & \\
\text{further purification: R}_{f}, 0.60 (90:10-hexane:ethyl acetate); \text{H NMR} (300 MHz, acetone-d_{6}) \delta 0.07 (s, 6H), 0.92 (s, 9H), & \\
\text{3.58 (t, J=6.13 Hz, 2H), 3.83 (t, J=6.11 Hz, 2H), 6.60 (t, J=8.3 Hz,} & \\
\text{2H), 7.16 (d, J=8.9 Hz, 2H).} & \\
\end{align*} \]

EXAMPLE 23

TBSO
\[\begin{align*}
\text{N, N-di-(2-t-butyldimethylsiloxy)ethyl-aniline.} & \\
\text{4-bromo-N,N-di-(2-t-butyldimethylsiloxy)ethyl-aniline.} & \\
\text{t-Butyllithium (35.34 mmol) was added via syringe under nitrogen and at} & \\
\text{−76° C. to a stirred solution of 4-bromo-N,N-} & \\
\text{di-(2-t-butyldimethylsiloxy)ethyl-aniline (8.63 g, 17.67 mmol) in} & \\
\text{175 mL dry THF. The reaction mixture was refluxed} & \\
\text{overnight under nitrogen balloon atmosphere. Water (−10 mL) was} & \\
\text{added and the solution was stirred while cooling to room temperature. The} & \\
\text{precipitate was recovered by suction filtration and the ethanol solution} & \\
\text{was diluted with 20 mL water and extracted with ethyl acetate. The combined} & \\
\text{solid fractions were washed with 50:50 (methanol:water) and air dried} & \\
\text{to yield 3.485 g (57%) of a tan solid. The crude was taken on without} & \\
\text{further purification: R}_{f}, 0.18 (ethyl acetate); \text{H NMR (300 MHz, acetone-d_{6}) \delta 3.57 (t, J=5.89 Hz, 2H), 3.84 (t, J=5.87 Hz,} & \\
\text{2H), 6.72 (d, J=8.9 Hz, 2H), 7.27 (d, J=8.9 Hz, 2H).} & \\
\end{align*} \]

EXAMPLE 24

4-N,N-di-(2-t-butyldimethylsiloxy)ethyl-benzaldehyde.

4,4′-bis-(diethanolamino)stilbene. Sodium (1.099 g, 47.8 mmol) was dissolved in 35 mL ethanol and then added to a stirred solution of 4-N,N-di-(2-t-butyldimethylsiloxy)ethyl-benzaldehyde (6.97 g, 15.93 mmol) in 35 mL ethanol. The reaction mixture was refluxed overnight under nitrogen balloon atmosphere. Water (−10 mL) was added and the solution was filtered. The combined solid fractions were washed with 50:50 (methanol:water) and air dried to yield 3.485 g (57%) of a tan solid. The crude was taken on without further purification: R$_f$, 0.18 (ethyl acetate); H NMR (300 MHz, acetone-d$_6$) δ 3.57 (t, J=5.89 Hz, 2H), 3.84 (t, J=5.87 Hz, 2H), 6.72 (d, J=8.9 Hz, 2H), 7.27 (d, J=8.9 Hz, 2H).

FIG. 4 illustrates a reaction scheme for the synthesis of piperidine stilbenes.
sium iodide (3.32 g, 20.0 mmol), 1-phenylpiperidine (3.289 g, 20.4 mmol), and 37% aqueous formaldehyde (1.5 mL) in 15 mL chloroform. The reaction mixture was refluxed overnight and then cooled to room temperature. Ether (100 mL) was added dropwise with stirring. The solution was decanted off and the gummy solid was dissolved in chloroform and washed with brine. The organic layer was dried over magnesium sulfate. Evaporation of solvent yielded 2.707 g (24%) of a light orange solid. The crude product was taken on without further purification or characterization.

EXAMPLE 27

4,4'-dipiperidinylstilbene. Sodium (221 mg, 9.61 mmol) was dissolved in 10 mL ethanol and then added to a stirred solution of 4-piperidinylbenzaldehyde (909 mg, 4.8 mmol) and 4-(triphenylphosphinemethylene iodide)- I -phenylpiperidine (2.707 g, 4.8 mmol) in 15 mL ethanol. The reaction mixture was refluxed overnight under nitrogen balloon atmosphere. Water (-5 mL) was added and the solution was stirred while cooling to room temperature. The precipitate was recovered by suction filtration and rinsed with methanol to yield 145 mg (9%) of a tan solid: R f , 0.38 (90:10-hexanes:ethyl acetate); 1H NMR (d 6 -acetone) 6 1.50-1.80 (m, 6H), 3.19 (t, 7=4.66 Hz, 4H), 6.92 (d, 7=8.83 Hz, 2H), 6.94 (s, IH), 7.40 (d, 7=8.63 Hz, 2H).

FIG. 5 illustrates a reaction for the synthesis of 4-[N-(t-Butoxycarbonyl)]-piperazine-benzaldehyde.

EXAMPLE 28

N-(t-Butoxycarbonyl)-1-phenylpiperazine. 1-Phenylpiperazine (9.223 g, 56.85 mmol), BOC-ON (14.0 g, 56.85 mmol) (purchased from Aldrich Chemical Company), and triethylamine (7.19 g, 71.06 mmol) in 570 mL methanol were refluxed overnight. Water was added and the solution was extracted with ether. The organic layer was washed with brine and dried over magnesium sulfate. The crude was purified via flash chromatography over silica gel with gradual elutions from 90/10 to 80/20 (hexanes:ethyl acetate). Evaporation of solvent yielded 13.647 g (92%) of a white solid: R f , 0.38 (90:10-hexanes:ethyl acetate); 1H NMR (d 6 -acetone) δ 1.46 (s, 9H), 3.13 (t, J=5.19 Hz, 4H), 3.54 (t, J=5.03 Hz, 4H), 6.83 (t, J=7.29 Hz, 1H), 6.98 (d, J=8.16 Hz, 2H), 7.24 (t, J=7.59 Hz, 2H); 13C NMR (d 6 -acetone) δ 28.24, 44.0, 49.62, 79.36, 116.91, 120.20, 129.48, 152.13, 154.64.

EXAMPLE 30

4-[N-(t-Butoxycarbonyl)]-piperazine-benzaldehyde. t-Butyllithium (29.32 mmol) was added via syringe under nitrogen and at -76° C. to a stirred solution of 4-bromo-[N-(t-butoxycarbonyl)]-1-phenylpiperazine (5.0 g, 14.66 mmol) in 145 mL dry tetrahydrofuran. The reaction mixture was stirred for 15 minutes at -76° C. and then N,N-dimethylformamide (4.287 g, 58.6 mmol) was added via syringe. The reaction mixture was allowed to warm to room temperature and then brine was added. The organic layer was washed with brine and dried over magnesium sulfate. Evaporation of solvent yielded 4.099 g (96%) of a yellow-orange solid which was carried on without further purification: R f , 0.17 (80:20-hexanes:ethyl acetate).

FIG. 6 illustrates a reaction scheme for the synthesis of dimethacrylate substituted bis-donor-stilbenes.

EXAMPLE 31

4'-diethanolamino-4-diethylaminostilbene. Sodium (5.84 g, 254 mmol) was dissolved in 150 mL ethanol and then added to a stirred solution of bis-dietanolamino-benzyl(triphenylphosphoniumiodide (48.01 g, 84.69 mmol) and 4-diethyminobenzenaldehyde (15.0 g, 84.69 mmol) in 250 mL ethanol. The reaction mixture was refluxed overnight under...
nitrogen balloon atmosphere. The crude was concentrated to ~300 mL and then water (50 mL) was added and the solution was heated to dissolve everything. The reaction was then stirred while cooling to room temperature and then was placed in an ice bath for 30 minutes. The resulting solid was filtered and concentrated to a slurry. Filtration yielded 7.78 g of product and a second crop was isolated to yield a total of 9.58 g (35%) of a yellow solid: 1H NMR (d6-acetone) δ 1.17 (t, J = 7.0 Hz, 6H), 3.42 (q, J = 7.0 Hz, 4H), 3.59 (t, J = 5.6 Hz, 4H), 3.78 (q, J = 5.6 Hz, 4H), 4.19 (t, J = 5.5 Hz, 2H), 6.72 (m, 4H), 6.86 (s, 2H), 7.35 (d, J = 7.48 Hz, 4H).

EXAMPLE 32

4'-[N,N-di-(2-[2-methyl-1-oxo-2-propenyl]oxyethyl)-amino]-4-diethylnostilbene. Methacryloyl chloride (713 mg, 6.83 mmol) was added at 0°C. to a stirred suspension of 4'-diethanolamine-4-diethylaminostilbene (1.0 g, 3.10 mmol) and triethylamine (784 mg, 7.75 mmol) in 31 mL tetrahydrofuran. The reaction mixture was stirred for 2 hours at room temperature and was then treated with 10% HCl. The organic layer was separated, washed with brine, and dried over magnesium sulfate. The crude was concentrated to a slurry and then filtered and the solid was rinsed with tetrahydrofuran. The liquid portions were combined and adsorbed onto silica gel and purified via flash chromatography with gradual elutions from neat hexanes to 95/5 (hexanes:ethyl acetate). Evaporation of solvent yielded 589 mg (39%) of a light green oil: Rf, 0.67 (50:50-hexanes:ethyl acetate); 1H NMR (d6-acetone) δ 7.39-7.34 (m, 4H), 6.87-6.67 (m, 6H), 6.09 (s, 1H), 5.65 (s, 2H), 6.69 (d, J = 8.70, 2H), 6.90 (d, J = 8.97 Hz, 4H), 7.38 (t, J = 8.90 Hz, 4H).

EXAMPLE 33

4,4'-[N,N-di-(2-methyl-1-oxo-2-propenyl)oxyethylaminol]-4,4'-diethylnostilbene. Methacryloyl chloride (713 mg, 6.83 mmol) was added at 0°C. to a stirred suspension of 4'-diethanolamine-4-diethylaminostilbene (1.0 g, 3.10 mmol) and triethylamine (784 mg, 7.75 mmol) in 31 mL tetrahydrofuran. The reaction mixture was stirred for 2 hours at room temperature and was then treated with 10% HCl. The organic layer was separated, washed with brine, and dried over magnesium sulfate. The crude was concentrated to a slurry and then filtered and the solid was rinsed with tetrahydrofuran. The liquid portions were combined and adsorbed onto silica gel and purified via flash chromatography with gradual elutions from neat hexanes to 95/5 (hexanes:ethyl acetate). Evaporation of solvent yielded 589 mg (39%) of a light green oil: Rf, 0.67 (50:50-hexanes:ethyl acetate); 1H NMR (d6-acetone) δ 7.39-7.34 (m, 4H), 6.87-6.67 (m, 6H), 6.09 (s, 1H), 5.65 (s, 1H), 4.34 (t, J = 6.0 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), 3.51 (q, J = 7.0 Hz, 2H), 3.36 (t, J = 7.4 Hz, 1H), 1.93 (s, 3H), 1.60 (p, J = 7.1 Hz, 4H), 1.19 (t, J = 6.9 Hz, 3H), 0.98 (t, J = 7.3 Hz, 6H).

General Procedure for the Sterification of the Bis-hydroxyethyl Substituted Compounds with bis-Boc-lysine:

0.01 mol of the appropriate dialcohol, 0.03 mol of the amino acid and 0.025 mol of hydroxybenztriazole (HOBT.H2O) were dissolved in 60 mL of anhydrous N,N-dimethylformamide and stirred under nitrogen atmosphere. After cooling down to 0°C., 0.035 mol of dicyclohexylcarbodiimide were added at once. The solution was allowed to warm to ambient temperature and stirred for further 15 h. The precipitated urea was filtered off and the solution was diluted with 200 mL of diethyl ether. The organic phase was washed three times with 50 mL of water, dried over Na2SO4 and evaporated to dryness. To remove the excess of amino acid, the residue was dissolved in diethyl ether and filtered over a short column of Florisil. The organic solvent was evaporated again yielding the bisester as a solid. Yields were typically around 70-80%.
EXAMPLE 35

\[
\begin{align*}
\text{H NMR (d6-acetone)} & \quad \delta 7.38 (d, J=8.7 \text{ Hz}, 2H), 7.34 (d, J=8.8 \text{ Hz}, 2H), 6.93-6.78 (m, 4H), 6.66 (d, J=8.7 \text{ Hz}), 5.93 (b, 2H), 4.4-4.25 (m, 4H), 4.19-4.05 (m, 2H), 3.76 (m, 4H), 3.39 (q, J=7.0 \text{ Hz}, 4H), 3.04 (q, J=6.2 \text{ Hz}, 4H), 2.40-1.55 (m, 8H), 1.40 \text{ and } 1.39 (s, 18 \text{ BOC H and } 4 \text{ CH}_2 \text{ H}), 1.11 (t, J=7 \text{ Hz}, 6H); \\
\text{IR (KBr pellet)} & \quad 3385.35 (m \text{ broad}), 2975.70 (m), 2925.26 (m), 2868.32 (w), 1711.06 (s), 1605.33 (m), 1515.90 (s), 1451.52 (w), 1365.78 (m), 1249.00 (m), 1015.40 (w), 984.09 (w), 796.31 (w) \text{ cm}^{-1}; \\
\text{accurate FAB mass spectrum (m/z) for M}^+ & \quad \text{C}_{54}H_{84}N_{12}O_{12} \text{ calcd 1010.6303, found 1010.6304.}
\end{align*}
\]

EXAMPLE 36

\[
\begin{align*}
\text{H NMR (d6-acetone)} & \quad \delta 7.40-7.25 (m, 4H), 6.90-6.60 (m, 6H), 6.55-6.40 (m, 2H), 6.23 (d, J=7.8 \text{ Hz}, 2H, \text{ HC—NH proton}), 5.94 (b, 2H, \text{ NH proton}), 4.38-4.25 (m, 4H), 4.20-4.05 (m, 2H), 3.76 (t, J=5.0 \text{ Hz}, 4H), 3.10-3.00 (m, 4H), 2.94 (s, 6H), 1.80-1.50 (m, 4H), 1.44-1.22 (m, 26H); \\
\text{accurate FAB mass spectrum (m/z) for M}^+ & \quad \text{C}_{54}H_{84}N_{12}O_{12} \text{ calcd 1008.6147, found 1008.6141.}
\end{align*}
\]

