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Abstract 1 

Climate change in tundra regions may alter vegetation species composition and 2 

ecosystem carbon balance.  Remote sensing provides critical tools for monitoring these 3 

changes as optical signals provide a way to scale from plot measurements to regional 4 

patterns. Gas exchange measurements of pure patches of key vegetation functional types 5 

(lichens, mosses, and vascular plants) in sedge tundra at Barrow AK, show three 6 

significantly different values of light use efficiency (LUE) with values of 0.013±0.001, 7 

0.0018±0.0002, and 0.0012±0.0001 mol C mol-1 absorbed quanta for vascular plants, 8 

mosses and lichens, respectively. Further, discriminant analysis of patch reflectance 9 

identifies five spectral bands that can separate each vegetation functional type as well as 10 

nongreen material (bare soil, standing water, and dead leaves). These results were tested 11 

along a 100 m transect where midsummer spectral reflectance and vegetation coverage 12 

were measured at one meter intervals. Area-averaged canopy LUE estimated from 13 

coverage fractions of the three functional types varied widely, even over short distances. 14 

Patch-level statistical discriminant functions applied to in situ hyperspectral reflectance 15 

successfully unmixed cover fractions of the vegetation functional types. These functions, 16 

developed from the tram data, were applied to 30 m spatial resolution Earth Observing-1 17 

Hyperion imaging spectrometer data to examine regional variability in distribution of the 18 

vegetation functional types and from those distributions, the variability of LUE.  Across 19 

the landscape, there was a fivefold variation in tundra LUE that was correlated to a 20 

spectral vegetation index developed to detect vegetation chlorophyll content. 21 
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Introduction 1 

High northern latitudes are undergoing dramatic changes in climate. Warming 2 

trends have been observed in northern regions and Global Circulation Model predictions 3 

indicate arctic and boreal regions are likely to warm by several degrees over the next 4 

century, a greater rate than other regions on the globe [1, 2]. Warming is particularly 5 

important in high latitude regions where seasonal shifts in surface properties involve 6 

freezing and thawing of water, so relatively small temperature changes around the 7 

freezing point can result in significant environmental shifts. Along with temperature 8 

changes, significant changes in precipitation and evapotranspiration are also predicted for 9 

these regions [1, 2].  10 

 Tundra vegetation is expected to be particularly responsive to climate 11 

change. Increased warming during the growing season is expected to alter production by 12 

lengthening the growing season and increasing metabolic activity [3, 4, 5].  Changes in 13 

seasonal air temperature may also result in changes in the depth of permafrost. This, in 14 

turn, can affect soil microbial activity, nutrient cycles and soil moisture [6, 7], which alter 15 

existing plant growth and competitive species interactions resulting in dramatic changes 16 

in vegetation composition. A unique characteristic of the tundra ecosystem is the relative 17 

dominance of non-vascular plants in the landscape, such as mosses and lichens. In some 18 

cases, mosses dominate local habitats in the tundra because of their tolerance to extreme 19 

cold, dessication, water-logging, and low light [8]. Lichens can survive extreme climate 20 

conditions such as drought and persistent freezing [9, 10, 11]. Tundra warming 21 

manipulation experiments have shown a decline in lichens with an increase in vascular 22 

plants [12]. 23 
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Remote sensing is an important tool in the evaluation of ecosystem change as it 1 

provides repeatable and consistent measurements that can be collected over large 2 

expanses of the Earth. The difficulties in working in remote tundra locations have always 3 

incurred large logistical costs, therefore observation of ecosystem change rely on remote 4 

sensing as the most expedient and cost-effective way to collect information.  Importantly, 5 

most remote sensing theory of vegetation has been derived from studies focused on 6 

temperate crops and forests and thus the interpretation of conventional remote sensing 7 

tools is often ambiguous for northern landscapes.  There are several unique features of 8 

the tundra that affect the interpretation of remotely sensed data [13].  For example, non-9 

vascular plants (mosses and lichens) may represent significant fractions of the tundra 10 

landscape cover, and these non-vascular plants have different physiological responses as 11 

well as different spectral characteristics from vascular plants or from bare soils [14, 15, 12 

