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Abstract—This paper presents design and performance analy-
sis of a modified reference model MRAC (M-MRAC) architecture
for a class of multi-input multi-output uncertain nonlinea r
systems in the presence of bounded disturbances. M-MRAC
incorporates an error feedback in the reference model defini-
tion, which allows for fast adaptation without generating high
frequency oscillations in the control signal, which closely follows
the certainty equivalent control signal. The benefits of themethod
are demonstrated via a simulation example of an aircraft’s wing
rock motion.

I. I NTRODUCTION

Controlling uncertain nonlinear systems is a challenging
task, and remains one of the active research topics in the
systems theory. There are several directions in this field, one
of which is the adaptive control. The asymptotic behavior of
adaptive systems has been a well researched topic during the
last couple of decades. However, the transient behavior of the
input and output signals is still a challenging problem. Since
the transient of the adaptive signals can be very oscillatory
with big excursions [18], there has been a great deal of effort
to modify the control architecture and the adaptive laws from
the perspective of improving it. The majority of these efforts
led to nonadaptive high gain feedback [3], [4], [16], switching
control law [9], [10] or to a parameter dependent persistent
excitation condition [1], and addressed only the behavior of
output signal.

First contribution to transient analysis of the the adaptive
control signal can be found in [6], where it is shown that
the bound on the control signal is proportional to the square
root of the adaptation rate. This result is conservative, but
it reflects the general observations about the control signal
behavior of the MRAC system. In [2], an adaptive control
architecture, calledL1 adaptive control, has been introduced,
which can achieve arbitrarily close tracking of a given refer-
ence command both in transient and steady state by increasing
the adaptation gain.

In [15] we have introduced the concept of a M-MRAC
architecture for linear systems that can achieve desired level of
accuracy in tracking both input and output signals of a given
reference model by a proper selection of design parameters.
In this paper we apply the M-MRAC approach to a class of
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multi-input multi-output uncertain nonlinear systems subject
to bounded disturbances. The proposed algorithm guarantees
tracking performance both in input and output signals similar
to L1 adaptive control, but has a simpler structure and is easier
to implement. Moreover, it requires the selection of only two
control parameters, for which a design guideline is provided.
This guideline is based on the results obtained for second order
linear time variant systems, which is a contribution by itself.

The rest of the paper is organized as follows. In Section II
we state the problem, and in Section III present the control
design. The error signals are defined in Section IV. In Section
V the controller’s performance is analyzed and the design
specifics are discussed. A simulation example is presented in
Section VI and some concluding remarks are given in Section
VII.

II. PROBLEM FORMULATION

Consider a multi-input multi-output controllable uncertain
system

ẋ(t) = Ax(t) +B[u(t) +Wf(x(t)) + d(t)] (1)

with x(0) = x0, wherex ∈ R
n and u ∈ R

q are the state
and input of the system,f : Rn → R

q is a known vector
of regressor functions, assumed to satisfy the existence and
uniqueness conditions,W ∈ R

p×q is a matrix of unknown
constant parameters, andd : R → R

p is a bounded but
otherwise unknown external disturbance, andA ∈ R

n×n and
B ∈ R

n×p are unknown constant matrices satisfying the
following matching conditions.

Assumption 2.1: Given a Hurwitz matrixAm ∈ R
n×n and

a matrixBm ∈ R
n×p of full column rank, there exists a matrix

K1 ∈ R
p×n and a sign definite matrixΛ ∈ R

p×p such that
the following equations hold

B = BmΛ (2)

A = Am +BK1 .

Remark 2.1: The sign definiteness ofΛ corresponds to the
conventional condition on the high frequency gain matrix
of MIMO systems (see for example [11]). Without loss of
generality we assume thatΛ is positive definite. The rest of
the conditions for the existence of an adaptive controller are
given by the equations (2).

We notice that systems in the form of (1) frequently arise in
aerospace applications (see for example [8], [17] for diagonal
Λ) and in robotics. Obviously, any fully actuated mechanical
system can be described by equation (1).