EXAMPLE 37
EXAMPLE 38

\[\text{H NMR (D}_2\text{O)}: \delta \text{ 7.79 (d, } J=8.2 \text{ Hz, 2H), 7.72 (d, } J=8.3 \text{ Hz, 2H), 7.49 (d, } J=8.2 \text{ Hz, 2H), 7.35-7.20 (m, 4H), 4.49 (b, 4H), 4.02 (t, } J=6.3 \text{ Hz, 2H), 3.95-3.75 (m, 4H), 3.70-3.55 (m, 4H), 2.87 (t, } J=7.5 \text{ Hz, 4H), 1.90-1.65 (m, 4H), 1.60-1.45 (m, 4H), 1.42-1.15 (m, 4H), 1.11 (t, } J=7.1 \text{ Hz, 6H); IR (KBr pellet) 3423.42 (m, broad), 2960.10 (s, broad), 2647.68 (m), 2604.98 (m), 1996.44 (w), 1751.93 (s), 1597.50 (m), 1516.95 (s), 1458.53 (m), 1388.05 (w), 1212.19 (m), 1150.47 (w), 1129.14 (w), 1043.83 (w), 1011.84 (w), 840.72 (w) cm}^{-1}; \text{ accurate FAB mass spectrum (m/z) for MH}^+ \text{ C}_{34}\text{H}_{55}\text{NeO}_4 \text{ calcd 611.4285, found 611.4262.} \]

EXAMPLE 39

\[\text{H NMR (D}_2\text{O): } \delta \text{ 7.72 (d, } J=8.2 \text{ Hz, 2H), 7.69-7.35 (m, 4H), 7.27-6.98 (m, 4H), 6.88-6.75 (m, 2H), 4.53 (b, 4H), 4.04 (t, } J=6.2 \text{ Hz), 4.00-3.65 (m, 4H), 3.32 (s, 6H), 2.91 (t, } J=7.5 \text{ Hz, 4H), 1.90-1.70 (m, 4H), 1.65-1.50 (m, 4H), 1.48-1.15 (m, 4H); accurate FAB mass spectrum (m/z) for MH}^+ \text{ C}_{34}\text{H}_{53}\text{N}_6\text{O}_4 \text{ calcd 609.4128, found 609.4102.} \]

EXAMPLE 40

\[\text{H NMR (d}_4\text{-acetone): } \delta \text{ 8.38 (d, } J=8.4 \text{ Hz, 2H), 8.27 (d, } J=8.7 \text{ Hz, 2H), 7.38 (t, } J=8.7 \text{ Hz, 4H), 6.86 (d, } J=8.4 \text{ Hz, 4H), 6.70 (d, } J=8.4 \text{ Hz, 2H), 3.86 (t, } J=5.9 \text{ Hz, 2H), 3.57 (q, } J=6.9 \text{ Hz, 2H), 3.43 (q, } J=6.9 \text{ Hz, 4H), 1.19 (m, } J=6.9 \text{ Hz, 2H); Elemental Analysis Cal'd for C}_{34}\text{H}_{53}\text{N}_6\text{O}_4 \text{ C, 71.44; H, 6.82; N, 8.62. (Found): C, 71.40; H, 6.70; N, 8.62. MS (m/e, FAB): 487.3 (100%, M}^+\text{); } \lambda_{\text{max}} \text{ (nm, acetone): 370.4; IR(KBr, cm}^{-1}\text{): 1722.0 (C}==\text{O).} \]

EXAMPLE 38

- H NMR (D₂O): δ 7.79 (d, J=8.2 Hz, 2H), 7.72 (d, J=8.3 Hz, 2H), 7.49 (d, J=8.2 Hz, 2H), 7.35-7.20 (m, 4H), 4.49 (b, 4H), 4.02 (t, J=6.3 Hz, 2H), 3.95-3.75 (m, 4H), 3.70-3.55 (m, 4H), 2.87 (t, J=7.5 Hz, 4H), 1.90-1.65 (m, 4H), 1.60-1.45 (m, 4H), 1.42-1.15 (m, 4H), 1.11 (t, J=7.1 Hz, 6H); IR (KBr pellet) 3423.42 (m, broad), 2960.10 (s, broad), 2647.68 (m), 2604.98 (m), 1996.44 (w), 1751.93 (s), 1597.50 (m), 1516.95 (s), 1458.53 (m), 1388.05 (w), 1212.19 (m), 1150.47 (w), 1129.14 (w), 1043.83 (w), 1011.84 (w), 840.72 (w) cm⁻¹; accurate FAB mass spectrum (m/z) for MH⁺ C₃₄H₅₅NeO₄ calcd 611.4285, found 611.4262.

EXAMPLE 39

- H NMR (D₂O): δ 7.72 (d, J=8.2 Hz, 2H), 7.69-7.35 (m, 4H), 7.27-6.98 (m, 4H), 6.88-6.75 (m, 2H), 4.53 (b, 4H), 4.04 (t, J=6.2 Hz), 4.00-3.65 (m, 4H), 3.32 (s, 6H), 2.91 (t, J=7.5 Hz, 4H), 1.90-1.70 (m, 4H), 1.65-1.50 (m, 4H), 1.48-1.15 (m, 4H); accurate FAB mass spectrum (m/z) for MH⁺ C₃₄H₅₃N₁₆O₄ calcd 609.4128, found 609.4102.

EXAMPLE 40

- H NMR (d₄-acetone): δ 8.38 (d, J=8.4 Hz, 2H), 8.27 (d, J=8.7 Hz, 2H), 7.38 (t, J=8.7 Hz, 4H), 6.86 (d, J=8.4 Hz, 4H), 6.70 (d, J=8.4 Hz, 2H), 3.86 (t, J=5.9 Hz, 2H), 3.57 (q, J=6.9 Hz, 2H), 3.43 (q, J=6.9 Hz, 4H), 1.19 (m, J=6.9 Hz, 2H); Elemental Analysis Cal'd for C₃₄H₅₃N₁₆O₄: C, 71.44; H, 6.82; N, 8.62. (Found): C, 71.40; H, 6.70; N, 8.62. MS (m/e, FAB): 487.3 (100%, M⁺); λ_max (nm, acetone): 370.4; IR(KBr, cm⁻¹): 1722.0 (C=O).
EXAMPLE 41

H NMR (d$_6$-acetone): δ 7.99 (d, J=8.7 Hz, 2H), 7.38 (m, J=7.7 Hz, 4H), 7.04 (d, J=8.7 Hz, 4H), 6.86 (m, J=7.8 Hz, 4H), 6.70 (d, J=8.4 Hz, 2H), 4.48 (t, J=6.0 Hz, 2H); 3.79 (t, J=6.0 Hz, 2H), 3.56 (q, J=6.9 Hz, 2H), 3.43 (q, J=6.9 Hz, 4H), 1.19 (m, J=6.5 Hz, 2H); Elemental Analysis Cal’d for C$_{30}$H$_{36}$N$_2$O$_3$: C, 76.24; H, 7.68; N, 5.93. Found: C, 76.15; H, 7.69; N, 5.75. MS (m/e, FAB): 472.3 (100%, M$^+$); Xm_{max} (mu, acetone): 371.4; IR(KBr, cm$^{-1}$): 1708.6 (C=O).

EXAMPLE 42

FIG. 8 illustrates a reaction scheme for the synthesis of an amine biotin substituted two-photon absorbing stilbene.

EXAMPLE 43

A suspension of formaldehyde (37.5 mL, 37% solution), triphenylphosphine (131 g, 0.5 mmol), KI (82.6 g, 0.5 mol), N,N-ethyl-2-cyanoethylaniline (87.1 g, 0.5 mol), CHCl$_3$ (375 mL), H$_2$O (2.5 mL), and glacial acetic acid (95 mL) was heated to reflux for 24 h. The mixture was then filtered while warm to remove unreacted KI. The filtrate was allowed to cool and was then poured into diethyl ether (800 mL). The precipitated product was collected by vacuum filtration and was rinsed with 1.5 L toluene to remove excess triphenylphosphine. The remaining solvent was removed from the white solid in vacuo to yield 120 g (42.0% yield). 1H NMR (d$_4$-MeOH): δ 7.91-7.60 (m, 15H), 6.84-6.60 (m, 4H), 4.83-4.75 (m, 2H), 3.63 (t, J=6.4 Hz, 2H), 3.41 (q, J=6.9 Hz, 2H), 2.66 (t, J=6.4 Hz, 2H), 1.12 (t, J=6.9 Hz, 3H).

EXAMPLE 44

Sodium ethoxide was prepared by dissolving sodium (2.40 g, 104 mmol) in absolute ethanol (200 mL). To a solution of 4-[N,N-ethyl, 2-cyanoethylamino]benzyltriphenylphosphonium iodide, (30.2 g, 52.4 mmol) and dimethylaminobenzaldehyde (7.44 g, 49.9 mmol) in absolute ethanol (400 mL), the sodium ethoxide solution was added in one portion. The mixture was heated to reflux for approximately 8 h, and then cooled to 50°C before adding 400 mL of H$_2$O. Upon cooling to ambient temperature, the product precipitated. Filtration of the pale yellow fluorescent product, 1.90 g (12.0% yield), yielded mostly pure trans product. 1H NMR (d$_6$-acetone) δ 7.39-7.35 (m, 4H), 6.88 (s, 2H), 6.78-6.70 (m, 4H), 3.73 (t, J=6.7 Hz, 2H), 3.50 (q, J=6.9 Hz, 2H), 2.74 (t, J=6.8 Hz, 2H), 1.17 (t, J=6.9 Hz, 3H); IR (neat, NaCl) diagnostic signal (weak) 2246 cm$^{-1}$.
EXAMPLE 45

A mixture was stirred for 24 h before all volatiles were removed in vacuo. The crude NMR of the residue in N,N-dimethylformamide-d$_7$ clearly showed the formation of hydroxysuccinimide, and the biotin substituted stilbene pictured above, (diagnostic signal δ 11.07, br s, R$_2$NOH).

General Procedure for the Preparation of Stilbenes via McMurry Coupling:

EXAMPLE 47

To a suspension of 4-dimethylamino-4'-[ethyl, 2-cyanoethylamino]-stilbene (0.480 g, 1.50 mmol) in dry diethylether (170 mL), lithium aluminum hydride (0.114 g, 3.01 mmol) was added as a solid in portions. Within 10 min. a yellow precipitate began to form. At this point, thin layer chromatography showed no starting material 4-dimethylamino-4'-[ethyl, 2-cyanoethylamino]-stilbene. The reaction suspension was stirred overnight. Carefully (under nitrogen atmosphere) the yellow precipitate was collected by vacuum filtration and was rinsed with copious amounts of ethyl ether. The reactive cake of solid was dissolved in ethylacetate, cooled to 5$^\circ$ C., and carefully quenched with H$_2$O. The aqueous layer was extracted with ethylacetate (2x) and the organics were combined and dried with Na$_2$SO$_4$. Removal of solvent in vacuo yielded 0.420 g of pure yellow solid product (87.0% yield). 1H NMR (d$_6$-acetone) δ 7.39-7.34 (m, 4H), 6.88 (s, 2H), 6.74-6.70 (m, 4H), 3.45-3.40 (m, 4H), 3.22 (t, J=6.47, 2H), 3.15 (m, 2H), 1.90-1.86 (m, 2H), 1.14 (t, J=6.86, 3H); IR (Neat, NaCl) diagnostic signals (weak) 3400-3200 cm$^{-1}$.
EXAMPLE 48

Synthesized by general procedure for the preparation of stilbenes via McMurry coupling described for 4,4'-Bis(N,N-diphenylamino)stilbene. Yellow solid; H NMR (d6-benzene, 300 MHz) δ 7.23 (d, 4H, J=8.7 Hz); 7.16 (t, 12H); 6.97 (d, 8H, J=8.3 Hz); 6.94 (s, 2H); 6.97 (d, 8H, J=8.3 Hz); 6.94 (s, 2H); 2.44 (t, 8H, J=7.6 Hz); 1.48 (m, 8H); 1.26 (m, 8H); 0.85 (t, 12H, J=7.2 Hz); 13C NMR (CDCl3, 75 MHz) δ 147.9, 146.1, 137.8, 132.0, 129.7, 127.6, 126.9, 125.0, 123.4, 35.4, 34.1, 22.7, 14.1; λmax=394 nm (toluene); Anal. Calc. for C54H62N2: C, 87.75; H, 8.45; N, 3.79. Found: C87.27; H, 8.41; N, 3.99.

EXAMPLE 49

Synthesized by general procedure for the preparation of stilbenes via McMurry coupling described for 4,4'-Bis(N,N-diphenylamino)stilbene. 1H NMR (d6-acetone) δ 8.28-8.36 (m, 4H), 7.90-7.92 (m, 4H), 7.52-7.58 (m, 4H), 7.19 (d, J=7.9 Hz, 2H), 2.90 (s, 12H); 13C NMR δ 45.50, 114.92, 124.32, 124.94, 124.68, 125.05, 125.49, 125.74, 126.77, 127.67, 127.82, 129.65, 130.91, 133.52, 151.82; accurate FAB mass spectrum (m/z) for M+ C26H26N2, calcld 366.2096. found 366.2044.

EXAMPLE 50

Synthesized by general procedure for the preparation of stilbenes via McMurry coupling described for 4,4'-Bis(N,N-diphenylamino)stilbene. 1H NMR (d6-dioxane) δ 6.79 (d, J=8.5 Hz, 8H), 6.39 (d, J=8.5 Hz, 8H), 3.26 (q, J=6.7 Hz, 16H), 1.07 (t, J=6.8 Hz, 24H), 13C NMR δ 12.94, 44.53, 111.56, 133.27, 137.52, 133.80, 146.28; accurate FAB mass spectrum (m/z) for M+ C42H56N4, calcld 616.4505. found 616.4515.
Example of a Copper Coupling to Synthesize a Bithiophene Derivative.