16]. Remote sensing studies have been able to detect changes in lichen-dominated areas 13 

due to responses to both short-term temperature anomalies as well as long-term 14 

temperature trends [17, 18]. 15 

This study investigates the importance of non-vascular plants to the tundra carbon 16 

balance and examines the use of spectral reflectance to distinguish these different 17 

functional types, using the concept of “optical types” to scale from ground-based in situ 18 

measurements to regional areas using satellite observations to examine vegetation 19 

functional type patterns across the tundra [19].  20 

 21 

Materials and Methods 22 

Study Area 23 
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The study area is a region mainly located north and west of the town of Barrow, 1 

AK, including most of the Barrow Environmental Observatory.  Specific study plots are 2 

located at 71° 19' 19.1" N 156° 36' 15.9" W, approximately six miles east of Barrow. The 3 

area is classified as moist acidic coastal tundra [20]. Barrow has a mean annual 4 

temperature of −12.0°C, with a minimum mean monthly temperature of −26.6°C in 5 

February and maximum mean monthly temperature of 4.7°C in July. More than half of 6 

the 106 mm of annual precipitation falls as rain during a 3-month period from July 7 

through September, with the ground being snow covered from September through May to 8 

mid-June [21]. 9 

The tundra community at Barrow, AK consists of an overstory dominated by 10 

vascular plants (mostly graminoids) and an underlying mat of mosses [22]. Vascular 11 

plants at Barrow include dwarf shrubs, forbs, and perennial herbs but the most dominant 12 

growth form is graminoid [20].  Common vascular species are: Carex aquatilis, Dupontia 13 

fischerii, Eriophorum angustifolium, E. scheuzerii, Luzula confusa, Petasites frigidus, 14 

Potentilla hyparctica, and Salix rotundifolia.  Mosses are a significant portion of the 15 

community and in some areas may account for more biomass than vascular plants [23]. 16 

Moss species include: Dicranum elongatum, D. undulatum, Drepanocladus revolvens, 17 

Polytrichum (juniperum), and Sphagnum spp.  Lichens are scattered throughout the drier 18 

areas but are not as abundant or productive as mosses and graminoids [24] and include 19 

the species: Alectoria nigricans, Cetraria cucullata, C. nivalis, and Dactylina arctica. 20 

 21 

Measurements 22 
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 This project included: 1) the collection of in situ measurements of plots for the 1 

three vegetation functional types, including photosynthesis and spectral reflectance; 2) 2 

measurements at every meter along a 100 m transect of ground cover amount and spectral 3 

reflectance; 3) development of relationships between spectral reflectance and both 4 

photosynthesis and cover amount; 4) estimation of LUE across a tundra transect; and 5) 5 

application of these findings to the spectral information collected from Hyperion. 6 

 Vegetation measurements were designed to relate photosynthetic rate to spectral 7 

reflectance.  Tundra vegetation was grouped into three functional categories; vascular 8 

plants, mosses, and lichens, with at least four replicates per group measured on any one 9 

day.  Each replicate provided a different species from each group in an attempt to 10 

measure the variability within a group.  Field sampling for this study was conducted on 11 

July 20 and August 5, 2001, near the peak of the growing season for this region. 12 

Spectral reflectance measurements were collected at 51 plots, each about 15 cm in 13 

diameter, representing nearly pure areas of representative tundra species.  Photosynthetic 14 

gas exchange measurements were collected at 17 of the plots.  All of the study plots were 15 

in very close proximity (<15 m) to a 100 m linear transect that was also optically sampled 16 

at frequent intervals throughout the summer [25].  17 

CO2 gas exchange was measured at 17 plots where a 14.6 cm diameter collar of 18 

acrylic plastic was embedded in the ground.  When measurements were made the plot 19 

was enclosed in a clear acrylic chamber constructed of 0.3175 cm thick acrylic tube glued 20 

to a 0.635 cm thick acrylic top and a closed gas exchange system was connected to the 21 

chamber (LI-6200, LiCOR, Lincoln, NE).  Each individual plot was measured under 22 

ambient environmental conditions for net photosynthesis and then the measurement was 23 
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repeated after being covered with a black cloth to estimate dark respiration.  Gross 1 

photosynthesis was calculated as the difference between the net photosynthesis, measured 2 

with the clear chamber, and dark respiration, measured with the chamber covered.  A 3 

quantum sensor mounted on the chamber top measured incident photosynthetically active 4 

radiation (PAR).  The chamber had a PAR transmittance of 95% [26].   Photosynthetic 5 

light-response curves were determined using household window screen material as 6 

neutral density filters to control incident PAR.  This allowed photosynthesis 7 

measurements to be made for each functional type under a range of light levels.   8 

Light use efficiency (LUE) was determined as the ratio of absorbed light and 9 

gross photosynthesis: 10 

  11 

! 