The objective is to design a control signalu(t) such that
the state of the system tracks the statex0(t) of a reference
model

ẋ0(t) = Amx0(t) +Bmr(t), x0(0) = x0 , (3)

whereAm, Bm are chosen according to performance speci-
fications and satisfy Assumption 2.1, andr(t) is a bounded
and piecewise continuous external command. To achieve this
objective we use the M-MRAC architecture introduced in [15],
where the system (3) is called an ideal reference model. It is
not a part of the control design and is only used for the analysis
purposes.

Taking into account Assumption 2.1 we write

ẋ(t) = Amx(t) +Bmr(t) +BmΛ[u(t) + θφ(t) + d(t)] (4)

where for the convenience we denoteK2 = −Λ−1, φ(t) =
[f⊤(x(t)) x⊤(t) r⊤(t)]⊤, andθ = [W K1 K2].

III. C ONTROL DESIGN

According to M-MRAC architecture, the design of the
adaptive control is based on the modified reference model

ẋm(t) = Amxm(t) +Bmr(t) + λe(t), xm(0) = x0 , (5)

wheree(t) = x(t) − xm(t) is the error between the system
and the modified reference model,λ > 0 is a feedback gain
to be specified in the analysis. The adaptive control is given
by the equation

u(t) = −θ̂(t)φ(t)− d̂(t) ,

whereθ̂(t) is the estimate of the unknown matrixθ, andd̂(t)
is the estimate of a constant vectord̄, which is the constant
part (or an average value) ofd(t). The ideal version of this
control signal that exactly cancels the uncertainties is

u0(t) = −θφ(t)− d(t) . (6)

Obviously, the ideal controlu0(t) reduces the system (4) into
the ideal reference model (3), which always can be specified
from the performance perspective. However, the ideal control
signal (6) cannot be implemented and is only used for the
analysis purposes.

The adaptive laws for the estimatesθ̂(t) andd̂(t) are defined
using the projection based adaptive law

˙̂
θ(t) = γ Pr

(

θ̂(t), B⊤

mPe(t)φ⊤(t)
)

˙̂
d(t) = γ Pr

(

d̂(t), B⊤

mPe(t)
)

, (7)

where γ > 0 is the adaptation rate,P = P⊤ > 0 is the
solution of the Lyapunov equation

A⊤

mP + PAm = −Q (8)

for someQ = Q⊤ > 0, andPr (·, ·) denotes the projection
operator [12] defined asPr(θ̂,y) = [I−G(θ̂)]y, where

G(θ̂) =















0, if ϕ(θ̂) < 0

0, if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y ≤ 0
∇ϕ(θ̂)∇ϕ⊤(θ̂)

‖∇ϕ(θ̂)‖2 ϕ(θ̂), if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y > 0

with the notation∇ϕ(θ̂) = ∂ϕ(θ̂)

∂θ̂
, and the smooth convex

functionsϕ(θ̂) is given by

ϕ(θ̂) =
tr(θ̂⊤θ̂)− θ2max

ǫθθ2max

, (9)

with θmax denoting the norm bound imposed on the parameter
matrix θ̂ and ǫθ denoting the convergence tolerance. The
projection operator has the following properties

Lemma 3.1: [12] Let θ0 ∈ Ω0 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 0},

and let the parameter̂θ(t) evolve according to the following
dynamics

˙̂
θ(t) = Pr(θ̂(t), y), θ̂(t0) ∈ Ω . (10)

Then 1) θ̂(t) ∈ Ω1 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 1} or ‖θ̂(t)‖ ≤

θ∗ for all t ≥ t0, where θ∗ =
√
1 + ǫθ θmax, 2) [θ̂(t) −

θ0]
⊤[Pr(θ̂(t), y)− y] ≤ 0 for all t ≥ t0.

IV. ERROR DYNAMICS

Introducing the parameter estimation error asθ̃(t) = θ̂(t)−
θ, the dynamics of the tracking errore(t) can be written in
the form

ė(t) = (Am − λIn)e(t) +BmΛ[−θ̃(t)φ(t) + d(t)− d̂(t)] ,

where In denotesn-dimensional identity matrix. The error
signale(t) is used in stability analysis, but for the performance
analysis we also need the actual tracking errore0(t) =
x(t)− x0(t), which satisfies the equation

ė0(t) = Ame0(t) +BmΛ[−θ̃(t)φ(t) + d(t)− d̂(t)] .