EXAMPLE 51

\[
\begin{align*}
\text{N, N, N, N-tetraphenyl-2, 2', 5'-diamino-2', 5'-bithiophene. To a solution of N, N-diphenyl-2-aminothiophene (1.5 g, 6 mmol) in THF 10 mL was added slowly a solution of n-butyllithium (2.4 mL, 6 mmol, 2.5 M in hexanes) and stirred at room temperature for 15 min. To the solution was added copper(II) bromide (1.3 g, 6 mmol). The slurry was stirred for 30 min. then quenched with water. The mixture was extracted with methylene chloride and the organic layer was dried over magnesium sulfate and the solvent was removed in vacuum. Column chromatography (toluene, silica gel) gave 0.15 g (10% yield) of the title compound. }^{1} \text{H NMR (d}_{6}\text{-acetone) } \\
\delta 7.35 (t, J=8.1 Hz, 4H), 7.16 (d, J=8.3 Hz, 4H), 7.11 (t, J=8.0 Hz, 2H), 7.01 (d, J=4.1 Hz, 2H), 6.64 (d, J=4.1 Hz, 2H).
\end{align*}
\]

Synthesis of a Bis Donor-substituted Stilbene Using a Pd Catalyzed Coupling of a Secondary Amine and a Dibromostilbene

EXAMPLE 52

\[
\begin{align*}
\text{4, 4'-Bis-dioctylaminostilbene. An oven dried 3-necked flask was fitted with a reflux condenser and purged with nitrogen. Into the flask was placed 4, 4'-dibromostilbene (1.0 g, 2.96 mmol) (synthesized by the general Wittig procedure described above), tris(dibenzylideneacetone)dipalladium (Pd}_{2} (dba)_{3} (13.5 mg, 0.0148 mmol), o-tolylphosphine (13.5 mg, 0.044 mmol), and sodium t-butoxide (711 mg, 7.4 mmol) in 6 mL dry toluene. Dioctylamine (1.608 g, 6.65 mmol) was then added and the reaction mixture was stirred for 48 hours at 80° C. under nitrogen balloon atmosphere. The crude product was then adsorbed onto silica gel and purified via flash chromatography with gradual elutions from 98/2 to 95/5 (hexanes:ethyl acetate). }^{1} \text{H NMR (d}_{6}\text{-acetone) } \\
\delta 0.89 (m, 12H), 1.20-1.70 (m, 24H), 3.34 (t, J=7.51 Hz, 8H), 6.66 (d, J=8.75 Hz, 4H), 6.83 (s, 2H), 7.32 (d, J=8.62 Hz, 4H).
\end{align*}
\]

\[
\begin{align*}
\text{Trans-4, 4'-bis(m-tolylphenylamino)stilbene. Pd}_{2} \text{dba}_{3} (Example 52) (963 mg, 1.05 mmol) and bis(diphenylphosphino)ferrocene (833 mg, 1.33 mmol) were stirred under nitrogen in dry toluene (500 mL) for 15 min. Trans-4, 4'-dibromostilbene (15.00 g, 44.4 mmol) was added against a counterflow of nitrogen and the reaction was stirred for an additional 15 min; sodium tert-butoxide (13.00 g, 135 mmol) was then added and m-tolylphenylamine (16.8 mL, 97.6 mmol) was added from a syringe. After 30 min at room temperature, the reaction mixture was warmed to 95° C. for 24 h, at which time, the reaction appeared complete by thin layer chromatography. The reaction mixture was transferred to a separating funnel together with water (1 L) and ether (500 mL). The aqueous layer was extracted with ether until the extracts were almost colorless. The combined organics were dried over magnesium sulfate, filtered and concentrated by rotary evaporation. The resulting material was dissolved in benzene and passed through a silica plug. The benzene solution was concentrated under reduced pressure and heated. Addition of methanol followed by cooling afforded trans-4,4'-bis(m-tolylphenylamino)stilbene as an NMR-pure yellow powder (22.59 g, 41.6 mmol, 94%). }^{1} \text{H NMR (d}_{6}\text{-acetone) } \\
\delta 7.47 (d, J=8.6 Hz, 4H), 7.34-7.27 (m, ca. 6H), 7.19 (t, J=7.7 Hz, 2H), 7.10-6.85 (m, ca. 16H), 2.24 (s, 6H); }^{13} \text{C NMR (75 MHz, d}_{6}\text{-acetone) } \\
\delta 148.5, 148.4, 148.0, 139.9, 132.9, 130.2, 130.0, 128.1, 127.3, 125.9, 125.0, 124.9, 124.2, 123.8, 122.5, 21.4; UV (THF) \\
\lambda_{max} 305 (5.30 	imes 10^{5}), 387 (5.0 	imes 10^{5}) \text{ nm; UV (acetone) } \\
\lambda_{max} 386 \text{ nm; UV (ethanol) } \\
\lambda_{max} 304, 386 \text{ nm; High resolution LSIMS calcd. for C}_{46}H_{34}N_{2} M^+ 542.2722. found 542.2716.}
\end{align*}
\]
General Procedure for the Synthesis of Bis-styrylbenzenes and Compounds by a General Double Wittig Reaction:

EXAMPLE 54

E,E-1,4-Bis[4-(m-tolylphenylamino)styryl]benzene. A solution of tetramethyl α,α',α''-tris(diphenylphosphino)phosphine (10.7 g, 33.3 mmol) in dry N,N,N,N-dimethylformamide (200 mL) was added dropwise to a stirred suspension of sodium hydride (ca. 10 g, 420 mmol) in dry N,N,N,N-dimethylformamide (250 mL). After 1 h stirring at room temperature, a solution of 4-(m-tolylphenylamino)benzaldehyde (20.6 g, 71.5 mmol) in N,N-dimethylformamide (200 mL) was added dropwise. After 48 h (250 mL) was added cautiously. The mixture was transferred to a separating funnel together with more water and dichloromethane. The aqueous layer was extracted with dichloromethane until the extracts were almost colorless. The combined organics were dried over magnesium sulfate. After filtration, silica gel was added and the solvent removed under reduced pressure, leaving the product absorbed onto the silica. The crude product was transferred to the top of a silica gel column which was eluted with toluene. Evaporation of the first fraction under reduced pressure afforded a yellow powder (16.3 g, 25.3 mmol, 76%) which was found to be NMR-pure E,E-1,4-bis[4-(m-tolylphenylamino)styryl]benzene. The compound can be conveniently recrystallized from a hot mixture of heptane and toluene. 1H NMR (CDCl3) δ 7.49 (s, 4H), 7.41 (d, J = 8.6 Hz, 4H), 7.30-6.88 (m, 26H), 2.27 (s, 6H); 13C NMR (dichloromethane-d2) δ 147.9, 147.8, 147.7, 137.0, 131.6, 129.6, 129.4, 128.2, 127.6, 126.9, 126.7, 125.7, 124.8, 124.5, 123.6, 123.3, 122.2, 21.5; UV (THF) λmax (ε) 305 (ε305 65000) nm; Tm (DSC) 215°C. High resolution LSIMS calc. for C40H48N2 M+ 644.3192. found 644.3177.

EXAMPLE 55

E,E-3,5-Bis[4-(m-tolylphenylamino)styryl]-1,4-dimethoxybenzene. n-Butyllithium (28.5 mL of a 2.5 M hexane solution, 71.3 mmol) was added dropwise to a slurry of 2,5-bis(triphenylmethylene phosphonium)-1,4-dimethoxy-
EXAMPLE 56

E,E-3,5-Bis[4-(m-tolylphenylamino)styryl]-1,4-di(n-dodecylxylo)benzene. n-Butyllithium (2.3 mL of a 2.5 M hexane solution, 5.75 mmol) was added dropwise to 2,5-bis(triphenylmethylene phosphonium)-1,4-di(n-dodecylxylo)benzene (2.498 g, 2.15 mmol) in dry tetrahydrofuran (50 mL) at -78° C.; the reaction mixture immediately became very dark. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature over 2 h before recooing to -78° C. and adding a solution 4-(m-tolylphenylamino)benzaldehyde (1.637 g, 5.70 mmol) in dry TFE (30 mL) dropwise. The reaction mixture was allowed to warm to room temperature and then stirred at room temperature for 2.5 h before cautiously adding water (150 mL). The mixture was extracted with diethyl ether (3x50 mL) and the combined ether layers were dried on magnesium sulfate. After filtration, the solvent was removed under reduced pressure; the residue was dissolved in the minimal amount of dichloromethane and the resulting solution was transferred to the top of a silica gel column which was eluted with hexane/ethyl acetate (7:1). The first fraction was found to be a mixture of the geometric isomers of 3,5-bis[4-(m-tolylphenylamino)styryl]-1,4-di(n-dodecylxylo)benzene 1H NMR (d 6-acetone) δ 7.47-6.86 (m, aryl CHs), 6.65 (d), 6.56 (d), 4.12 (t), 4.05 (t), 3.77 (t), 2.25 (overlapping singlets), 2.12-1.19 (m), 0.86 (m). The mixed isomers were dissolved in toluene (200 mL) and heated under nitrogen with a few crystals of iodine. After 3 days, the solution was passed through a silica plug. The solvent was removed under reduced pressure to afford a bright yellow oil (ca. 2.7 g) which was recrystallized from acetone to afford the pure E,E isomer as a yellow powder (925 mg, 0.927 mmol, 43%). 1H NMR (d 6-acetone) δ 7.42 (d, J=8.6 Hz, 4H), 7.35 (app. s, 2H), 7.27 (t, J=7 Hz, 4H), 1.86 (app. quin., J=7 Hz, 4H), 1.53 (m, 4H), 1.48-1.19 (overlapping multiplets, 32H), 0.87 (t, J=6.5 Hz, 6H); 13C NMR (75 MHz, CD 2Cl 2) δ 151.3, 148.0, 147.8, 147.7, 139.6, 132.4, 129.6, 128.3, 127.0, 125.7, 124.4, 123.7, 123.2, 122.2, 121.6, 109.0, 56.6, 21.5; UV (acetone) λ max: 305 (ε 305 37000), 426 (ε 426 84000) μm; m.p 254° C.; High resolution EIMS calcd. for C 50H 44N 2O 2 M - 704.3403. found 704.3404. Anal. calcd for C 50H 44N 2O 2 : C, 85.20; H, 6.29; N, 3.97. Found: C, 85.44; H, 5.640; N, 3.86.

EXAMPLE 55

1,4-Bis(4-di-n-butylamino)styryl Benzene. prepared from the reaction of terephthaldehyde (1.34 g, 0.01 mol) and 4-dibutylaminobenzyl phosphonium iodide (14.06 g, 0.0236 mol) and lithium/ethanol (0.32 g, 0.053 mol/100 mL). Recrystallized from ethanol, Yield 40.7%; m.p. =130-132° C.; IR (KBr) v cm -1 : 2955, 2870, 1603, 1520, 1367, 1187, 962, 823; UV-Vis (acetone) λ max, nm: 402; 1H NMR (CDCl 3) δ 8.392 (t, J=7-2 Hz, 12H), 1.35 (m, 8H), 1.56 (m, 8H), 3.28 (t, J=7-5 Hz, 8H). 6.61, 7.36 (m 8H), 6.85 (d, J=1-6 Hz, 2H), 7.01 (d, J=1-6 Hz, 2H), 7.42 (s, 4H); MS (FAB, m-NBA matrix): m/z 536.5 (M+).
1,4-Bis(4-bis-2-ethanolamino)styryl Benzene: prepared from the reaction of terephthalaldehyde (1.34 g, 0.01 mol) and 4-di(2-hydroxyethyl)aminobenzyl phosphonium iodide (12.58 g, 0.0216 mol) and lithium/ethanol (0.408 g, 0.0677 mol/200 mL). Recrystallized twice from N,N-dimethylformamide, Yield 19.5%; Anal. Calc. for C_{30}H_{36}N_{2}O_{4}: C, 73.74; H, 7.43; N, 5.73. found: C, 72.71; H, 7.51; N, 7.49. IR (KBr) v cm⁻¹: 3209, 1601, 1518, 1354, 1185, 1068, 962, 823; UV-Vis (DMSO) λ max nm: 404; ¹H NMR (d-DMSO): δ: 3.49 (bd, J=5.2 Hz, 8H), 3.60 (bd, J=5.3 Hz, 8H), 4.84 (bt, J=4.8 Hz, 4H), 6.75, 7.44 (Ar, J=8.29 Hz, 8H), 6.97 (d, J=16.2 Hz, 2H), 7.16 (d, J=16.2 Hz, 2H), 7.53 (s, 4H, Ar); S (EI): m/z 488.2 (M⁺).

EXAMPLE 58

1,4-Bis(4-di-n-butylamino)styryl Anthracene: prepared from the reaction of 9,10-anthracenedicarboxaldehyde (1.17 g, 0.005 mol) and 4-dibutylaminobenzyl phosphonium iodide (7.563 g, 0.0125 mol) and lithium/ethanol (0.178 g, 0.0295 mol/70 mL). Recrystallized from N,N-dimethylformamide/water, Yield 62.4%; Anal. Calc. for C_{46}H_{56}N_{2}: C, 86.73; H, 8.86; N, 4.39. found: C, 86.18; H, 8.59; N, 5.35. IR (KBr) v cm⁻¹: 2948, 1607, 1518, 1365, 1186, 760; UV-Vis (acetone) λ max nm: 440, 320; ¹H NMR (CDCl₃): δ: 0.870 (t, J=7.2 Hz, 12H), 1.18 (m, 8H), 1.48 (m, 8H), 3.08 (t, J=7.4 Hz, 8H), 6.71, 7.51 (Ar, J=8.5 Hz, 8H), 6.98 (d, J=16.4 Hz, 2H), 7.82 (d, J=16.4 Hz, 2H), 7.34, 8.66 (m, 8H, Ar); MS (FAB, m-NBA matrix): m/z 636.4 (M⁺).

EXAMPLE 59

1,4-Bis(4-morpholino)styryl Benzene: prepared from the reaction of 4-morpholinobenzaldehyde (3.94 g, 0.02 mol) and 1,4-bis(methyltriphenylphosphonium chloride (8.42 g, 0.012 mol) and lithium/ethanol (0.296 g, 0.043 mol/150 mL). Recrystallized from ethanol to yield a mixture of isomeric products, Yield 8%; Recrystallized from acetone to yield one pure isomer, Yield 11.8%; m.p.=155° C.; IR (KBr) v cm⁻¹: 1604, 1519, 1355, 1179, 962, 822; UV-Vis (acetone) λ max nm: 360, 150; ¹H NMR (CDCl₃, δ): 3.66 (t, J=6.9 Hz, 8H), 3.76 (t, J=6.9 Hz, 8H), 6.62, 7.42 (d, J=8.5 Hz, 4H), 7.03 (d, J=16.30 Hz, 2H), 6.96, (d, J=16.30 Hz, 2H), 7.42 (s, 4H); MS (FAB, m-NBA matrix): m/z 560.92 (M⁺); MS (EI): m/z 561.9, 512.9, 462.0, 436.0, 399.0, 336.0.