" =
G

fPAR Qi

        (1) 12 

 13 

where ε is LUE, G is gross photosynthesis with units of µmol CO2  m-2  s-1, Qi is incident 14 

PAR with units of µmol photons m-2  s-1(i.e. photosynthetic photon flux density, or 15 

PPFD) and fPAR is the fraction of the PAR absorbed by the vegetation (unitless).  16 

Absorbed PAR (APAR) is the product of fPAR and incident PAR.   17 

fPAR is not well defined and difficult to determine for vegetation with growth 18 

forms like lichens and mosses.  We assumed that no PAR was transmitted through moss 19 

and lichen mats, so for these vegetation types fPAR is 1-PAR albedo.  PAR albedo is 20 

estimated by integrating the measured spectral reflectance (see below) between 400 and 21 

700 nm.  For the vascular plant plots fPAR is determined using the linear relationship 22 
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between Normalized Difference Vegetation Index (NDVI) and fPAR described in 1 

Huemmrich et al. [26]. 2 

 3 

Optical Sampling 4 

The optical field sampling consisted of measurements of the small single species 5 

plots, as well as measurements collected at every meter along a 100 m transect to observe 6 

areas of mixed coverage [25]. Optical measurements were collected using two portable 7 

field spectrometers (UniSpec, PP Systems, Haverhill, MA).  These spectrometers 8 

measured reflectance between 310 and 1130 nm sampling at approximately 3 nm 9 

intervals. 10 

For plot measurements, the spectrometer was fitted with a glass fiber optic cable 11 

connected to a stainless steel ferrule, which provided a 20° field of view.  Reflected 12 

irradiance measurements were collected with the end of the fiber optic cable held 13 

vertically between 30 and 40 cm above the surface to view an area of less than 15 cm 14 

diameter to match the area of gas exchange measurements.  Within seconds of collecting 15 

a surface measurement, a reference measurement was made of a calibration panel 16 

(Spectralon, Labsphere, Inc. North Sutton, NH).  The speed of this procedure allowed the 17 

acquisition of data even under cloudy conditions.  Three reflectance spectra were 18 

collected for each sampled plot, and were averaged to produce one spectrum per plot.  In 19 

addition to the vegetation plots, spectral measurements for nongreen materials including 20 

bare soil, open water, and areas of standing dead vascular plants, were collected soon 21 

after snowmelt and before the start of green-up. For the vegetation plots, ground-based 22 

spectral reflectance measurements were collected near the height of peak productivity 23 
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period in early August (August 5 and 8, 2001) and reflectance for nongreen plots were 1 

collected throughout the summer (June 20 and 30, July 15, August 8 and 22, and 2 

September 3, 2001). 3 

To characterize spectral reflectance patterns at multiple spatial scales, spectral 4 

measurements were made at 1 m intervals along a 100 m linear track system [25, 27].  5 

The track was supported less than a meter above the tundra surface by tripods with a tram 6 

cart riding on the track carrying a dual channel spectroradiometer (Unispec DC, PP 7 

Systems).  From the spectrometer were two fiber-optic cables mounted on a mast and 8 

boom attached to the cart, one attached to a diffuser head viewing upward, the other on 9 

the boom pointing vertically downward to view an area south of the track with a field-of-10 

view of approximately 1 m in diameter.  With each measurement of reflected radiance, a 11 

measurement of incident irradiance was also acquired at the same time for a 12 

determination of surface reflectance.  Due to the coincident measurements of both 13 

incoming and reflected radiation this system was able to correct for effects of varying 14 

cloud cover.  The tram system collected spectral measurements throughout the growing 15 

season that were repeatable while minimizing disturbance to the tundra surface [25, 27]. 16 

In this study we used measurements from the peak of the growing season period collected 17 

on August 10, 2001. 18 

Processing the ground-measured spectral reflectance data included interpolating 19 

the spectral bands to 1 nm intervals. Due to instrument noise at the ends of the 20 

spectrometer range, the usable spectral range was between 400 and 1000 nm.  The 21 

processing used freely available software (Multispec v.4.0, 22 

http://specnet.info/specnet_toolkit.htm).  The spectral reflectance data were then 23 
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convolved to match the approximately 11 nm band passes of the Hyperion instrument 1 