These two error signals are related via the linear equation

d

dt
[e(t)− e0(t)] = Am[e(t)− e0(t)]− λe(t) . (11)

SinceAm is Hurwitz, theL1 norm of the the state transition
matrixΦ(t) = eAmt is bounded. That is, there exists a positive
constantskm such that‖Φ(t)‖L1

≤ km. Therefore, it follows
from the equation (11) that

‖e0τ (t)‖L∞
≤ (1 + λkm)‖eτ (t)‖L∞

, (12)

where the subscriptτ indicate the extendedL∞ norm on the
interval 0 ≤ t ≤ τ (see [7], p. 200 for details). Moreover, if
e(t) ∈ L∞, then

‖e0(t)‖L∞
≤ (1 + λkm)‖e(t)‖L∞

, (13)

In the following analysis we will also need the control error
signal that is defined as̃u(t) = u(t)−u0(t). From M-MRAC
architecture it follows that

ũ(t) = d(t)− d̂(t)− θ̃(t)φ(t) . (14)

Therefore, the error dynamics (11) can be also represented as

ė(t) = (Am − λIn)e(t) +BmΛũ(t) , (15)

Since the ideal control signal is the best achievable signal, we
are interested in minimizing the control errorũ(t), as well as
the tracking error signalse(t) ande0(t) by selecting proper
values for the adaptation rateγ and feedback parameterλ.



V. A NALYSIS OF THE M-MRAC PERFORMANCE

A. Boundedness

Theorem 5.1: Let the system (1) be controlled by the M-
MRAC scheme given by (5), (6), and (7). Then all closed-loop
signals are ultimately bounded.

Proof: Consider the following candidate Lyapunov func-
tion

V (t) = e⊤(t)Pe(t) +
1

γ
tr
(

[θ̃(t)θ̃⊤(t) + d̃(t)d̃
⊤

(t)]Λ
)

, (16)

where d̃(t) = d̂(t) − d̄. Computing its derivative along
the trajectories of the systems (11) and (7), and using the
properties of the projection operator, it is straightforward to
obtain the inequality

V̇ (t) ≤ −e⊤(t)(Q + 2λP )e(t) + 2e⊤(t)PB[d(t)− d̄]

≤ −‖e(t)‖ [a‖e(t)‖ − 2d∗] , (17)

where we denotea = λmin(Q) + 2λmin(P )λ and d∗ =
‖PBmΛ(d(t) − d̄)‖L∞

with λmin(S) being the minimum
eigenvalue of the matrixS. It follows that V̇ (t) is negative
semi-definite whenevera‖e‖ ≥ 2d∗, which along with the
properties of the projection operator imply that the closed-loop
error signalse(t), θ̃(t), h̃(t) are uniformly ultimately bounded.
The boundedness ofe0(t) follows from the inequality (13).
Since Am is Hurwitz, the bounded signalsr(t) and e(t)
produce a bounded signalxm(t). Therefore,x(t) is bounded.
It follows thatu(t) and ũ(t) are bounded as well.

B. Transient behavior of the tracking error

The projection operator in the adaptive laws (7) guarantees
the inequalities

‖θ̂(t)‖ ≤ θ∗, ‖d̂(t)‖ ≤ d∗ , (18)

therefore

tr
(

[θ̃(t)θ̃⊤(t) + d̃(t)d̃
⊤

(t)]Λ
)

≤ β ,

whereβ = 4θ∗2 + 4h∗2. From Theorem 5.1 it follows that
V̇ (t) ≤ 0 whenever

V (t) > V∗ = λmax(P )
4d2∗
a2

+
β

γ
. (19)

Therefore, it follows that the trajectories stay inside the
Lyapunov level set

L =
{

(e, θ̃, d̃) : V (e, θ̃, d̃) = V∗

}

. (20)

From the definition ofV (t) we have

λmin(P )‖e(t)‖2 ≤ e⊤(t)Pe(t) ≤ V (t) ≤ V∗ . (21)

Hence, the following conservative bound can be derived

‖e(t)‖L∞
≤ c =

√

λmax(P )

λmin(P )

4d2∗
a2

+
β

γλmin(P )
. (22)

Since the inequality (22) holds uniformly int, the bound
‖e(t)‖L∞

≤ c follows. We notice that the second term in

the square root can be arbitrarily decreased by increasing the
adaptation rateγ. The first term is independent ofγ, but can be
arbitrarily decreased by increasingλ. This is not the case for
the conventional MRAC design. Indeed, whenλ = 0, the only
design parameter that affects that term isλmin(Q). However,
increasingλmin(Q) scales alsoP , hence increasesd∗.