EXAMPLE 60

1,4-Bis(4-dimethylamino)cinnamyl benzene: prepared from the reaction of 4-dimethylaminocinnamaldehyde (3.50 g, 0.02 mol) and 1,4-bis(methyltriphenylphosphonium chloride (8.55 g, 0.0122 mol) and lithium/ethanol (0.295 g, 0.042 mol/100 mL). Unreacted aldehyde was found to be present even after 40 hrs. of stirring at rt and so refluxed for 3 hrs,
worked up as described earlier and recrystallized from toluene, Yield 29.8%; m.p. >300° C.; UV-Vis (pyridine, λmax: 420; MS (FAB, m-NBA matrix): m/z 420.1 (M+).

EXAMPLE 62

A THF (150 mL) solution of 1,4-dibromo-2,5-dimethoxybenzene (4.20 g, 14.2 mmol) was chilled to -78° C. and was then treated with n-BuLi (5.60 mL, 14.2 mmol). The mixture was allowed to react at -78° C. with stirring for 1 h, and then N,N-dimethylformamide (4.36 mL, 56.0 mmol) was added in one portion. The cooling bath was removed, and the reaction mixture was allowed to warm to ambient temperature over a period of 2 h. The mixture was diluted with water (200 mL) and extracted with diethyl ether (3x250 mL). The organic layers were combined and dried over K2CO3. The solvents were removed in vacuo, and the crude product was recrystallized twice from Hex/EtOAc (2:1) to afford pure product (2.26 g, 65%) as a light yellow microcrystalline solid. 1H NMR (d6-acetone) δ 10.34 (s, 1H), 7.46 (s, 1H), 7.29 (s, 1H), 3.96 (s, 3H), 3.89 (s, 3H); High Resolution LSIMS calcd. for C20H15N2O2 M+ 243.974. found 243.974.

The general procedures for the double Wittig reaction and the cis to trans double bond isomerization were employed. (Overall yield: 15.3%) 1H NMR (d6-acetone) δ 7.31 (d, J=8.60 Hz, 4H), 7.18 (s, 2H), 6.60-6.55 (m, 2H), 6.64 (d, J=8.70 Hz, 4H), 7.13-6.79 (m, 6H), 3.89 (s, 6H), 3.34 (t, J=7.50 Hz, 8H), 1.57 (p, J=7.40 Hz, 8H), 1.36 (sx, 8H, J=7.40 Hz, 8H), 0.94 (t, J=7.29 Hz, 12H); 13C NMR (75 MHz, acetone-d6) δ 152.6, 148.3, 133.9, 131.2, 128.6, 127.2, 126.0, 125.5, 125.0, 112.6, 109.1, 56.4, 51.2, 30.2, 20.8, 14.2; UV (toluene) λmax (ε256 67000) mm; High Resolution LSIMS calcd. for C44H60N2O2 M+ 648.465. found 648.465. Anal. calcd for C44H60N2O2: C, 81.42; H, 9.32; N, 4.32. Found: C, 81.26; H, 9.31; N, 4.26.

EXAMPLE 65

A suspension of 1,4-hydroquinone (15.3 g, 140 mmol), 1-bromododecane (100 mL, 416 mmol), K2CO3 (57.6 g, 416 mmol), and acetonitrile (300 mL) was heated to reflux for two days. The mixture was then allowed to cool before pouring into water (1 L). The precipitates were first collected by filtration and were then redissolved in hexanes. The solution was poured into stirred methanol (2 L) to precipitate the product. The crude product was collected by vacuum filtration, redissolved in hot hexanes, and poured into methanol once again to reprecipitate the product. After collecting the purified product by vacuum filtration, the remaining solvents were removed in vacuo to yield 34.5 g (56.0% yield) of white solid. 1H NMR (CDCl3) δ 6.79 (s, 4H), 3.87 (t, J=6.5 Hz, 4H), 1.73 (p, J=7.0 Hz, 4H), 1.43-0.85 (m, 42H); 13C NMR
The general procedure for the double Wittig reaction using NaOEt was followed. After 4 h of reflux, the reaction mixture was cooled and water was added. Upon addition of water, an oily product formed that became a solid mass after cooling overnight. The yellow solid was obtained in 94.9% yield as a mixture of isomers. (In the above structure, the “sawtooth” bond indicates that the structure includes both cis and trans isomers.)
The general procedures for the double Wittig reaction using NaOEt and the cis to trans double bond isomerization were employed. Recrystallization using d₆-acetone, EtOAc, and/or toluene with hexanes afforded orange crystals (m.p. 146-149°C). ¹H NMR (d₆-benzene) δ 8.14-7.86 (m, 8H), 7.61 (d, J=8.52 Hz, 4H), 7.50-7.38 (m, 8H), 7.26 (s, 2H), 6.65, (d, J=8.60 Hz, 4H), 3.77 (t, J=6.07 Hz, 4H), 3.58 (s, 6H), 3.50 (s, 6H), 3.04 (t, J=7.40 Hz, 8H), 1.74-1.69 (m, 4H), 1.47-0.81 (m, 70H); ¹³C NMR (75 MHz, d₆-benzene) δ 152.2, 151.8, 151.9, 151.8, 151.9, 129.7 (overlapping m), 126.7, 123.8, 119.1, 112.4, 110.8, 109.2, 108.7, 69.2, 55.7 (overlapping m), 50.9, 32.3, 29.6 (overlapping m), 26.7, 23.1, 20.5, 14.4, 14.2; UV (toluene) λmax (ε=110000) nm; Low Resolution LSIMS caled. for C₆₃H₁₂₀N₂O₆ M⁺ 1228.9, found 1228.9.

The general procedures for the double Wittig reaction using NaOEt and the cis to trans double bond isomerization were employed. Recrystallization using d₆-acetone, EtOAc, and/or toluene with hexanes afforded orange crystals (m.p. 146-149°C). ¹H NMR (d₆-benzene) δ 8.14-7.86 (m, 8H), 7.61 (d, J=8.52 Hz, 4H), 7.50-7.38 (m, 8H), 7.26 (s, 2H), 6.65, (d, J=8.60 Hz, 4H), 3.77 (t, J=6.07 Hz, 4H), 3.58 (s, 6H), 3.50 (s, 6H), 3.04 (t, J=7.40 Hz, 8H), 1.74-1.69 (m, 4H), 1.47-0.81 (m, 70H); ¹³C NMR (75 MHz, d₆-benzene) δ 152.2, 151.8, 151.9, 151.8, 151.9, 129.7 (overlapping m), 126.7, 123.8, 119.1, 112.4, 110.8, 109.2, 108.7, 69.2, 55.7 (overlapping m), 50.9, 32.3, 29.6 (overlapping m), 26.7, 23.1, 20.5, 14.4, 14.2; UV (toluene) λmax (ε=110000) nm; Low Resolution LSIMS caled. for C₆₃H₁₂₀N₂O₆ M⁺ 1228.9, found 1228.9.

EXAMPLE 69

The general procedures for the double Wittig reaction using NaOEt and the cis to trans double bond isomerization were employed. Recrystallization using d₆-acetone, EtOAc, and/or toluene with hexanes afforded orange crystals (m.p. 146-149°C). ¹H NMR (d₆-benzene) δ 8.14-7.86 (m, 8H), 7.61 (d, J=8.52 Hz, 4H), 7.50-7.38 (m, 8H), 7.26 (s, 2H), 6.65, (d, J=8.60 Hz, 4H), 3.77 (t, J=6.07 Hz, 4H), 3.58 (s, 6H), 3.50 (s, 6H), 3.04 (t, J=7.40 Hz, 8H), 1.74-1.69 (m, 4H), 1.47-0.81 (m, 70H); ¹³C NMR (75 MHz, d₆-benzene) δ 152.2, 151.8, 151.9, 151.8, 151.9, 129.7 (overlapping m), 126.7, 123.8, 119.1, 112.4, 110.8, 109.2, 108.7, 69.2, 55.7 (overlapping m), 50.9, 32.3, 29.6 (overlapping m), 26.7, 23.1, 20.5, 14.4, 14.2; UV (toluene) λmax (ε=110000) nm; Low Resolution LSIMS caled. for C₆₃H₁₂₀N₂O₆ M⁺ 1228.9, found 1228.9.

EXAMPLE 70

EXAMPLE 71

¹H NMR (d₆-acetone) δ 7.35 (d, J=8.6 Hz, 4H), 7.23 (d, J=16.3 Hz, 2H), 7.22 (s, 2H), 7.11 (d, J=16.5 Hz, 2H), 6.70 (d, J=8.8 Hz, 2H), 6.66 (d, J=8.9 Hz, 2H), 3.88 (s, 6H), 3.79 (t, J=5.0 Hz, 1H), 3.73-3.67 (m, 21), 3.49-3.43 (m, 4H), 3.33 (t, J=5.0 Hz, 4H), 1.57 (p, J=7.0 Hz, 4H), 1.35 (sx, J=7.4 Hz, 4H), 1.13 (t, J=6.9 Hz, 3H), 0.93 (t, J=7.3 Hz, 6H); ¹³C NMR (75.5 MHz, d₆-acetone) δ 152.0, 148.6, 148.5, 129.4, 129.3, 128.5, 127.2, 127.1, 126.3, 126.1, 118.6, 118.5, 112.6, 112.5, 109.1, 109.0, 60.1, 56.5, 53.3, 51.2, 45.9, 30.2, 20.8, 14.3, 12.4; IR (neat) 3423.1 (br), 2961.5, 2929.7, 2866.6, 1701.7, 1602.3, 1521.2, 1463.6, 1399.7, 1359.5, 1258.9, 1205.2, 1181.7, 1044.2 cm⁻¹; UV (acetone) λmax (428) nm.
\textbf{EXAMPLE 72}

7,9-Dicyano-8,10-bis(di-n-butylamino)-1,4-bis-styrylbenzene was synthesized according to an analogous procedure. (Yield 26%). 1H NMR (CDCl₃) δ 7.85 (m, 4 H), 7.65 (s, 4 H), 7.41 (s, 2 H), 6.65 (m, 4 H), 3.34 (m, 8 H), 1.59 (m, 8 H), 1.37 (m, 8 H), 0.98 (t, J=7.5 Hz, 12 H). 13C NMR (CDCl₃) δ 149.83 (s), 142.23 (d), 135.01 (s) 131.68 (d), 125.61 (d), 120.62 (s), 119.50 (s), 111.19 (d), 102.67 (s), 50.78 (t) 29.38 (t), 20.30 (t), 13.98 (q). UV-VIS λ_{max}=438 nm. Emission λ_{max}=527 nm. EI/MS m/z 588, 544, 502, 250, 218.

\textbf{EXAMPLE 74}

2,5-Dicyano-1,4-bis(4'-diphenylaminostyryl)benzene. Potassium t-butoxide (1.122 g, 10 mmol) was added over 15 min to a solution of 1,4-dicyano-2,5-bis[methylene(triphenylphosphonium)]benzene dibromide (3.354 g, 4 mmol) and 4-diphenylaminobenzaldehyde (2.733 g, 10 mmol) in ethanol (100 mL), and the mixture was refluxed for 1 h. A precipitate formed upon cooling of the solution to room temperature. It was filtered off and recrystallized from a dichloromethane solution upon slow diffusion of petroleum ether. Yield (1.354 g, 51%). m.p. 259.7° C. 1H NMR (CDCl₃) δ 7.99 (s, 2 H), 7.43 (m, 4 H), 7.29 (m, 8 H), 7.23 (AB, J=16 Hz, 2H), 7.22 (AB, J=16 Hz, 2H), 7.14 (m, 8 H), 7.09 (m, 4 H), 7.05 (m, 4 H). 13C NMR (CDCl₃) δ 149.04 (s), 147.01 (s), 138.70 (s), 134.26 (d), 129.43 (d), 129.35 (s), 128.88 (s), 128.35 (d), 125.13 (d), 123.77 (d), 122.29 (d), 119.50 (d), 116.79 (s), 114.57 (s). UV-VIS λ_{max}=470 nm; ε=62000. Emission λ_{max}=583 nm.
EXAMPLE 75

2,5-Bromo-1,4-bis(4’-diphenylaminostyryl)benzene was synthesized with the analogous procedure. A crude product (2.354 g) was isomerized into thermodynamically more stable trans-trans isomer. Toluene (10 mL) and iodine (20 mg) were added to the mixture of isomers, and the mixture was refluxed for 15 h in an illuminated hood. Toluene was removed on a vacuum line, and the residue was crystallized from a dichloromethane solution upon slow diffusion of petroleum ether. Yield was 86%, m.p. 286.5°C. \(^1\)H NMR (CD\(_2\)Cl\(_2\)) \(\delta\) 8.30 (s, 2H), 7.84 (s, 2H), 7.73-7.55 (m, 4H), 7.22 (s, 2H), 7.18 (s, 2H), 4.09 (t, J = 6.62 Hz, 4H), 3.95 (s, 6H), 3.93 (s, 6H), 1.91-1.86 (m, 36H), 0.87 (t, J = 6.62 Hz, 6H); UV (toluene) \(\lambda_{\text{max}}\) 424 nm; \(\epsilon\) = 55000.

FIG. 12 illustrates a reaction scheme for the synthesis of A-D-A molecules according to the invention as exemplified in Examples 76-79.

EXAMPLE 76

![Example 76](image)

\(R = (\text{CH}_3)_2\text{CH}_2\)

EXAMPLE 77

1,4-bis(dodecocy)-2,5-bis(2,5-dimethoxy-4-formylstyryl)benzene, (0.022 g, 0.027 mmol), excess malononitrile, and sodium acetate (0.010 g, 0.061 mmol) were combined in absolute ethanol. The reaction mixture was heated to reflux for 1.5 h and then cooled to ambient temperature. During the course of the reaction, the product was formed as a red precipitate that was collected by filtration.

Removal of the trace monodicyanovinyl/monoaldehyde intermediate was achieved by column chromatography on silica using methylene chloride as the eluent followed by recrystallization using methylene chloride/hexanes. The microcrystalline greenish solid was collected in 55% yield after purification. \(^1\)H NMR (CD\(_2\)Cl\(_2\)) \(\delta\) 8.30 (s, 2H), 7.84 (s, 2H), 7.73-7.55 (m, 4H), 7.22 (s, 2H), 7.18 (s, 2H), 4.09 (t, J = 6.24 Hz, 4H), 3.95 (s, 6H), 3.93 (s, 6H), 1.91-1.86 (m, 36H), 1.59-1.16 (m, 36H), 0.87 (t, J = 6.62 Hz, 6H); UV (toluene) \(\lambda_{\text{max}}\) 424 nm; High Resolution LSIMS calcd. for C\(_{58}\)H\(_{74}\)N\(_4\)O\(_6\) M\(^+\) 922.561. found 922.560.
A solution of 1,4-bis(dodecoxy)-2,5-bis(2,5-dimethoxy-4-formylstyril)benzene, (0.30 g, 0.036 mmol) and 1,3-diethyl-2-thio-barbituric acid (0.017 g, 0.080 mmol) in absolute ethanol (25 mL) was heated to reflux for 1 h. After 1 h of reflux, the mixture was cooled to ambient temperature and allowed to stand for 3 h. During the course of the reaction, a purple precipitate that had a metallic luster formed. Upon filtration 0.036 g (83% yield) of the purple product was collected. 1H NMR (d6-benzene) δ 9.38 (s, 2H), 8.67 (s, 2H), 8.13-6.88 (m, 8H), 4.48 (q, J=7.31 Hz, 8H), 3.77-3.72 (m, 10H), 3.30 (s, 6H), 1.73-1.20 (m, 52H), 0.918 (t, J=5.24 Hz, 6H); UV (toluene) λmax (ε551 nm); Low Resolution LSIMS calcd. for C68H94N10O10S2 M+ 1190.6. found 1190.7. Anal. calcd for C68H94N10O10S2: C, 68.53; H, 7.96; N, 4.70. Found: C, 68.63; H, 7.99; N, 4.70.