[28] in subsequent analyses. 2 

Regional imaging spectrometer data were acquired on July 20, 2009 (day 201) by 3 

the Hyperion instrument on the Earth Observing-1. Hyperion provides data in 220 4 

spectral bands from 0.4 to 2.5 µm at 30-meter resolution and a 7.5 km wide swath [28].  5 

The satellite data were atmospherically corrected to surface reflectance using the 6 

Atmosphere Removal algorithm (ATREM) [29, 30]. In this analysis, to match the 7 

spectral range of the ground-based spectral data, only 55 of the continuous Hyperion 8 

bands between 437 and 993 nm were used.   9 

Discriminant analysis (DA) is a statistical technique for separating groups based 10 

on measured characteristics [31].  DA was used to develop functions separating the 11 

functional groups based on optical properties, determining the important spectral bands 12 

and simplifying the number of independent variables. The plot data were divided into 13 

four groups: vascular plants, mosses, lichens, and nongreen materials (bare soil, dead 14 

vegetation, and standing water). DA was applied to all the plot reflectance spectra 15 

convolved to the Hyperion bands using Systat (Version 13, Systat Software, Inc., 16 

Chicago, IL), using a forward stepwise method (Wilks’ Lamda) to test for significant 17 

mean DA differences; a probability of F≤ 0.05 will pick the band but an F≥ 0.10 will 18 

remove the band.  19 

At each meter along the 100 m transect a visual estimate of species abundance 20 

was made over the period August 8-11, 2001 using a 1 m by 1 m quadrat. The species 21 

data were converted into percent area of each of the vegetation functional types and 22 

nongreen material types. We estimate errors in the estimation of coverage to be +/- 15% 23 
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cover. Because of the three dimensional structure of the vegetation the sum of the 1 

coverage was more than 100%. For this analysis, the total measured cover values were 2 

normalized so total cover equals 100%.   3 

LUE was determined for areas with mixtures of different functional types as the 4 

weighted sum of the LUE from the pure plots, where the weight coefficients were the 5 

normalized fractional cover values.  This calculation assumes that the incident PAR is 6 

absorbed by the landscape components proportional to their normalized cover fraction 7 

and was applied to determine LUE for both the transect data and the Hyperion satellite 8 

imagery. 9 

Chlorophyll concentrations are a key physiological factor related to maximum 10 

photosynthetic rates. We estimated chlorophyll concentrations using a semianalytical 11 

three-band model with the form: 12 

Ci =  [R(λ1)-1 - R(λ2)-1] R(λ3)      (2) 13 

where the spectral index Ci is proportional to the chlorophyll concentration, and R(λ) is 14 

the reflectance for a given wavelength band, λ. Wavelengths chosen are maximally 15 

sensitive to absorption by chlorophyll and other pigments (λ1=549 nm), are influenced 16 

primarily by non-chlorophyll pigments (λ2=793 nm), and where reflectance is controlled 17 

by leaf scattering (λ3=793 nm) [32, 33, 34]. Vegetation functional type cover estimates 18 

retrieved from the Hyperion imagery were used to calculate regional LUE patterns. LUE 19 

per pixel was compared with chlorophyll estimates obtained with Equation 2. 20 

 21 

Results 22 
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The physiological measurements identify differences relating to photosynthetic 1 

carbon exchange among the three vegetation functional types. From the plot gas 2 

exchange data, LUE for each functional type was calculated as the slope of a linear 3 

regression between gross photosynthesis and APAR, forced through the origin (Figure 1, 4 

Table 1).  Lichens, mosses, and vascular plants all had different LUE values. Vascular 5 

plants had significantly higher net photosynthetic rates and LUE than the other two 6 

functional types. The vascular plant LUE from this study (0.0134 mol C mol-1 quanta) 7 

was close to that previously determined for a vascular plant overstory near Barrow 8 

(LUE=0.0126 mol C mol-1 quanta) and within the 95% confidence interval of the slope 9 

from the regression in this study (i.e. the vascular plant LUE). This was noteworthy as the 10 

LUE in this study was based only on measurements collected during the middle of the 11 

growing season, while the Huemmrich et al. [26] LUE was derived from measurements 12 

collected throughout the growing season, suggesting the LUE for vascular plants was 13 

relatively stable over much of the season. 14 

The LUE for mosses and lichens were much lower than for vascular plants, 15 

however there was a significant difference between these two functional types as well 16 