The bound on‖e0(t)‖L∞
follows from the inequality (13)

and has the form

‖e0(t)‖L∞
≤ c (1 + λkm) (23)

We notice that the derived bound on‖e0(t)‖L∞
cannot be

arbitrarily decreased by increasing the design parametersλ and
γ. If we setλ = c0

√
γ, where the proportionality coefficient

c0 will be defined shortly, the following asymptotic bound can
be written

lim
γ→∞

‖e0(t)‖L∞
≤ km

√

λmax(P )

λ3
min(P )

d2∗ +
c20β

λmin(P )
, (24)

which can be decreased by increasingλmin(P ).

C. Transient behavior of the control signal

To investigate the behavior of the control signal with respect
to design parameters we recall thatu(t) does not explicitly
depend on design parametersλ andγ. Instead,u̇(t) depends
onγ through the adaptive laws, and̈u(t) depends onλ through
the tracking error dynamics. Therefore, for the purpose of this
subsection we assume thatr(t) has bounded time derivatives.
This assumption is only needed for the analysis purposes and
is conditioned on the way the bound on the control signal is
derived. Alternatively one could use the integral representa-
tion of the parameter estimates and the error signale(t) to
derive an integral equation for theu(t) without assuming the
differentiability of r(t). However, for more transparency we
use the differential form of the equations.

Differentiatingu(t) and substituting the adaptive laws we
obtain

u̇(t) = −γ[ρ(t)Iq −H(t)]B⊤

mPe(t)− ra(t) , (25)

where we denoteρ(t) = φ⊤(t)φ(t) + 1, ra(t) = θ̂⊤(t)φ̇(t),
and H(t) = G(θ̂)φ⊤(t)φ(t) + G(d̂). We notice that the
termsρ(t), ra(t) and H(t) do not explicitly depend on the
design parametersλ and γ. Moreover, from the results of
the previous subsection it follows that all signals involved
in the equation (25) are bounded. In particular, there exist
positive constantsα1, α2, α3 such that‖ρ(t)‖L∞

≤ α1,
‖ρ̇(t)‖L∞

≤ α2 and‖ra(t)‖L∞
≤ α3. We also notice that the

matrix F (t) = ρ(t)Ip −H(t) is symmetric and positive semi-
definite, since‖G(θ)‖ ≤ 1, which follows from the properties
of the projection operator.

Differentiating the equation (25) with respect to time and
using the equation (15) we obtain the following second order
differential equation

ü(t) + λu̇(t) + γF (t)Lu(t) = −γF (t)B⊤
mPAme(t)

−γḞ (t)B⊤
mPe(t) + γF (t)Lu0(t)− λra(t)− ṙa(t) ,(26)



where L = B⊤
mPBmΛ. It follows from the definition of

the projection operator that and Theorem 5.1 thatḞ (t) is
piecewise continuous and bounded. Since all the terms in
equation (26) are bounded, it can be considered as a second
order linear equation with time varying coefficients inu(t).
Although the equation (26) is non-autonomous, it can be still
inferred that the adaptation rateγ determines the frequency
of the control signalu(t). Therefore, increasingγ increases
the oscillations inu(t) as it is the case for the conventional
MRAC design. On the other handλ determines the damping
ratio. Therefore increasingλ suppresses the oscillations in the
control signalu(t). That is, by selecting a proper value for
λ the desired performance can be achieved. This is the main
difference from the MRAC design, which results whenλ = 0.