EXAMPLE 78

A solution of 1,4-bis(dodecoxy)-2,5-bis(2,5-dimethoxy-4-formylstyril)benzene, (0.30 g, 0.036 mmol) and 1,3-diethyl-2-oxobarbituric acid (0.017 g, 0.080 mmol) in absolute ethanol (25 mL) was heated to reflux for 3 h. After 3 h of reflux, the mixture was filtered while hot. During the course of the reaction, a purple precipitate that had a metallic luster formed. Upon filtration 0.034 g (80% yield) of the purple product was collected. 1H NMR (CD2Cl2) δ 8.88 (s, 2H), 8.11 (s, 2H), 7.72-7.56 (m, 4H), 7.20 (br s, 4H), 4.12-3.91 (m, 12H), 1.94-0.80 (m, 58H); UV (toluene) λmax (ε526 nm); Low Resolution LSIMS calcd. for C68H94N12O12S2 M+ 1158.7. found 1158.5.

EXAMPLE 79
A solution of 1,4-bis(dodecyl-2,5-dimethoxy-4-formylstyrlyl)benzene, (0.31 g, 0.038 mmol) and 3-dicyanomethylene-2,3-dihydrobenzoisothiophene-1,1'-dioxide (0.035 g of 72.1% purity, 0.083 mmol) in absolute ethanol (25 mL) was heated to reflux for 1 h. After 1 h of reflux, the mixture was cooled to ambient temperature and allowed to stand for 12 h. During the course of the reaction, a blue precipitate that had a metallic luster formed. Upon filtration 0.028 g (60% yield) of the dark blue product was collected.

\[^1H \text{NMR (CDCl}_3), \delta 8.99 (s, 2H), 8.83-8.80 (m, 2H), 8.04-7.27 (m, 16H), 4.17 (t, J=6.17 Hz, 4H), 4.05 (s, 6H), 4.04 (s, 6H), 1.98-1.31 (m, 40 H), 0.916 (t, J=6.14 Hz, 6H); \]

UV (toluene) \(\lambda_{\text{max}} (\epsilon_{610} 60000) \) nm; Low Resolution LSIMS calcd. for C\(_{74}\)H\(_{82}\)N\(_4\)O\(_{10}\)S\(_2\) M\(^+\) 1250.5, found 1250.6. Anal. calcd for C\(_{74}\)H\(_{82}\)N\(_4\)O\(_{10}\)S\(_2\); C, 71.01; H, 6.61; N, 4.48. Found: C, 70.73; H, 6.65; N, 4.38. As indicated previously, the “sawtooth” bond indicates that the molecule above represents both cis and trans isomers.

Single-photon and Multi-photon Absorptivities of Compounds According to the Invention

Table 1 below presents one- and two-photon absorption data on a series of bis(dialkylamino)diphenylpolynes with the following general structure:

![structure diagram]

where R and R' are defined in the table. The parameters listed are: the wavelength of the lowest energy one-photon absorption maximum, \(\lambda_{\text{max}}^{(1)} \), the wavelength of the lowest energy two-photon absorption maximum \(\lambda_{\text{max}}^{(2)} \), the two-photon absorptivity \(\delta \), and the one-photon fluorescence quantum yield, \(\Phi_{fl} \). The two-photon absorptivities listed in the table were measured by use of a comparative two-photon excited fluorescence method employing picosecond laser pulses (of 4 ps duration) and with Rhodamine B, Fluorescein and bis(methylstyrlyl)benzene as standards [C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 13, 481 (1996)].

For comparison, the two-photon absorptivity of trans-stilbene, which lacks bis-donor substitution, is \(12 \times 10^{-50} \) cm\(^4\) s/photon at 514 nm as determined by coherent anti-Stokes Raman spectroscopy [R. J. M. Anderson, G. R. Holton, W. M. McClain, J. Chem. Phys., 70, 4310-4315 (1979)]. The data on the compounds in Table 1 demonstrate an order of magnitude enhancement of the magnitude of the two-photon absorptivity compared to unsubstituted stilbene and an ability to control the wavelength of the peak two-photon absorptivity by increasing the number of double bonds in the polyene fragment of the molecule.

Table 2 below lists the values of \(\lambda_{\text{max}}^{(2)} \), \(\delta \), and \(\Phi_{fl} \) for a series of bis-styrlyl benzene derivatives prepared in accord with the present invention. The two-photon absorptivity values were determined using a comparative nanosecond pulse two-photon excited fluorescence method with Fluorescein or Rhodamine B as standards for calibration.
Two-photon optical data and fluorescence quantum yield data on bis-styrylbenzene derivatives as obtained in toluene solution.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>λ<sub>max</sub> (nm)</th>
<th>δ (10<sup>-50</sup> cm<sup>4</sup> s/photon)</th>
<th>Φ<sub>ψ</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>770</td>
<td>800</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>745</td>
<td>720</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>745</td>
<td>630</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>840</td>
<td>1080</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>730</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Two-photon optical data and fluorescence quantum yield data on bis-styrilbenzene derivatives as obtained in toluene solution.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>λ_{2p} (nm)</th>
<th>δ (10^{-40} cm4 s/photon)</th>
<th>Φ_f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>830</td>
<td>1230</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>835</td>
<td>1560</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>825</td>
<td>810</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>390</td>
<td>0.38</td>
</tr>
</tbody>
</table>
For comparison with the data in Table 2, para-bis(ortho-methylstyryl)benzene, which lacks donor or acceptor substitution, exhibits a two-photon absorptivity of 55×10^{-50} cm4 s/photon at 568 nm [C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 13, 481 (1996) and S. M. Kennedy and F. E. Lytle, Anal. Chem. 58, 2643 (1986)]. In accord with the present invention compounds symmetrically substituted with a pair of terminal donors, [i.e., D-π-D] or symmetrically substituted to form molecules according to the donor-acceptor-donor (D-A-D) or acceptor-donor-acceptor (A-D-A) motifs exhibit substantially enhanced two-photon absorptivities compared to unsubstituted para-bis(ortho-methylstyryl)benzene.

Measurements of two-photon absorptivity by use of nonlinear optical transmission method in solutions of bis-donor-substituted diphenylpolyenes show a strong dependence on laser pulse duration, as indicated by the values in Table 3. These results provide evidence of nonlinear absorption that is higher-order than two-photon absorption. In particular, the results suggest that these molecules undergo two-photon induced excited state absorption, that is, two-photon absorption to an excited state and further absorption from this excited state or from a state formed rapidly on relaxation from the initial excited state. A greater excited state population is created with the longer pulses, leading to the enhanced nonlinear absorption coefficient. Additional measurements including transient photogenerated absorption measurements and picosecond time resolved pump and probe measurements confirm the presence of excited state absorption induced by two-photon absorption, which occurs at the two-photon excitation wavelength. The effective two-photon absorptivities of the series of bis-donor diphenylpolyenes is one to two orders of magnitude larger than that measured with picosecond pulses and, in accord with the present invention, these data demonstrate utility in optical limiting applications involving nanosecond laser pulses. Furthermore, the values of the effective two-photon absorptivity obtained for the bis donor diphenylpolyenes are an order of magnitude larger than that of Rhodamine B.

Table 3. Effective two-photon absorption data on a series of bis-donor diphenylpolyenes as measured with nanosecond (ns) and picosecond (ps) pulses and nonlinear optical transmission methods. The units of the two-photon absorptivity, δ, are 10^{-50} cm4 s/photon.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Wavelength (nm)</th>
<th>δ (5 ns pulses)</th>
<th>δ (4 ps pulses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Bu n-Bu</td>
<td>600</td>
<td>9,300</td>
<td>250</td>
</tr>
<tr>
<td>Me n-Bu Me</td>
<td>600</td>
<td>6060</td>
<td>200</td>
</tr>
<tr>
<td>Me n-Bu Me</td>
<td>700</td>
<td>6800</td>
<td>197</td>
</tr>
<tr>
<td>Me n-Bu</td>
<td>700</td>
<td>13,000</td>
<td>106</td>
</tr>
<tr>
<td>Bt$_2$N</td>
<td>700</td>
<td>1400</td>
<td>12</td>
</tr>
<tr>
<td>RhB Rh610</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The wavelength dependence of the higher-order nonlinear absorption of 4,4'-bis(di-n-butylamino)stilbene, 4(di-n-butylamino)-4'-dimethylamino) diphenylbutadiene and 4-(di-n-butylamino)-4'(dimethyl amino)diphenyl-hexatriene is shown in FIG. 13. These spectra demonstrate an ability to control the spectral position of the higher-order nonlinear absorption band by increasing the number of double bonds in the π(π)-conjugated bridge.

FIG. 13 illustrates nonlinear absorption spectra of 4,4'-bis(di-n-butylamino)stilbene (squares), 4-(di-n-butylamino)-4'-(dimethylamino) diphenylbutadiene (circles) and 4-(di-n-butylamino)-4'(dimethylamino)diphenyl-hexatriene (triangles) in toluene solution.

The wavelength dependence of the higher-order nonlinear absorption of 4,4'-bis(di-n-butylamino)stilbene and 4,4'-bis(diphenylamino)stilbene is shown in FIG. 14. These spectra demonstrate the ability to control the spectral position of the higher-order nonlinear absorption band by replacing (diaryl amino) donor groups with (diphenylamino) donor groups. Furthermore, a mixture of these compounds provides broadband nonlinear absorption and high optical transmission from 560 to 730 nm, which is of special utility for optical limiting applications, as described herein.

FIG. 14 illustrates nonlinear absorption spectra of 4,4'-bis(di-n-butylamino)stilbene (squares) and 4,4'-bis(diphenylamino)stilbene (circles).

Table 4. Effective two- and three-photon absorptivities of bis-donor-substituted biphenyl derivatives as determined by use of nonlinear optical transmission measurements with 532-nm, 8-ns laser pulses. δ_{eff} is the effective two-photon absorptivity obtained by fitting the data at low incident intensity to a pure two-photon absorption model, γ_{eff} is the effective three-photon absorptivity obtained by fitting the data to a pure three-photon absorption model, and γ^{*}_{eff} is the effective three-photon absorptivity obtained by fitting the data to a model involving two- and three-photon absorption and fixing the two-photon absorptivity at the value listed as δ_{eff}.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>δ_{eff} ($\times 10^{-47}$ cm4/s/photon)</th>
<th>γ_{eff} ($\times 10^{-73}$ cm6/s2/photon3)</th>
<th>γ^{*}_{eff} ($\times 10^{-73}$ cm6/s2/photon3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Structure image]</td>
<td>6.0</td>
<td>3.7</td>
<td>2.0</td>
</tr>
<tr>
<td>[Structure image]</td>
<td>5.6</td>
<td>4.0</td>
<td>2.2</td>
</tr>
<tr>
<td>[Structure image]</td>
<td>6.5</td>
<td>3.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Molecule</td>
<td>δ_{ef} (\times 10^{-47}) cm(^6)/s/ photon</td>
<td>γ_{ef} (\times 10^{-73}) cm(^6)/s(^2)/ photon</td>
<td>γ^*_{ef} (\times 10^{-73}) cm(^6)/s(^2)/ photon(^2)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>2.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>2.3</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>1.9</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>2.4</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>2.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>
photo-initiated polymerization. In lithography or stereolithography, because the phenomenon involves the simultaneous absorption of two photons (or higher-order) absorbers. For comparison, serotonin, which contains an indole chromophore, has been reported to have a three-photon absorptivity of 2×10^{-84} cm6 s2/photon. [S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, *Science*, 275, 530 (1997)].

Multi-Photon Absorbing Compounds as Polymerization Initiators According to the Invention

Here we describe the utility of two-photon and multi-photon absorbing molecules as initiators of polymerization, specifically to the use of bis-donor-substituted π-conjugated molecules as two-photon initiators. Such two-photon excitable initiators have utility in two- and three-dimensional lithography applications, and in three-dimensional optical data storage with ultrahigh storage densities (10^{12} bits/cm3). When applied to a spinning disk (compact disk) type format, this polymerizable material can offer over a thousand-fold increase in storage capacity. There are two key advantages of two-photon induced polymerization relative to single-photon induced polymerization. Whereas single-photon absorption scales linearly with the intensity of the incident radiation, two-photon absorption scales quadratically. As a result, it is possible to perform two-photon polymerization with three-dimensional spatial resolution. In addition, because the phenomenon involves the simultaneous absorption of two-photon, the chromophore is excited with light of half the energy of the two-photon absorption peak. As a result, it is possible to excite molecules at a greater depth within a material than would not be possible via single-photon excitation. These two advantages also apply to for example in vivo photo-initiated polymerization. In lithography or stereolithography, the quadratic scaling of absorption with intensity can lead to the ability to write features below the diffraction limit of light and the ability to write features in three dimensions, which is also of interest for holography.

Bis-donor-substituted π-conjugated molecules according to this invention exhibit large two-photon absorption cross sections and also possess structural features that permit them to be effective as initiators of polymerization. As has been discussed earlier, these bis-donor-substituted π-conjugated molecules exhibit large two-photon absorptivities in the visible and the near infrared spectral regions. Another feature of these bis-donor-substituted diphenylpolyene molecules is that the donor groups also impart to them low oxidation potentials. Thus, two-photon or multi-photon excitation of bis-donor-substituted π-conjugated molecules enables them to function as powerful reducing agents and can reduce even molecules with low electron affinities, including various polymerizable groups such as acrylate monomers. Accordingly, bis-donor-substituted π-conjugated molecules of this invention are able to function as multi-photon excitable initiators of polymerization. Many amino-substituted phenyl-containing compounds such as aniline, are known to initiate polymerization of vinyl or acrylate monomers upon exposure to ultraviolet radiation through a charge transfer initiation. The charge transfer initiation process may proceed by way of a direct charge transfer that leads to formation of initiating and propagating radical species or by way of a hydrogen abstraction reaction between members of a charge transfer complex involving the aromatic amine and the monomer that also leads to the formation of initiating and propagating radicals.