(Table 1) with mosses having a LUE almost 50% greater than lichens (a similar analysis 17 

for LUE of the moss data was presented in [26]). 18 

The in situ spectral reflectance measurements of the plots were divided up into 19 

four groups: vascular plants (n=22), mosses (n=11), lichens (n=18), and nongreen 20 

material (n=19) (Figure 2).  Generally, the vascular plant and moss spectra were similar, 21 

and display typical green plant spectral reflectance patterns, including more variation in 22 

the near infrared than in visible wavelengths. In comparison, lichen spectra had much 23 
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higher visible reflectance and were more variable in all wavelengths. Spectral patterns for 1 

the nongreen materials were clearly different for dead vegetation, bare soil, and water.  2 

Generally the spectral variability for the entire nongreen group increases as a function of 3 

wavelength. 4 

DA provided an objective tool to evaluate the ability of optical sampling to 5 

distinguish functional groups and to identify a subset of the spectral bands to do this 6 

separation. The stepwise method for DA reduced the number of wavebands from 55 to 7 

five, yet retained separation of functional types.  The five chosen bands were located in 8 

key locations of typical green plant spectra (Figure 2); at the blue (488 nm) and red (671 9 

nm) chlorophyll absorption wells, near the inflection point of the red edge (712 nm), at 10 

the shoulder of the red edge (763 nm), and in the near infrared “plateau” (834 nm). 11 

Mulhern [35] identified the blue band as an important spectral region for separating 12 

lichens from soils. The DA functions (Figure 3) correctly predicted 83% of group 13 

membership overall, with 86% correct for vascular plants, 91% for mosses, 95% for the 14 

nongreen materials, and 61% for lichens.  Lichen errors were mainly due to confusion 15 

with the nongreen materials (Figure 3).  16 

Even at the scale of one square meter, the cover estimates along the tram transect 17 

show that all square meter plots consisted of mixtures of multiple cover types (Figure 4).  18 

The observed cover estimates included little bare ground with maximum coverage of 19 

20%, while standing dead vegetation ranged from 0-70%, and water from 0-100%.  Moss 20 

coverage ranged from 0-100%, but when normalized to a 100% maximum total coverage 21 

maximum moss coverage was 40% +/- 7%, based on the propagation of an assumed 15% 22 

error in the original observations. Lichen coverage ranged from 0-90% with 35% +/- 7% 23 
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maximum normalized lichen coverage. Vascular plant coverage ranged between 40-1 

150%, with normalized coverage of 18-88% +/- 9%. Microtopography was an important 2 

factor in determining the distribution of the different vegetation functional types. 3 

Vascular plant coverage was highest in the locally low areas, particularly the areas with 4 

standing water, while moss coverage was highest in locally low areas without standing 5 

water and on the edges of the wet areas. Lichen coverage was highest in the locally high 6 

areas where bare soil patches also occurred. 7 

The DA technique applied to reflectance data can successfully separate the 8 

different vegetation functional types.  However, the transect coverage observations 9 

indicate how heterogeneous the tundra is, as areas over a few square centimeters in size 10 

generally consist of mixtures of multiple types. Therefore, the fractions of each functional 11 

type within a 30 m Hyperion pixel are required to determine its overall LUE.  We used 12 

the optical measurements to scale plot-level LUE to 30 m areas. Since the DA functions 13 

optimized separation of the different functional types with a small number of spectral 14 

bands, we used the distance to endmembers in the DA function space to estimate cover 15 

fractions in mixed pixels.  Assuming that the range of in situ plot reflectances provide a 16 

reasonable description of the variability of plot type, the endmembers for the moss, 17 

lichen, and nongreen cover types were the average of the plot reflectances. However, 18 

variability in the vascular plants reflectance is driven by differences in green leaf area 19 

index.  To account for that variability the vascular plant endmember was chosen to be the 20 