We select a proper value ofλ from the perspective of
minimizing the norm bound on the control signalu(t) in
transient. To this end we notice that selection of the initial
parameter estimates inside the convex sets defined by the
projection operator results inH(t) = 0 on some initial
interval [0 t1] by continuity. Therefore,F (t) = ρ(t)Ip on
[0 t1]. To simplify computations we notice that the matrix
L is symmetric and positive definite, therefore there exists an
orthogonal matrixT such thatD = TLT⊤ is diagonal with
positive entriesdii, i = 1, . . . , p. That is, introducing a new
variablev = Tu (v0 = Tu0), we can write the equation (26)
in the following form

v̈(t) + λv̇(t) + γDρ(t)v(t) =

γρ(t)Dv0(t) + γz1(t)− λz2(t)− ż2(t) . (27)

where z1(t) = T [−ρ(t)B⊤
mPAm − ρ̇(t)B⊤

mP ]e(t) and
z2(t) = Tra(t). Let ρ0 = 1+α1

2 . Then for each component of
vectorv(t) we can write the following equation

v̈i(t) + λv̇i(t) + γdiiρ0vi(t) = γρ(t)diiv
0
i (t)

+γz1i(t)− λz2i(t)− ż2(t) + γ[d0ρ0 − diiρ(t)]vi(t) .(28)

Sinceρ(t) ≥ 1, this equation is in the form of equation (38)
from Appendix withk(t) = diiρ(t), 2a = λ, ω2

i = γdiiρ0 and
three external inputs

[

0
1

]

γρ(t)diiv
0
i (t),

[

0
1

]

γz1i(t),

[

1
λ

]

z2i(t) .

Applying the inequality (48) we obtain

|vi(t)| ≤ c3

√

v2i (0) + v̇2i (0)e
−νt + α1‖v0i (t)‖L∞

(29)

+
1

dii
‖z1i(t)‖L∞

+
(c1 + 2)

√
ρ0√

diiγ
‖z2i(t)‖L∞

for eachi = 1, . . . , p, if λ ≥ 2
√
ωi =

√
γdiiρ0. Therefore

selecting

λ =
√

2γd0(α1 + 1) , (30)

whered0 = max{dii, i = 1, . . . , p} results in the inequality

|vi(t)| ≤ c3

√

v2i (0) + v̇2i (0)e
−νt + α1‖v0i (t)‖L∞

(31)

+
1

d0
‖z1i(t)‖L∞

+
(c1 + 2)

√
ρ0√

d0γ
‖z2i(t)‖L∞

for all components simultaneously, whered0 = min{dii, i =
1, . . . , p}. A similar inequality holds (as it is derived in the
appendix) for the vectorv(t)

‖v(t)‖ ≤ c4e
−νt + α1‖v0(t)‖L∞

(32)

+
1

d0
‖z1(t)‖L∞

+
(c1 + 2)

√
ρ0√

d0γ
‖z2(t)‖L∞

Since T is orthogonal with‖T ‖2 = 1, we have‖u(t)‖ =
‖v(t)‖, ‖z2(t)‖ = ‖ra(t)‖ and

‖z1(t)‖L∞
≤

[

α1‖B⊤

mPAm‖+ α2‖B⊤

mP‖
]

‖e(t)‖L∞
.

Combining the above relationships we obtain

‖u(t)‖ ≤ c4e
−νt + α1‖u0(t)‖L∞

+ c5‖e(t)‖L∞

+
(c1 + 2)

√
ρ0√

d0γ
‖ra(t)‖L∞

, (33)

wherec5 = 1
d0

[

α1‖B⊤
mPAm‖+ α2‖B⊤

mP‖
]

.
It is easy to see that the bound on‖u(t)‖ has the form

‖u(t)‖L∞
≤ c4e

−νt + α1‖u0(t)‖L∞
+

c6√
γ
, (34)

where

c6 = c5

√

λmax(P )

λ3
min(P )

d2∗ +
β

λmin(P )
.

and the constantsα1, c4, c6 do not depend on the adaptation
rateγ. We notice that the first term on the right hand side of
(34) represents the exponentially decaying effect of the initial
conditionsu(0) andu̇(0), and the last term can be decreased
by increasingγ. Therefore we can conclude that for largeγ,
the adaptive controlu(t) behaves similar to the ideal control
u0(t). That is unlike the conventional MRAC design, the fast
adaptation in the M-MRAC design does not generate high gain
effect.

The transient behavior of the error signals is summarized
as follows.