A. Two-Photon Excited Polymerization Using Bis-Donor-substituted π-Conjugated Molecules

$$ R_P = (M)[k_1][R](2k)^{-1/2} $$

where $[M]$ is the monomer concentration, k_1 is the rate constant for polymerization, R_1 is the rate of initiation and k_2 is the rate constant of termination. The rate of initiation for a two-photon excited initiation can be obtained by adapting the standard rate for single-photon initiation and we obtain:

$$ R_1 = \Phi(M)[k_1][R](2k)^{-1/2} $$

where δ is the two-photon absorptivity (in units of cm4 s $^{-1}$ photon$^{-1}$), I is the photon flux (photons cm$^{-2}$ s$^{-1}$), N_A is Avogadro’s number, N_ℓ is the number density of two-photon absorbing initiators and Φ is the quantum yield of initiation. Combining these two equations gives the rate of two-photon excited polymerization as:

$$ R_P = (M)[k_1][R](2k)^{-1/2} $$

Thus, the rate of polymerization is dependent on the magnitude of the two-photon absorptivity of the initiator and the quantum yield of initiation, which depends both on the characteristics of the initiator and the monomer.

1) Two-Photon Polymerization of Liquid Phase Polyacrylate Monomers

We have demonstrated that bis-donor-substituted conjugated molecules according to the invention can initiate, following two-photon excitation, the polymerization of...
crosslinkable liquid polyacrylate monomers. Polymerization of crosslinkable monomers leads to the formation of insoluble polymeric material, such that two-photon initiated polymerization causes the deposition of an easily observable volume of solid polymer on the window of the optical cell. Solutions of alkoxyated trifunctional triacrylate ester (Sartomer 9008) that included polymerization inhibitor MEHQ and containing up to 1% of various bis-donor-substituted conjugated molecules were placed in an optical cell and irradiated with 8-ns pulses with a wavelength of 594 nm from a pulsed dye laser operating at a repetition rate of 20 pulses/s. Irradiations were performed with a collimated beam of cross sectional area of 0.002 cm² and various pulse energies. The time required for visually observable polymerization was roughly estimated for different irradiations and the results are summarized in Table 5. For cases where the molecules have large two-photon absorptivities at 594 nm, polymerization was observed. Polymerization was generally observed when 13 mJ pulses were used but the intensity was sufficiently high that higher-order nonlinear processes may have led to polymerization. Formation of polymer was demonstrated by the characteristic pattern of infrared bands as determined by IR spectroscopy. The diminution of the peaks assigned to monomer provided further evidence for formation of polymer.

Table 5

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Laser Energe at 594 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13 mJ</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The induction times for polymerization initiated by two-photon excitation of selected initiator molecules with a pulse energy of 2 mJ and a wavelength of 594 nm are shown in FIG. 15. The molecule 4,4'-bis(dibutylamino)stilbene has a maximum two-photon absorptivity at about 600 nm and has the shortest induction time. A simple alkyl substitution of ethyl for butyl on the amino group has little effect. 4-(di-n-butylamino)-4'-(dimethylamino)diphenyl-octa-1,3,5,7-tetraenepeaks at 650 µm, has a threefold reduction in two-photon absorptivity at 594 nm compared to 4,4'-bis(dibutylamino)stilbene and has a longer induction time. The molecule, 4-(dibutylamino)-4'-(n-butoxy)diphenyl-but-1,3-diene, which has a red shifted two-photon absorption, exhibits a reduced induction time compared to 4-(dibutylamino)-4'-(n-butoxy)stilbene.

2) Two-Photon Absorbing Photopolymer Systems

We have demonstrated the use of several two-photon absorbing molecules in two-photon crosslinkable photopolymer systems. These compositions involved the use of 1) a two-photon absorbing initiator, 2) a crosslinkable monomer, and 3) a polymer binder. Many other compositional variations including the use of plasticizers, chain transfer agents, polymer binders, and polymerizable monomers are possible, as known to those skilled in the art, see for example, G. Odian “Principles of Polymerization” [John Wiley & Sons, NY, 1981]. In the formulations here, the components were dissolved in a suitable solvent, that depends on the composition of the system, to form a viscous solution and films were prepared by spin coating or by casting via solvent evaporation.

Examples of compositions of two-photon absorbing photopolymer systems are described below.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Laser Energy at 594 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13 mJ</td>
</tr>
<tr>
<td>9</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The upper Yes/No entry indicates whether polymerization was observed and the lower entry indicates the time of observation. Concentration of the two-photon absorber was 1% by weight except for the starred compounds where the concentration was less than 0.5%.

Gel films and thick gel plates of composition II with 60% SR454, 33% PVK and 1% 4-(di-n-butylamino)-4'-(dimethylamino)diphenyl-octa-1,3,5,7-tetraene underwent two-photon initiation of cross-linking by excitation for 5 seconds with 2 mJ, 8 ns, 765 nm laser pulses at 20 pulses/s. A color change was observed in the irradiated spot and upon washing with THF solvent, a small insoluble hemispherical polymer plug was recovered, indicating that cross-linking had occurred.

3) Writing of filaments in liquid phase monomers

The ability to form polymer filaments that taper from an initial diameter ranging from millimeters to tens of microns down to final diameters of one to several microns can be of utility in providing low loss optical guided wave coupling of objects with disparate dimensions. For example, dimensional mismatch is often encountered in attempts to couple optical fibers, which can range between 10 µm to several hundred µm in diameter, to semiconductor laser diodes, which can have active areas with a cross sectional dimension of several microns or even less. One feature of the two-photon initiated polymerization disclosed here is that such tapered polymer filaments or arrays of such filaments can be formed.

Two-photon excitation of a variety of the disclosed diphenylpolyene derivatives in the presence of acrylate monomers leads to the formation of polymer. For example, with the two-photon absorbing molecule dissolved in 1% concentration in triacrylate monomer, excitation leads to formation of a visually observable cross-linked polymer spot on the wall of the vessel. It was observed that when irradiating a liquid cross-linkable triacrylate monomer containing a two-photon absorbing molecule (for example Sartomer 9008 with 1% 4,4'-bis(dibutylamino)stilbene) using a laser beam at a wavelength of 600 nm, an intensity of ~100 MW/cm² and a diameter of about 1 mm that the cross-linked polymer volume that formed was tapered to a point as the polymer advanced from the window into the bulk of the liquid. This tapering suggested that the two-photon polymerization of the monomer led to a focusing of the beam into the monomer as the polymerization proceeded. We have also observed that prolonged exposure of a special spot at the window/monomer solution interface leads to the formation of a fine filament of polymer that extends for several millimeters into the solution.

This process is the two-photon analog of the photopolymerization induced optical self-focusing and trapping reported recently (A. S. Kewitsch and A. Yariv, Optics Lett., 21(1), 24 (1996)). This demonstration was performed using Sartomer 9008 with 1% 4,4'-bis(dibutylamino)stilbene and 8 ns, 532 nm laser pulses at a pulse rate of 10 pulses/s. Using a beam that was focused onto the window with lenses varying from f/4 to f/7 and pulse energies of 0.3 to 0.4 mJ, filaments 1 to 4 mm in length could be formed.

4) Three Dimensional Optical Memory by Writing Cross Linked Voxels in Photopolymer Systems

Webb, et al. (e.g., J. I. Stricker and W. Webb, Optics Lett., 26, 1780-1782, (1991)) described two-photon initiated poly-
merization as a means for optical data recording utilizing a commercial photoresist prepared in a 170 µm thick film format where highly localized volumes in such a film were exposed with ultrashort laser pulses from a mode-locked titanium:sapphire laser system. The exposed volumes exhibited a change in refractive index upon polymerization which served as a means of optical data storage. Retrieval of information was accomplished with differential contrast interference microscopy. Two-photon polymerized refractive index voxels of 0.3 µm diameter were written and sheets of voxel patterns spaced about 3 µm were created, with a sheet spacing limit of about 1 µm, leading to storage densities of \(10^{12}\) bits/cm².

The multi-photon absorbing materials of the invention and photopolymer compositions based on them can be used to form recording media for two or three dimensional optical data storage. The advantages of using two-photon induced processes for three dimensional optical data storage are well known. Using a strongly focused optical beam it is possible to produce localized two-photon excitation in a volume of the order of 1 µm³, thus resulting in data storage densities of \(10^{12}\) bits/cm². Additionally, using crossed optical beams, spots or sheets of data can be stored or addressed in three dimensions, albeit at lower data densities. The disclosed compositions have utility in forming three dimensional optical data storage media with high recording sensitivity, due to the large two-photon absorptivities exhibited by these materials.

Experiments to record small volume spots of cross-linked polymer were performed using a picosecond pulsed dye laser as the excitation source. This system provided 4 ps pulses at a repetition rate of 3.7 MHz with an average power of 30 to 40 mW in the 600 to 650 nm range. The laser beam was expanded to fill a microscope objective (numerical aperture - 0.25) so as to produce a 1.4 µm spot size at the focus. Exposures with different powers and durations were conducted. The two two-photon photopolymer compositions (I and II) described above were used as the recording media. Written spots were observed by optical microscopy and by washing the films with a solvent to strip away uncross-linked polymer and leave behind on the substrate spots of crosslinked material.

The quality of the laser beam spatial profile, the exposure time, the power, the focusing and the material composition were found to be crucial in the ability to write spots and for the spot size.

It was demonstrated that 3 µm diameter spots could be written at different depths in ~200 µm thick films of composition II with 66% SR454, 33% PVK and 1% 4-(di-n-butylamino)-4’-(dimethylamino)diphenyl-oct-1,3,5,7-tetraene, using 600 or 650 nm picosecond pulses focused with the numerical aperture - 0.25 microscope objective. With higher power objectives, smaller spots can be written. By writing spots of this material on the substrate/photopolymer interface, it was shown that these spots were left behind as insoluble polymer spots after washing with a solvent over-night.

Using spin coated thin films of composition I with varying percentages of 4,4’-bis(dibutylamino)stilbene, tris(2-hydroxyethyl)isocyanurate triacrylate, (Sartomer SR368) and poly(methylmethacrylate), it was shown that the power required to write the crosslinked polymer depended on the concentration of the two-photon absorber. Good optical quality films 200 µm thick were made with a composition of 1% 4,4’-bis(dibutylamino)stilbene, 40% Sartomer SR368 and the remainder PMMA.

Fluorescence of the multi-photon absorbing molecules of the present invention can be enhanced upon polymerization of the local monomer concentration relative to that of the absorber in the presence of unpolymorized monomer. Because of the charge-transfer interaction or other interactions between the two-photon excited molecule and the monomer, the fluorescence of the excited molecule is highly quenched. Upon polymerization of the monomer, the quenching ability of the monomer is eliminated and the excited-absorbers are able to emit with an unquenched efficiency. Thus, the two-photon initiated polymerization can lead to a “turning on” of the fluorescence efficiency of the polymerized spot. This feature can provide an advantage for the readout of stored bits of information because the two-photon excited fluorescence can be used to readout as opposed to other more complex, expensive and cumbersome methods such as differential interference microscopy.

Multi-photon absorbing molecules of the invention, the compositions described above and related compositions based on other monomers or crosslinkable monomers, other polymer binders and other additives such as chain transfer agents, can be employed as multi-photon absorbing recording media for holographic recording.

B. Single-Photon Excited Polymerization Using Bis-donor-substituted \(\pi\)-Conjugated Molecules According to the Invention

Molecules according to the present invention that behave as two-photon initiators for polymerization of acrylates can also initiate polymerization when irradiated with wavelengths of light for which the molecules exhibit strong linear absorption. Thus these molecules represent a new class of near UV and visible initiators. Furthermore, from the parallel chemistry observed by single and two photon absorption, one can reasonably conclude that photon absorbing molecules that are single-photon initiators will also act as two-photon initiators, providing that the two-photon state is higher in energy than the one-photon state. This can be uncertain with some degree of certainty by observing whether the molecule is fluorescent. It is well known to those knowledgeable of the spectroscopy of \(\pi\)-conjugated molecules that when the two-photon state is substantially lower in energy than the one-photon state, the molecules are not fluorescent, whereas when the two-photon state is higher than the one-photon state, the molecules can be fluorescent.

Thus, thin films of poly(triacrylate) can be prepared by excitation with low power 360 nm radiation of molecules that behave as two-photon initiators. The films so prepared were identified as poly(triacrylates) by IR spectroscopy. The polymerization did not take place in the presence of benzoquinone, which is a typical inhibitor for radical polymerizations. During the polymerization, the solutions turned green and the UV spectrum has an absorption peak at 650 nm indicative of the stilbene radical-cation which was independently characterized by spectro-electrochemistry.

Methylacrylate was polymerized in bulk under the absence of air by irradiation with a 450 W medium pressure mercury lamp. The molecular weight of the polymer was above 400 000. The estimated molecular weight from comparison of the elution time to the polystyrene standard was Mw - 697 000, Mn - 429 000. Furthermore, the polymer, characterized by IR spectroscopy showed a spectrum identical with that in the literature. After washing the polymer several times with CHCl₃, the polymer exhibited fluorescence in the blue (~420 nm), indicating incorporated or bound initiator.

The bis-dibutylaminostilbene also polymerizes methylacrylate, yielding a soluble polymer in chloroform or CH₂Cl₂. Once again, the molecular weight is higher than 400 000.

Methylacrylate polymerizations were carried out in ethanol and toluene. Thus, 0.5 mL of the monomer were dissolved in 0.5 mL of the corresponding solvent in an
ampoule. After adding 10 mg of bis-dibutylaminostilbene to each ampoule, nitrogen was bubbled through for 54 minutes and the ampoules were sealed. The samples were irradiated for 6 h with a 450 W medium pressure mercury lamp. In the ethanol-containing ampoule, poly(methylmethacrylate) was formed. In the toluene-containing ampoule, no polymerization was observed. It was further shown that the polymerization occurred in acetonitrile and acetone but not in benzene.

A critical issue related to in vivo photopolymerization addressed in this invention is limitations that may be introduced by the use of visible light; specifically, visible light does not penetrate tissues or other absorbing or scattering media at depth. To address this deficiency, we have developed photoinitiators which can be activated by two-photon absorption of near-infrared light, which has the greatest penetration depth through tissue.