“greenest” plot spectra (i.e. the highest NDVI and was the greatest distance from the 21 

average of all the plot values in the DA function space).  22 
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Endmember reflectance for each functional type and reflectances at each meter 1 

along the transect were transformed using the DA functions. The distances in the DA 2 

space between the coverage estimates for each square meter and the endmembers were 3 

calculated, these were related to the observed coverage to create transfer functions. The 4 

statistical associations distance from endmembers and observed coverage along the 5 

transect were low due to observation errors that were large relative to the range of values, 6 

with R2 values of 0.39, 0.13, and 0.19 for vascular plants, mosses, and lichens 7 

respectively. Nevertheless, the cover fractions determined from the in situ reflectance 8 

were found to be in close agreement with sampled cover fractions (Figure 6), with root 9 

mean square error (RMSE) of 11% cover for vascular plants, 8% for moss, 9% for lichen, 10 

and an overall RMSE of 9% cover. 11 

LUE along was calculated for each square meter block along the transect using 12 

the observed cover fraction and coverage estimated from the reflectance spectra (Figures 13 

5 and 7).  Along the transect LUE was quite variable, with maximum and minimum 14 

values occurring within 6 m of each other (Figure 7). Variability in LUE was affected by 15 

microtopography, with higher values of LUE tending to occur in locally low, wet areas. 16 

This variability over the 100 m distance produced a fourfold difference in LUE with 17 

values from 0.003 to 0.012 mol C mol-1 quanta for the in situ observations. The average 18 

errors for estimating LUE were similar for the two methods: 0.0014 mol C mol-1 quanta 19 

for the method using observed coverage and 0.0015 mol C mol-1 quanta for the LUE 20 

based on the remote sensing approach. The two different LUE calculations have a 21 

correlation of 0.62 with a RMSE of 0.0013 mol C mol-1 quanta.  22 
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The equations relating spectral reflectance and functional type coverage derived 1 

from the transect data were applied to the Hyperion image to create a continuous fields 2 

description of the Barrow region (Figure 8b).  Over this area the distribution of vascular 3 

plant coverage per pixel had a maximum value of 74% with a distribution peak of 32%, 4 

for mosses the regional maximum coverage was 31% with the distribution peak at 22%, 5 

and for lichens the maximum coverage was 22% with a peak of 10%.  While we do not 6 

have independent data to evaluate these results, we got a sense of the accuracy of the 7 

coverage estimates by looking at coverage estimates in an area known to be free of 8 

vegetation, the old Naval Arctic Research Laboratory airfield. For the pixels of the 9 

runway vascular plant coverage was as high as 9%, moss 14%, and lichen 13%, which 10 

were close to the values of the RMSE found in the tram analysis.  This consistency 11 

suggests that the method captures the actual functional type distribution within this range 12 

of error. 13 

There are clearly observed spatial patterns in the cover fractions with high 14 

vascular plant coverage found on the margins of drained lakes, although not in the middle 15 

of the drained lakes, that often contain some standing water, while higher lichen coverage 16 

tended to be found in the drier upland regions, a pattern also observed along the transect 17 

(figure 4). Moss coverage was more widely distributed, although high moss coverage in 18 

the middle of the drained lakes may be erroneous because of confusion with mixtures of 19 

water and vascular plants.  Field observations confirm that moss often occurs as a low, 20 

“background” layer beneath the vascular canopy of wet tundra in this region [26].   21 

The Hyperion coverage estimates were used to calculate regional LUE patterns 22 

(Figure 8c). For the vegetated parts of the scene, the LUE ranged from 0.0021-0.0102 23 
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mol C mol-1 quanta, a fivefold difference between maximum and minimum LUE.  The 1 

distribution peak of LUE for the region and the overall regional average were both 2 

0.0048 mol C mol-1 quanta.  3 

The Hyperion-based LUE was compared with the chlorophyll spectral index, Ci 4 

(Equation 2). Ci was well correlated with LUE over the study area (R2=0.69, SE=0.0006 5 

mol C mol-1 quanta) suggesting vegetation chlorophyll concentration is a key determinant 6 

of LUE for this tundra ecosystem (Figure 9). This suggests a more direct approach for 7 

deriving spatial patterns of LUE for tundra from imaging spectrometry based on a simple 8 

reflectance-based metric of chlorophyll. 9 

 10 

Discussion 11 

This study uses the concept of optical types [19] to examine a key characteristic 12 

of ecosystem carbon exchange in the tundra. To have usable optical types one must be 13 

able to identify significant functional differences in vegetation types, and spectrally 14 

identify the different types. Our grouping of tundra vegetation (vascular plants, mosses, 15 

and lichens) meets these criteria. Among the different types, the plot measurements 16 

showed distinct differences in LUE, a key variable describing photosynthetic carbon 17 

uptake and DA showed that the types could be separated based on their spectral 18 