Theorem 5.2: Let the system (1) be controlled by the M-
MRAC scheme given by (5), (6) and (7), and the design
parameters are chosen according to equationλ = c0

√
γ with

c0 =
√

2d0(α1 + 1). Then, the inequalities (22), (23) and (34)
are true.

VI. SIMULATION RESULTS

For the simulation we consider a wing rock motion of a
slender delta wing given by the equation [14]

φ̈(t) = f(φ, φ̇) + bu(t) + d(t) .

whereφ(t) is the roll angle,

f(φ, φ̇) = a1φ+ a2φ̇+ a3|φ2|φ̇+ a4|φ̇|φ̇+ a3φ
3 . (35)

with a1 = −0.0186, a2 = 0.0152, a3 = −0.0625, a4 =
0.0095, a5 = 0.0215, b = 1. The disturbanced(t) rep-
resents unknown atmospheric effects and is a square wave
of amplitude0.15 and of frequency0.5 rad/sec. Only the
sign of the control effectivenessb is assumed to be known
(positive). The parameters of the reference model are chosen



as followsAm = [0 1;−1 − 1.6], bm = [0; 1]. The external
input to follow is a step command of magnitude−15 degrees
at t = 15. We run two simulations respectively from the
small initial conditions(6deg., 3deg/sec) and large initial
conditions (30deg., 10deg/sec). The adaptation rate is set
to γ = 10000 with λ defined according to equation (30).
The simulation results are displayed on Figures 1 and 2
respectively. It can be seen that a good tracking is achieved
for both output and control signals, and the later does not
exhibit any high frequency oscillations even for the selected
high adaptation rate. The disturbance effect is completely
attenuated.

0 5 10 15 20 25 30
−20

−10

0

10
Bank angle response in degrees

 

 
Ideal response
Adaptive response

0 5 10 15 20 25 30
−10

0

10

20
Aileron deflection command in degrees

time

 

 
Ideal command
Adaptive command

Fig. 1. Tracking a step command from the small initial conditions.
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Fig. 2. Tracking a step command from the large initial conditions.

VII. C ONCLUSIONS

We have presented design and performance analysis of M-
MRAC architecture for a class of uncertain systems subject

to bounded disturbances. It is shown that the systems’ input
and output tracking errors can be decreased as desired by
increasing the adaptation rate, when the error feedback gain
is selected according to derived rule. This design method
prevents high frequency oscillations in the control signal,
which are unavoidable in conventional MRAC systems. The
performance of M-MRAC is demonstrated on a benchmark
problem of controlling wing rock motion of slender delta
wings in a turbulent atmosphere.

APPENDIX A
AN UPPER BOUND FOR A SECOND ORDERLTV SYSTEM

Consider a second order time variant linear system

ẍ(t) + 2aẋ(t) + γk(t)x(t) = b1f(t) + b2ḟ(t) (36)

with x(0) = x0, ẋ(0) = ẋ0, where γ > 0 is a constant
parameter,k(t) is continuous withk∗ ≥ k(t) ≥ k∗ > 0 and
has a bounded derivative. The functionf(t) is assumed to be
piecewise continuous and bounded. The equation (36) can be
written in the matrix form as

ż(t) = Az(t) +Bf(t) (37)

where

z(t) =

[

x(t)
ẋ(t)

]

, A =

[

0 1
−γk(t) − 2a

]

, B =

[

b1
b2

]

,

We are interested in minimizing the upper bound onx(t)
by the choice of the parametera. To this end we introduce
notationsω2 = γk0, k0 = k∗+k∗

2 , a = ζω and represent the
system (37) in the following equivalent form

ż(t) = Dz(t) +Bf(t) +C[ω2 − γk(t)]x(t) (38)

where

D =

[

0 1
−ω2 −2ζω

]

, C =

[

0
1

]

.

For the convenience of derivations we decomposez(t) into
initial responsezi(t) of the homogeneous system

żi(t) = Azi(t) (39)

with the initial conditionz0 = [x0 ẋ0]
⊤, and force response

zf (t) of the system (38) with zero initial conditions, which
can be represented in the equivalent integral form

zf (t) =
∫ t

0
G(t− τ)Bf(τ)dτ +

∫ t

0 G(t− τ)C[ω2 − γk(t)]xf (τ)dτ . (40)

Here,G(t) = eDt is the state transition matrix, which can be
computed by direct integration (see for example [5]).