Conventional photoinitiators for use in biomedical or materials processing, such as xanthine-based dyes, are activated by single-photon excitation of their absorption bands in the visible spectrum. These visible photoinitiators have been used for stereolithography and for in situ polymerization, but their utility for in vivo photopolymerization is limited in some applications (e.g., when fiber optics are impractical) by the small penetration depth in tissues at visible wavelengths. Photoinitiators that can be activated by two-photon absorption are highly transparent over a certain spectral range and can be used for stereolithography and for in situ polymerization, but their utility for in vivo photopolymerization is limited in some applications (e.g., when fiber optics are impractical) by the small penetration depth in tissues at visible wavelengths.

A method for multi-photon deprotection or photodecaging of groups is described in which a multi-photon absorbing dye is attached to known photodeprotecting groups or photodecaging groups. In this method a dye can absorb two-photon or more of energy, and through an energy or charge transfer mechanism, serve to excite the attached photodeprotecting or photodecaging group, thereby inducing the deprotection of a functional group which could be a drug, neurotransmitter, metal ion or other chemical reagent.

Two specific examples of photodeprotecting schemes involving attachment of known deprotecting groups to two-photon absorbing dyes are shown in FIG. 16. Multi-photon Absorbing Compounds According to the Invention as Optical Limiting Materials

A. Introduction

Two-photon and higher-order absorbing compositions in accordance with the invention are useful in optical power or energy limiting devices. These devices can be used to protect eyes or sensors from intense optical pulses, to modify the shape of the optical output pulse from lasers, to perform a thresholding function on optical pulses for signal processing, or for optically controlled spatial light modulation.

Materials that exhibit nonlinear absorption can be used for optical limiting devices. Such materials, including excited-state absorbers, two-photon absorbers or higher-order absorbers are initially highly transparent over a certain spectral band and become more strongly absorbing in this band as the incident optical intensity or energy is increased.

One of the significant applications of optical limiting devices is in laser eye or sensor protection. The exposure of human eyes or sensors to intense optical pulses can lead to permanent damage or to impaired visual performance and thus presents a serious problem to those working in environments where lasers may be encountered. Frequency-doubled Q-switched Nd:yttrium/aluminum/garnet lasers are very common and for these lasers (which have pulse durations of 10 ns and a wavelength of 532 nm), the ED(20) level (the exposure energy for which there is a 50% probability of producing a retinal lesion) is about 3 µJ, whereas the ANSI standard maximum permissible exposure level is about 0.1 µJ. In the laboratory or field environments, laser pulse energies of 1 to 100 µJ may be present, sometimes in the form of an unanticipated surface reflection off an optical component. Thus, protection devices must provide nonlinear attenuation and a high linear optical transmittance, to allow high visibility under ambient working conditions. Although fixed wavelength or broadband absorptive filters can be used to block laser beams from eyes or sensors, as in current commercial goggles for laser eye protection, these types of filters often impair visibility or color vision and are ineffective when there are multiple wavelengths or tunable lasers present.

A wide variety of materials and mechanisms have been investigated for use in optical limiting, however most existing materials have significant drawbacks such as a limited range of linear transmission or insufficient blocking ability. Optical limiting by two-photon absorption in semiconductors is well known and involves both two-photon absorption and nonlinear refraction due to the two-photon excited free carriers. However, most semiconductor materials are of limited utility for high dynamic range optical limiting because of their relatively low optical damage thresholds. Organic molecules can also exhibit two-photon absorption, but generally the two-photon absorptivities of molecules examined to date, which are actually small in number and of limited range in structure, fall short of the levels needed for optical limiting by two or more orders of magnitude.

As a result, with the present invention one can provide optical limiting devices using molecular two-photon or higher-order absorbers with large peak two-photon or higher-order absorptivities, as exemplified by effective two-photon absorptivities of >1,000x10^-8 cm^2/pulse and high linear transmission.

In addition, molecules according to the present invention can provide a broad bandwidth optical limiting material based on a mixture of molecular two-photon or higher-order absorbers.

Moreover, these molecules can provide optical limiting devices using a two-photon or higher-order absorbing material based on a mixture of molecular two-photon absorbers.

Two-photon or higher-order absorbers, of the type described in this disclosure, which have large two-photon or effective two-photon absorptivities are attractive materials for optical limiting since they can achieve large nonlinear attenuation and maintain very high linear transmittance.

B. Optical Limiting Materials in Accordance with the Present Invention

The present invention includes a class of molecules which exhibit very strong two-photon absorption in a spectral region where the linear transmission is very high. The present invention provides compositions of matter which have exceptionally large two-photon absorptivities.

In particular, we teach that bis-amino substitution of diphenylpolynes and related conjugated structures leads to strong two-photon bands with excitation wavelengths in the transparent region of the molecules, below the one photon absorption edge. Also, di-aryl substitution of the amines leads to a
significant red shift of the two-photon absorption band but a smaller shift of the lowest one-photon absorption band. This provides utility in formulating broadband limiting materials which preserve transparency. Furthermore, by combining two-photon absorber molecules which have two-photon absorption bands at different positions but which are each transparent over a targeted region of the spectrum, broadband optical limiting materials with high transparency can be obtained.

Large optical limiting effects have been observed with the new two-photon absorbers with large peak effective two-photon absorptivities (e.g., \(>1000 \times 10^{-50} \text{ cm}^2/\text{s} \cdot \text{photon}^{-1}\)). These effects have been observed using only moderate intensity nanosecond pulses. In earlier materials, large optical limiting effects are observed only for very high intensity picosecond pulses.

The optical limiting by two-photon absorption in 4-dimethylamino-4'-dibutylamino stilbene (MBDAS) for 605-nm, 8-ns laser pulses in a collimated beam geometry is shown in Fig. 17. At low incident energy, the transmission is close to 1.0, i.e., the sample is nonabsorbing. For input energies above \(-100 \mu\text{J}\) (fluences above \(-0.1 \text{ J/cm}^2\)), the transmission decreases and at an input energy of \(-2000 \mu\text{J}\) (fluence of 2 J/cm²), the transmission drops to 0.15. The collimated beam geometry utilized for this measurement was one used mainly for characterizing the nonlinear transmission and not to optimize the optical limiting response. A line corresponding to a transmission of 1.0 is shown for reference. The sample was a 0.33M MBDAS solution in acetone with a pathlength of 1 cm. The measurements were made with 605 nm, 8-ns laser pulses in a collimated beam geometry with a beam diameter of \(-400 \mu\text{m}\).

For such nonlinear transmission experiments, the spatial beam profile of the dye laser was adjusted to produce a roughly flat intensity distribution across a roughly 5-mm diameter beam. The beam was passed through an 8.5x beam reducing telescope. The position of the second lens in the telescope system was adjusted to produce a collimated beam over the length of the 1-cm sample cell holder. The sample solutions were placed in 1 cm pathlength quartz cells; the cell holder was about 50 mm from the second lens.

Typical maximum input energies into the samples were about 2.5 mJ. The energy delivered to the samples was controlled by a series of calibrated neutral density (ND) filters. A 4% beam splitter was inserted after the ND filter holder and this reference beam was sent to a 15 mm diameter silicon photodetector (equipped with appropriate ND filters to assure that the signal did not saturate the detector). A similar detector system was placed 75 mm after the optical limiting samples to collect the transmitted laser signal and to measure the total transmitted energy. This large area was chosen for performing total transmitted energy measurements, since nonlinear refractive effects caused defocusing effects in the transmitted beam. The detector outputs were integrated using a boxcar integrator and the integrator output was digitized and read into a PC computer. Measurements of the sample transmissions were repeated for a range of input laser energies (via the neutral density filters). The data were then analyzed by fitting them to the solution of the intensity propagation equation for two-photon absorption and optical limiting. For samples with no linear absorption, plots of 1/T versus intensity were fit to the equation:

\[
\frac{1}{T} = 1 + \beta I_L
\]

where \(T\) is the transmission, \(\beta\) is the effective two-photon absorption coefficient and is directly proportional to the molecular two-photon absorptivity, \(L\) is the pathlength and \(I_L\) is the incident intensity.

The two-photon absorptivity of MBDAS was \(13,500 \times 10^{-50} \text{ cm}^2/\text{s} \cdot \text{photon}^{-1}\). For comparison, a value of \(850 \times 10^{-50} \text{ cm}^2/\text{s} \cdot \text{photon}^{-1}\) was recently reported by G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, Optics Letters, 20 435 (1995). For a bis(benzthiazole)dialk oxide thiophene compound and was reported to be two orders of magnitude higher than a reference dye (Rhodamine 6G). Clearly, the effective two-photon absorptivity for MBDAS is very large. Much stronger optical limiting response is expected for MBDAS solutions in focusing optical systems. However, even in this unoptimized geometry, the response for the MBDAS solution is better than that of the best phthalocyanine excited-state absorber (chlororhodium tetra-(tert-buty1)phthalocyanine) solution with a transmission of 0.95.

The new multi-photon absorbers according to the present invention afford several interesting advantages for optical limiting. Firstly, these molecules exhibit effective two-photon absorptivities that are about one or more orders of magnitude higher for current state of the art materials. With such high two-photon absorptivities, these molecules are effective in limiting nanosecond duration pulses. Secondly, these molecules can have very high broadband linear transmission, since the two-photon absorption bands occur for photon energies well below the linear absorption edge. This could be a huge advantage, since low linear transmission and impairment of normal color vision are major concerns for potential users of laser protective devices. Thirdly, broadband two-photon absorbing molecules have been prepared from mixtures of compounds, all of which are essentially transparent over much of the visible spectrum, each with different two-photon resonances that span a wide band. Finally, these two-photon absorbing molecules perform very well at high intensities such that good short pulse performance is assured.

We have demonstrated optical limiting based on the new molecular two-photon and multi-photon absorbers described herein in different optical geometries and with combinations of materials as described below. The optical limiting compositions according to the present invention may exist as crystals, mesoscopic phases, polymers, glasses, liquids or gases. The compositions may be used alone or in combination with other crystals, mesoscopic phases, polymers, glasses, liquids or gases. By “mesoscopic phases,” we refer to materials with structural order on a length scale between that of individual molecules, i.e., above about 10 Angstroms, and the microscopic length scale, i.e., above about one micrometer. These materials include small molecule and polymeric liquid crystals, colloidal, micellar and liposomal suspensions, self-assembled nanoparticle arrays, and the like.

Depending upon the particular application the multi-photon absorber may be incorporated, in the form of a concentration gradient profile, into a material, to form a concentration gradient optical limiting material. Such gradients have been demonstrated for excited state absorption-type optical limiting materials. Concentration gradient materials can be made by solvent-assisted in-diffusion of molecules into porous solids or gels, by sequential deposition of layered thin film materials wherein the concentration of the dye in each layer is varied appropriately. This may be accomplished by forming a laminate structure comprised of thin films of free standing polymer containing the multi-photon absorber. Alternatively, gradient materials can be produced by codeposition of the dye with an inert binder material, with the relative rates of deposition of each material being varied with time to as form a concentration gradient.

We have performed optical limiting experiments using our multi-photon absorbers in a focusing optical system. In one example, solutions of 4,4'-bis(dibutylamino)stilbene (BDAS) in acetone were placed in a 1 cm pathlength cell positioned into the focus of an F/5 focusing lens. The transmitted optical energy was collected with a matched F/5 lens and relayed onto
a silicon photodiode detector. Optical limiting responses for solutions with two different concentrations (0.01 and 0.134 moles/liter) of the BDAS were obtained and are shown in FIG. 18. At the concentration of 0.134 moles/liter, the sample linear transmission at 605 nm was 96%. The transmission of the sample at an input energy of 170 µJ dropped to about 0.10. Although the sample path length was 1 cm, the effective interaction length was much smaller, <100 µm, due to the fact that the intensity falls off as z^{-2} from the focus and the rate of attenuation due to two-photon absorption depends on the square of the intensity. Thus, the rate of attenuation due to two-photon absorption falls off from the focus as z^{-4}. As a result, at one confocal length from the focus, the attenuation rate is reduced by a factor of 4 relative to that at the focus.

FIG. 18 illustrates two-photon optical limiting responses of 0.01 and 0.134 M solutions of 4,4'-bis(dibutylamino)stilbene for z ≈ 5-ns, 600 nm pulses. The straight line corresponds to the linear transmission (96%) of the 0.134 M solution. A 1 cm cell was centered on the focus of an ~ 5/8 optical system (effective interaction length <100 µm) and the total transmitted energy was detected.

Solutions or materials containing the multi-photon absorbing molecules according to the invention such as 4,4'-bis(dibutylamino)stilbene, exhibit strong nonlinear optical beam spreading such that the transmitted energy emanating from the absorber is defocused and spread over a larger area for strong inputs compared to weaker ones. As a result, greater protection from optical damage is obtained for a detector or sensor placed at the final focal plane of the system. Yet further enhancements in the protection afforded by these multi-photon absorbers can be obtained by placement of a suitable aperture stop at an intermediary focal plane, so as to entirely eliminate the transmitted energy that falls outside the pupil of the stop, as a result of nonlinear beam spreading.

FIG. 19 shows the nonlinear absorption peaks for 4,4'-bis(di-n-butylamino)stilbene and 4,4'-bis(diphenylamino)stilbene and the linear transmission of a mixture of these compounds at a total concentration of 0.1 M. The absorption edge for 4,4'-bis(di-n-butylamino)stilbene has an onset at 500 nm, so that the material is transparent from 500 nm to longer wavelengths throughout the visible spectral range. Thus, the two-photon absorption band occurs in a region of high transparency. The two-photon peak at 600 nm is fairly sharp, but we have shown that simple diphenyl substitution on the stilbene gives rise to a broader two-photon peak that is shifted to ~690 nm, even though the one photon peak is red shifted by only 20 nm. A mixture of these materials would cover well the range from 560 to 730 nm, as demonstrated in FIG. 18. Experiments show that such a mixture of 4,4'-bis(di-n-butylamino)stilbene and 4,4'-bis(diphenylamino)stilbene shows a net two-photon absorptivity that is equal to the sum of the two-photon absorptivities of the two individual molecules. For example, measurements at 650 nm, corresponding to the wavelength where the two-photon spectra of the two molecules cross, show that the net two-photon absorptivity is additive in the contribution from each compound.