reflectance. The ability to link LUE to reflectance characteristics provides an approach to 19 

scale from the ground measurements to regional distributions. Using an unmixing 20 

approach we were able to create continuous fields of key tundra functional types for the 21 

region, an improvement over simple classifications. Results from this study demonstrated 22 

how, even at the 1 m2 plot scale, variable mixtures of functional types produced 23 
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significantly different values for LUE. Unmixing using spectral reflectance provides a 1 

unique estimate of LUE for each pixel. Remote sensing then provides a way to map large 2 

areas and make noninvasive repeat measurements to monitor ecosystem change.  Remote 3 

sensing is particularly important tool for observing tundra due to the difficulties and 4 

expense involved in traveling to and working in this region, rendering direct field 5 

sampling over large areas impractical. 6 

The correlation between LUE calculated from coverage estimates and the 7 

chlorophyll index (Ci), even though they use different algorithms and spectral bands, 8 

demonstrates how multiple approaches yield similar results. This convergence is most 9 

likely due to plant physiological constraints indicating chlorophyll concentration is a 10 

controlling factor in vegetation photosynthetic efficiency, and may provide a more direct 11 

approach to deriving LUE. 12 

This study found significant variability in LUE at local scales (meters) in the field 13 

data collected along the transect and at regional scales (km) in the satellite imagery. This 14 

spatial variability is not accounted for in existing carbon flux models.  Spatial 15 

distributions of vegetation functional types was strongly related to surface hydrology and 16 

thus to the surface microtopography, where elevation variations of a few centimeters may 17 

be significant. These results suggest that climate change affecting surface hydrology [36] 18 

will also affect spatial patterns of vegetation distribution and ecosystem carbon exchange. 19 

Particularly in a scenario of modified surface hydrology, we can expect that climate 20 

change will affect relative coverage due to differing responses of each of the types to 21 

climate change, and that these changes in cover will be associated with altered carbon 22 

balance.  23 
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The field measurements in this study collected only visible and near infrared 1 

spectral bands. Since hydrology is an important factor determining the vegetation 2 

functional type coverage, shortwave infrared bands should provide additional information 3 

on vegetation water content [37].  Recent observations combining NIR and blue bands to 4 

detect standing water in coastal tundra [38] may also prove useful at detecting 5 

hydrological changes linked to cover type and LUE.   6 

Further field studies are required in other parts of the tundra biome to test and 7 

extend the results of this study and evaluate the ability to generalize the results. For 8 

example, shrubs are an important component of the tundra biome, although they do not 9 

represent a significant cover type in our study region and so were not explicitly included 10 

in this study. Shrub coverage has been shown to be increasing in the tundra [39], future 11 

work needs to examine their optical and physiological characteristics to see if they 12 

comprise an optically distinct cover type. 13 

The use of multiple narrow spectral bands for the umixing points to an application 14 

for the future NASA Hyperspectral Infrared Imager (HyspIRI) mission for mapping 15 

tundra vegetation distribution according to physiological function, hydrology, and 16 

microtopography over the entire biome. The concept of optical types (optically 17 

distinguishable functional types) may prove to be useful for this kind of functional 18 

mapping. Similarly, simple metrics of surface water cover (e.g. [38]) or pigment 19 

distribution (e.g. [34]) may provide insight into the proximal causes of functional change 20 

in tundra ecosystems.   21 

 22 

Conclusions 23 
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The close linking of optical properties and carbon flux measurements in this study 1 

has provided insights into the functioning of the tundra ecosystem by identifying fine-2 

scale patterns of LUE related to hydrology and microtopography. This study also 3 

illustrates new “scaleable” functional mapping techniques that can be extended through 4 

the use of satellite remote sensing to larger regions.  This approach lends itself to future 5 

studies considering how species composition relates to changing ecosystem function and 6 

provides a framework for studying ecosystem change through remote sensing that 7 

considers shifts in hydrology, species composition, and their effects on carbon balance. 8 
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Table Captions 1 

 2 

Table 1. Light Use Efficiency based on regressions between net photosynthesis and 3 

APAR from plot data.  LUE is in units of mol CO2 mol-1 absorbed quanta. 4 

 5 

Table 2. Description of relationships in spectral space between the statistical distance to 6 

endmembers and coverage estimate observations, acquired along the tram transect.  The 7 

errors are expressed in percent coverage.  For all cases the number of observations is 100. 8 