In order to minimize the bound onzf1 (t) = xf (t) we
compute theL1 norm of the elements in the first row of matrix
G(t). For g12(t) we obtain

‖g12(t)‖L1
=







1
ω2

e
ζωπ
δ +1

e
ζωπ
δ −1

, ζ < 1

1
ω2 , ζ ≥ 1

, (41)



where δ = ω
√

|1− ζ2| and 0 < ϕ = tan−1( δ
ζω

) < π
2 .

Obviously, ‖g12(t)‖L1
reaches its minimum of 1

ω2 for all
ζ ≥ 1. On the other hand, theL1 norm of g11(t) is computed
to be

‖g11(t)‖L1
=







2
ω

(

ζ + e
ζωϕ
δ

e
ζωπ
δ −1

)

, ζ < 1

2ζ
ω
, ζ ≥ 1

, (42)

It can be shown that the minimum of‖g11(t)‖L1
is reached

at someζ∗ < 1. The analytical computations are somewhat
involved, but numerical computations results inζ∗ = 0.66
with the minimum value of2c

ω
, wherec = 0.8026.

Since there is no common minimum point for the entries
of G(t), one can use a ”suboptimal” valueζ = 1, which is
good enough for our purposes. In this case‖g11(t)‖L1

= 2
ω

and‖g12(t)‖L1
= 1

ω2 . We notice that selecting a larger value
of ζ while leaving ‖g12(t)‖L1

intact, increases‖g11(t)‖L1

proportional to 1
ω

. Therefore, we can select anyζ ≥ 1 with
‖g11(t)‖L1

= c1
ω

, wherec1 ≥ 2 is determined by the selected
ζ and is independent ofω.

Next we computeL∞ bound onxf (t)

xf (t) =
∫ t

0 [b1g11(t− τ) + b2g12(t− τ)]f(τ)dτ

+
∫ t

0
g12(t− τ)[ω2 − γk(t)]xf (τ)dτ . (43)

Since‖ω2−γk(t)‖L∞
= ω2−γk∗ = γ k∗

−k∗

2 , we obtain (see
[7], p. 199 for details)

‖xf (t)‖L∞
≤ ‖f(t)‖L∞

[|b1|‖g11(t)‖L1
+ |b2|‖g12(t)‖L1

]

+γ k∗
−k∗

2 ‖xf (t)‖L∞
‖g12(t)‖L1

. (44)

Substituting theL1 norm values and solving the resulting
inequality for‖xf (t)‖L∞

we obtain
(

1− k∗ − k∗
2k0

)

‖xf (t)‖L∞
≤

[

c1|b1|
ω

+
|b2|
ω2

]

‖f(t)‖L∞
, (45)

which results in

‖xf (t)‖L∞
≤

[

c1|b1|
√
k0

k∗
√
γ

+
|b2|
k∗γ

]

‖f(t)‖L∞
. (46)

To obtain a bound forzi(t), we recall that according to
Theorem 8.7 [13] the origin of the system (39) is uniformly
exponentially stable, since‖A(t)‖ is bounded,‖Ȧ(t)‖ is
essentially bounded, and the point wise eigenvalues of matrix
A(t) have negative right hand sides. Therefore

‖zi(t)‖ ≤ c3‖z(0)‖e−νt (47)

for some positive constantsc3 andν,
Sice (49) is true for each component ofzi(t), adding the

corresponding inequalities we finally arrive at

|x(t)| ≤ c3‖z(0)‖e−νt +

[

c1|b1|
√
k0

k∗
√
γ

+
|b2|
k∗γ

]

‖f(t)‖L∞
(48)

for all a ≥ √
γk0.

We notice that whenx and f are q-dimensional vectors
in the equation (36), thenz = [x1 ẋ1 . . . xq ẋq]

⊤ and the
matricesA, B, C, D andG have repeated block structures.