FIG. 19 illustrates linear transmission spectrum (solid line) of a mixture of 4,4'-bis(di-n-butylamino)stilbene and 4,4'-bis(diphenylamino)stilbene for a total concentration of 0.1 M. Also shown are the wavelength dependent two-photon absorptivities for each compound: triangles are for the dibutyl derivative and squares are for the diphenyl derivative.

Thus, we teach that a combination of chromophores with alkyl and aryl substituents on the amino groups of diaminostilbenes produces materials with broadband two-photon absorption and high transparency. Additional shorter wavelength two-photon absorbers could be added with no compromise of the linear transmission in order to further extend the two-photon absorption to cover the whole visible spec-
where:

X, Y, Z are independently selected from the group consisting of CR, =CR, O, S, and N—R;

wherein when Da or Db is selected from N, S and P, the attached Ra, Rb, Rc, Rd are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, —(CH₂CH₂O)ₐ—(CH₂)ₜOR, —(CH₂CH₂O)ₐ—(CH₂)ₜNRᵢRᵢ₊₁, —(CH₂CH₂O)ₐ—(CH₂)ₜCONRᵢRᵢ₊₁, —(CH₂CH₂O)₁—(CH₂)₂CN, —(CH₂CH₂O)₁—(CH₂)₂Cl, —(CH₂CH₂O)₁—(CH₂)₂Br, —(CH₂CH₂O)₁—(CH₂)ₜPhenyl, a group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, vinyl, allyl, 4-styryl, acryl, methacryl, acrylonitrile, isocyanate, isoithiocyanate, epoxides, strained ring olefins, —(CH₂)ᵢSiClᵢ, —(CH₂)ᵢSi(OCH₂CH₃)ᵢ, and —(CH₂)ᵢSi(OCH₃)ᵢ, where 0<ᵢ<25;

wherein when Da or Db is O, the attached Ra, Rb, Rc, Rd are independently selected from the group consisting of H, —(CH₂CH₂O)ₐ—(CH₂)ₜORᵢRᵢ₊₁, —(CH₂CH₂O)ₐ—(CH₂)₂NRᵢRᵢ₊₁, —(CH₂CH₂O)ₐ—(CH₂)₂CONRᵢRᵢ₊₁, —(CH₂CH₂O)₁—(CH₂)₂CN, —(CH₂CH₂O)₁—(CH₂)₂Cl, —(CH₂CH₂O)₁—(CH₂)₂Br, —(CH₂CH₂O)₁—(CH₂)ₜI, —(CH₂CH₂O)₁—(CH₂)ₜPhenyl, a group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, vinyl, allyl, 4-styryl, acryl, methacryl, acrylonitrile, isocyanate, isoithiocyanate, epoxides, strained ring olefins, —(CH₂)ᵢSiClᵢ, —(CH₂)ᵢSi(OCH₂CH₃)ᵢ, and —(CH₂)ᵢSi(OCH₃)ᵢ, where 0<ᵢ<25; wherein one of Ra and Rb is not present when Da is O or S, and wherein one of Rc and Rd is not present when Db is O or S;

Ra, Rₗ, Rₘ, Rₙ, Rₜ, Rₜ₊₁, and Rₜ₊₂ are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, —(CH₂CH₂O)ₐ—(CH₂)ₜORᵢRᵢ₊₁, —(CH₂CH₂O)ₐ—(CH₂)₂NRᵢRᵢ₊₁, —(CH₂CH₂O)ₐ—(CH₂)₂CONRᵢRᵢ₊₁, —(CH₂CH₂O)₁—(CH₂)₂CN, —(CH₂CH₂O)₁—(CH₂)₂Cl, —(CH₂CH₂O)₁—(CH₂)₂Br, —(CH₂CH₂O)₁—(CH₂)ₜI, —(CH₂CH₂O)₁—(CH₂)ₜPhenyl, a group of aromatic rings having up to 20 carbons in the aromatic framework, fused aromatic rings, CHO, CN, NO₂, Br, Cl, I, phenyl, an acceptor group having more than two carbon atoms, a functional group obtained by reaction with an amino acid, a polypeptide, adenine, guanine, tyrosine, cytosine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

Rₘ₊₁, Rₜ, and Rₜ₊₂ are each independently a functional group obtained by reaction with:

- an amino acid, a polypeptide, adenine, guanine, tyrosine, cytosine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

- an amino acid, a polypeptide, adenine, guanine, tyrosine, cytosine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

- an amino acid, a polypeptide, adenine, guanine, tyrosine, cytosine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

2. The method of claim 1, wherein X and Z are CRₜᵢ.

3. The method of claim 1, wherein Da is N.

4. The method of claim 1, wherein Da is O.

5. The method of claim 1, wherein Da is S.

6. The method of claim 1, wherein Da is P.

7. A method for preparing a compound in an electronically excited state, comprising the steps of:

a) exposing a compound having the formula D₁—H—D₂ to radiation of a wavelength within a multiphoton absorption peak of said compound, wherein D₁ and D₂ are electron donor groups; and

b) converting said compound to a multi-photon excited state upon simultaneous absorption of at least two photons of said radiation by said compound, wherein the sum of the energies of all of said absorbed photons is greater than or equal to the transition energy from a ground state of said compound to said multi-photon excited state and wherein the energy of each absorbed photon is less than the transition energy between said ground state and the lowest single-photon excited state of said compound and is less than the transition energy between said multi-photon excited state and said ground state, wherein said compound is further defined by a formula
where D_a is selected from the group consisting of N, O, S, and P;
where D_b is selected from the group consisting of N, O, S, and P;
m, n, o are integers such that $1 \leq m \leq 10$, $0 \leq n \leq 10$, and $0 \leq o \leq 10$; and

where:
X and Z are independently selected from the group consisting of CR, O, S, and N – R;
R_a, R_b, R_c, R_d are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, (CH$_2$)$_n$ OR, (CH$_2$)$_n$ CONR$_b$ R$_b$, (CH$_2$)$_n$ CN, (CH$_2$)$_n$ Cl, (CH$_2$)$_n$ Br, (CH$_2$)$_n$ Ph, a group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, vinyl, allyl, stilbene, acrylate, methacrylate, acrylonitrile, isocyanate, isothiocyanate, epoxides, strained ring olefins, (CH$_2$)$_n$ SiCl, (CH$_2$)$_n$ Si(OCH$_2$CH$_3$)$_3$, and (CH$_2$)$_n$ Si(OCH$_3$)$_3$, where $0 \leq n \leq 25$; wherein one of R_a and R_b is not present when Da is O or S, and wherein one of R_c and R_d is not present when Db is O or S;

R_m, R_n, R_p, and R_q are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, (CH$_2$)$_n$ OR, (CH$_2$)$_n$ CONR$_b$ R$_b$, (CH$_2$)$_n$ CN, (CH$_2$)$_n$ Cl, (CH$_2$)$_n$ Br, (CH$_2$)$_n$ Ph, a group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, CHO, CN, NO$_2$, Br, Cl, I, phenyl, a group of aromatic rings having more than two carbon atoms, a functional group obtained by reaction with an amino acid, an amino acid, a polypeptide, adenine, guanine, tyrosine, cystine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

R_i, R_j, and R_k are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, and a functional group obtained by reaction with:
an amino acid, a polypeptide, adenine, guanine, tyrosine, cystine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

R_l, R_m, and R_n are each independently a functional group obtained by reaction with:
an amino acid, a polypeptide, adenine, guanine, tyrosine, cystine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

R_{o1}, R_{o2}, and R_{o3} are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, and a functional group obtained by reaction with:
an amino acid, a polypeptide, adenine, guanine, tyrosine, cystine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

where D_a is selected from the group consisting of N, O, S, and P;
where D_b is selected from the group consisting of N, O, S, and P;
m, n, o are integers such that $1 \leq m \leq 10$, $0 \leq n \leq 10$, and $0 \leq o \leq 10$; and

where:
X and Z are independently selected from the group consisting of CR, O, S, and N – R;
R_a, R_b, R_c, R_d are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, (CH$_2$)$_n$ OR, (CH$_2$)$_n$ CONR$_b$ R$_b$, (CH$_2$)$_n$ CN, (CH$_2$)$_n$ Cl, (CH$_2$)$_n$ Br, (CH$_2$)$_n$ Ph,aryl groups, a group of aromatic rings, vinyl, allyl, stilbene, acrylate, methacrylate, acrylonitrile, isocyanate, isothiocyanate, epoxides, strained ring olefins, (CH$_2$)$_n$ SiCl, (CH$_2$)$_n$ Si(OCH$_2$CH$_3$)$_3$, and (CH$_2$)$_n$ Si(OCH$_3$)$_3$, where $0 \leq n \leq 25$;

R_{a1}, R_{a2}, and R_{a3} are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, (CH$_2$)$_n$ OR, (CH$_2$)$_n$ CONR$_b$ R$_b$, (CH$_2$)$_n$ CN, (CH$_2$)$_n$ Cl, (CH$_2$)$_n$ Br, (CH$_2$)$_n$ Ph, a group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, phenyl, an acceptor group having more than two carbon atoms, and a functional group obtained by reaction with:
an amino acid, a polypeptide, adenine, guanine, tyrosine, cystine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

8. The method of claim 7, wherein X and Z are CR, O, S, and N – R;
9. The method of claim 7, wherein Da is N.
10. The method of claim 7, wherein Da is O.
11. The method of claim 7, wherein Da is S.
12. The method of claim 7, wherein Da is P.
13. A method for preparing a compound in an electronically excited state, comprising the steps of:
a) exposing a compound having the formula D_1 -H-D_2 to radiation of a wavelength within a multiphoton absorption peak of said compound, wherein D_1 and D_2 are electron donor groups; and II comprises a bridge of pi-conjugated bonds connecting D_1 and D_2; and
b) converting said compound to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of said radiation by said compound, wherein the sum of the energies of all of said absorbed photons is greater than or equal to the transition energy between said ground state of said compound to said multi-photon excited state, and wherein the energy of each absorbed photon is less than the transition energy between said ground state and the lowest single-photon excited state of said compound and is less than the transition energy between said multi-photon excited state and said ground state, wherein said compound is further defined by a formula

where D_1 is selected from the group consisting of N, O, S, and P;
where D_2 is selected from the group consisting of N, O, S, and P;
m, n, o are integers such that $1 \leq m \leq 10$, $0 \leq n \leq 10$, and $0 \leq o \leq 10$; and

where:
X and Z are independently selected from the group consisting of CR, O, S, and N – R;
R_a, R_b, R_c, R_d are independently selected from the group consisting of H, a linear or branched alkyl group with up to 25 carbons, (CH$_2$)$_n$ OR, (CH$_2$)$_n$ CONR$_b$ R$_b$, (CH$_2$)$_n$ CN, (CH$_2$)$_n$ Cl, (CH$_2$)$_n$ Br, (CH$_2$)$_n$ Ph, a group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, phenyl, an acceptor group having more than two carbon atoms, and a functional group obtained by reaction with:
an amino acid, a polypeptide, adenine, guanine, tyrosine, cystine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;
to 25 carbons, \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{OR}_{\alpha1}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{NR}_{\alpha2}\text{R}_{\alpha3}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{CN}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{Cl}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{Br}\), \((\text{CH}_2)\gamma\text{Phenyl}, \alpha \text{ group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, vinyl, allyl, 4-styryl, acroyl, methacroyl, acrylonitrile, isocyanate, isothiocyanate, epoxides, strained ring olefins, } (\text{CH}_2)_5\beta\text{SiCl}_3, (\text{CH}_2)_5\beta\text{Si(OCH}_2\text{CH}_3)_3\), and \((\text{CH}_2)_5\beta\text{Si(OCH}_3)_3\), where \(0<\alpha<25\); wherein one of \(\text{Ra}\) and \(\text{Rb}\) is not present when \(\text{Da}\) is \(\text{O}\) or \(\text{S}\), and wherein one of \(\text{Rc}\) and \(\text{Rd}\) is not present when \(\text{Db}\) is \(\text{O}\) or \(\text{S}\); \(\text{Re}, \text{Rf}, \text{Rg}, \text{Ri}, \text{Rj}, \text{Rk}, \text{Rl}, \text{Rm}\), and \(\text{Rn}\) are independently selected from the group consisting of, a linear or branched alkyl group with up to 25 carbons, \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{NR}_{\beta1}\text{R}_{\beta2}\text{R}_{\beta3}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{CONR}_{\beta2}\text{R}_{\beta3}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{CN}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{Cl}\), \((\text{CH}_2\text{CH}_2\text{O})_\alpha(\text{CH}_2)\beta\text{Br}\), \((\text{CH}_2)\gamma\text{Phenyl}, \alpha \text{ group of aromatic rings having up to 20 carbons in the aromatic ring framework, fused aromatic rings, vinyl, allyl, 4-styryl, acroyl, methacroyl, acrylonitrile, isocyanate, isothiocyanate, epoxides, strained ring olefins, } (\text{CH}_2)_5\beta\text{SiCl}_3, (\text{CH}_2)_5\beta\text{Si(OCH}_2\text{CH}_3)_3\), and \((\text{CH}_2)_5\beta\text{Si(OCH}_3)_3\), where \(0<\beta<25\); \(\text{R}_{\alpha1}, \text{R}_{\alpha2}, \text{and } \text{R}_{\alpha3}\) are independently selected from the group consisting of, an amino acid, a polypeptide, adenine, guanine, tyrosine, cystine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride, or methacryloyl chloride;

14. The method of claim 13, wherein \(X\) and \(Z\) are \(\text{CR}_k\text{CR}_i\).
15. The method of claim 13, wherein \(\text{Da}\) is \(\text{N}\).
16. The method of claim 13, wherein \(\text{Da}\) is \(\text{O}\).
17. The method of claim 13, wherein \(\text{Da}\) is \(\text{S}\).
18. The method of claim 13, wherein \(\text{Da}\) is \(\text{P}\).
19. A method for preparing a compound in an electronically excited state, comprising the steps of:
a) exposing a compound having the formula \(D_1\text{-II-D}_2\) to radiation, wherein \(D_1\) and \(D_2\) are electron donor groups; and \(\text{II}\) comprises a bridge of \(\pi\)-conjugated bonds connecting \(D_1\) and \(D_2\); and
b) converting said compound to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of said radiation by said compound, wherein the sum of the energies of all of said absorbed photons is greater than or equal to the transition energy from a ground state of said compound to said multi-photon excited state and wherein the energy of each absorbed photon is less than the transition energy between said ground state and the lowest single-photon excited state of said compound and is less than the transition energy between said multi-photon excited state and said ground state, wherein said compound is selected from the group consisting of
and mixtures thereof, where $R = (\text{CH}_2)_{1,1}\text{CH}_3$.

* * * * *