 9 

 10 

 
Vascular 
Plants Moss Lichen 

LUE 0.01337 0.00184 0.00124 
St. Err. of 

Slope 0.00101 0.00022 0.00011 
Num. Obs. 29 25 28 

R2 0.74 0.56 0.74 
P <0.01 <0.01 <0.01 

 11 

Table 1.  12 

 13 

 Vascular 
Plants 

Moss Lichen 

R2 0.39 0.13 0.19 

P <0.01 <0.01 <0.01 
Est. Obs. Error 9.5 7.1 7.0 

SE of Regression 10.8 8.4 9.0 

 14 

Table 2.  15 

 16 

17 
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Figure Captions 1 

 2 

Figure 1.  Absorbed PAR and gross photosynthesis for the three vegetaton functional 3 

types from plot data collected July 20 and August 5, 2001.  Light use efficiency for each 4 

functional type was calculated from these data as the slope forced through the origin.  5 

 6 

Figure 2.  Endmember spectral reflectance for each cover type, vertical lines indicate 7 

wavelengths used in the DA. 8 

 9 

Figure 3.  The distribution of data from plots using the first two functions derived from 10 

DA for the three vegetation functional types and nongreen materials.  The larger gray 11 

circles indicate values used as endmembers in the unmixing analysis. 12 

 13 

Figure 4.  Observed variation in coverage at 1 m intervals along the transect, visually 14 

estimated over the period August 8-11, 2001.  Because the vegetation is 3-dimentional, 15 

total cover fractions were over 100%.  In the data analysis the total cover fractions were 16 

normalized to equal 100%. 17 

 18 

Figure 5. LUE along the 100 m transect shown with the black line was estimated from the 19 

functional type coverage (shown in Figure 4) and light use efficiency (shown in Figure 20 

1), along with LUE estimated using coverage derived from spectral data shown with the 21 

gray line. Microtopography is shown as dashed line. Error in Observed LUE estimate is 22 
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0.00136 mol C mol-1 quanta, RMSE in LUE derived from observations compared to LUE 1 

from spectra is 0.00266 mol C mol-1 quanta. 2 

 3 

Figure 6. Comparison between observed vegetation functional type coverage normalized 4 

to 100% for vascular plants, mosses, and lichens along the transect and cover fractions 5 

estimated from spectral reflectance.  Line is 1 to 1 line.  The absolute error in visual 6 

estimates is approximately 9%.  The RMSE of spectral retrievals is 9% absolute.  7 

 8 

Figure 7. LUE (mol C mol-1 quanta) along the transect estimated based on observed 9 

normalized cover fractions and cover fractions obtained from spectral unmixing.  Line is 10 

1 to 1 line. Errors in LUE based on observed cover fractions are due to errors in LUE for 11 

the pure functional types and an assumed 15% error of observed raw coverage amounts.  12 

Errors in LUE based on spectrally derived cover fractions are due to errors in LUE for 13 

pure functional types and the RMSE of the spectral retrieval of cover fractions. 14 

 15 

Figure 8. Three versions of the EO-1 Hyperion image acquired on July 20, 2009 are 16 

shown. 17 

Left:  3-band (RGB=834, 671, and 549 nm) composite image of surface reflectance. The 18 

grid of light blue lines on the lower left side of the image is the city of Barrow.  The 19 

straight blue line along the shore near the top of the image is the old airport runway.  The 20 

oblong features are drained thermokarst lakes and the dark red ones are now marshes. 21 
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Middle: Three band RGB continuous fields of estimated coverage of vegetation 1 

functional types derived from spectral unmixing and scaled between 0 and 100% 2 

coverage. R = Vascular Plant Cover, G = Moss Cover, B = Lichen Cover  3 

Right image: Map of LUE spatial patterns (mol C mol-1 quanta x1000) based on coverage 4 

estimates. 5 

 6 

Figure 9. Scatter plot of chlorophyll index (x-axis) versus LUE (mol C mol-1 quanta 7 

x1000) based on normalized cover fractions (y-axis).  Both variables were retrieved from 8 

the Hyperion image. 9 

 10 

 11 
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Figure 1. 1 

 2 

 3 

Figure 2. 4 
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Figure 3. 2 
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Figure 4. 1 
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 3 

Figure 5. 4 
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Figure 6. 2 
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Figure 7. 2 
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Figure 8. 2 
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Figure 9. 2 