Therefore the equation (44) and the upper bound (46) hold
for each componentxf

i (t) of vectorxf (t) with f(t) replaced
with fi(t). On the other hand, the inequality (47) is true for
the 2q-vectorz(t), hence it is true for the vectorsxf (t) and
ẋf (t). That is

‖xi(t)‖ ≤ c3e
−νt

√

‖x0‖2 + ‖ẋ0‖2 ≡ c4e
−νt (49)

It follows that the inequality

‖x(t)‖ ≤ c4e
−νt +

[

c1|b1|
√
k0

k∗
√
γ

+
|b2|
k∗γ

]

‖f(t)‖L∞
(50)

holds in the vector case as well, whena ≥
√
γk0.

REFERENCES

[1] A. M. Artega and Y. Tang, “Adaptive Control of Robots withan
Improved Transient Performance,”IEEE Transactions on Automatic
Control, vol. 47, no. 7, pp. 1198–1202, 2002.

[2] C. Cao and N. Hovakimyan, “Design and Analysis of a NovelL1

Adaptive Control Architecture with Guaranteed Transient Performance,”
IEEE Transactions on Automatic Control, vol. 53, no. 2, pp. 586–591,
2008.

[3] A. Datta and M.-T. Ho, “On Modifying Model Reference Adaptive
Control Schemes for Performance Improvement,”IEEE Transactions on
Automatic Control, vol. 39, no. 9, pp. 1977–1980, 1994.

[4] A. Datta and P. Ioannou, “Performance Analysis and Improvement in
Model Reference Adaptive Control,”IEEE Transactions on Automatic
Control, vol. 39, no. 12, pp. 2370–2387, 1994.

[5] D.S.Bernstein,Matrix Mathematics. Princeton University Press, Prince-
ton, NJ, 2005.

[6] M. French, C. Szepesvari, and E. Rogers, “Uncertaity, Performance, and
Model Dependency in Approximate Adaptive Nonlinear Control,” IEEE
Transactions on Automatic Control, vol. 45, no. 2, pp. 353 – 358, 2000.

[7] H. Khalil, Nonlinear Systems, Third Edition. Prentice Hall, New Jersey,
2002.

[8] E. Lavretsky, “Combined/Composite Model Reference Adaptive Con-
trol,” IEEE Transactions on Automatic Control, vol. 54, no. 11, pp.
2692–2697, 2009.

[9] S. Morse, “Supervisory Control of Families of Linear Set-Point Con-
trollers - Part 1: Exact Matching,”IEEE Transactions on Automatic
Control, vol. 41, no. 10, pp. 1413–1431, 1996.

[10] ——, “Supervisory Control of Families of Linear Set-Point Controllers
- Part 2: Robustness,”IEEE Transactions on Automatic Control, vol. 42,
no. 11, pp. 1500–1515, 1997.

[11] K. Narendra and A. Annaswamy,Stable Adaptive Control. Prentice
Hall, 1989.

[12] J. B. Pomet and L. Praly, “ Adaptive Nonlinear Regulation: Estimation
from the Lyapunov Equation,”IEEE Trans. Autom. Contr., vol. 37, no. 6,
pp. 729–740, 1992.

[13] W. J. Rugh,Linear System Theory. Prentice Hall, Upper Saddle River,
NJ, 1995.

[14] S. N. Singh, W. Yim, and W. R. Wells, “Direct Adaptive andNeural
Control of Wing-Rock Motions of Slender Delta Wings,”AIAA Journal
of Guidance, Control, and Dynamics, vol. 18, no. 1, pp. 25–30, 1995.

[15] V. Stepanyan and K. Krishnakumar, “MRAC Revisited: Guaranteed
Performance with Reference Model Modification,”In Proc. of the
American Control Conference, Baltimore, NJ, June 2010.

[16] J. Sun, “A Modified Model Meference Adaptive Control Scheme for
Improved Transient Performance,”IEEE Transactions on Automatic
Control, vol. 38, no. 8, pp. 1255–1259, 1993.

[17] K. A. Wise, E. Lavretsky, and N. Hovakimyan, “Adaptive Control of
Flight: Theory, Applications, and Open Problems,”In Proceedings of the
American Control Conference, Minneapolis, MN, USA, pp. 5967–5971,
June 14-16, 2006.

[18] Z. Zang and R. Bitmead, “Transient Bounds for Adaptive Control
Systems,”In Proceedings of the 30th IEEE Conference on Decision
and Control, pp. 2724–2729, December 1990.


