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Abstract—This paper presents design and performance analy- multi-input multi-output uncertain nonlinear systems jeab
sis of a modified reference model MRAC (M-MRAC) architecture  to bounded disturbances. The proposed algorithm guamntee
for a class of multi-input multi-output uncertain nonlinear tracking performance both in input and output signals simil

systems in the presence of bounded disturbances. M-MRACt . adapti trol. but h imol truct di .
incorporates an error feedback in the reference model defini 0 Ly adaptive control, but has a simpler structure and IS easier

tion, which allows for fast adaptation without generating high t0 implement. Moreover, it requires the selection of onlp tw
frequency oscillations in the control signal, which closef follows  control parameters, for which a design guideline is prodide

the certainty equivalent control signal. The benefits of thenethod  This guideline is based on the results obtained for secateror
are demonstrated via a simulation example of an aircraft's ing  inear time variant systems, which is a contribution bylitse
rock motion. L . -
The rest of the paper is organized as follows. In Section Il
. INTRODUCTION we state the problem, and in Section Ill present the control

Controlling uncertain nonlinear svstems is a challenai design. The error signals are defined in Section IV. In Sactio
g ur >y aeNIING the controller's performance is analyzed and the design
task, and remains one of the active research topics in f

o S ecifics are discussed. A simulation example is presented i
systems theory. There are several directions in this fiaie, o ection VI and some concluding remarks are given in Section
of which is the adaptive control. The asymptotic behavior fa
adaptive systems has been a well researched topic during the
last couple of decades. However, the transient behavidreof t Il. PROBLEM FORMULATION
input and output signals is still a challenging problem.c8in  Consider a multi-input multi-output controllable uncénta
the transient of the adaptive signals can be very oscilfatogystem
with big excursions [18], there has been a great deal of teffor )
to modify the control architecture and the adaptive lawsnfro w(t) = Aw(t)+ Blu(t) + Wf(z(t) +d@)] (1)

the perspective of improving it. The majority of these effor ith x(0) = o, wherexz € R” andu € R? are the state
led to nonadaptive high gain feedback [3], [4], [16], switdh and input of the systemf : R" — R? is a known vector
control law [9], [10] or to a parameter dependent persistegf regressor functions, assumed to satisfy the existende an
excitation condition [1], and addressed only the behavior Qnjqueness condition)’ € RP*? is a matrix of unknown
output signal. constant parameters, antl : R — RP is a bounded but
First contribution to transient analysis of the the ada@ptihtherwise unknown external disturbance, atd R**" and

control signal can be found in [6], where it is shown thag < Rmxr are unknown constant matrices satisfying the
the bound on the control signal is proportional to the squaf§liowing matching conditions.

root of the adaptation rate. This result is conservative, bu Assumption 2.1: Given a Hurwitz matrix4,, € R"*" and
it reflects the general observations about the control signgmatrixB,, € R™*? of full column rank, there exists a matrix
behavior of the MRAC system. In [2], an adaptive controk, ¢ Rr*" and a sign definite matrid € RP*? such that
architecture, called; adaptive control, has been introduceghe following equations hold

which can achieve arbitrarily close tracking of a given refe

ence command both in transient and steady state by incgeasin B = BpA )
the adaptation gain. A = A, +BK;.

In_[15] we hgve introduced the concept of a M'MRAC Remark 2.1: The sign definiteness of corresponds to the
archltecture forlmear systgms that can achleye desmﬁeﬂldﬂ_ conventional condition on the high frequency gain matrix
accuracy in tracking both input and output signals of a givel \imo systems (see for example [11]). Without loss of
reference model by a proper selection of design paramet :

In this paper we anolv the M-MRAC approach to a class gherality we assume that is positive definite. The rest of
pap PRl P e conditions for the existence of an adaptive controlter a
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The objective is to design a control signalt) such that with the notationVy(d) = aggé), and the smooth convex
the state of the system tracks the statdt) of a reference functionsy(6) is given by
model

. r AT\ _ p2
&%(t) = Apa®(t) + Bnr(t), z°(0) = =, (3) p(0) = % 9)

max
where A,,,, By, are chosen according to performance Spegjith f,,,,, denoting the norm bound imposed on the parameter

fications and satisfy Assumption 2.1, an() is a bounded matrix § and ¢, denoting the convergence tolerance. The
and piecewise continuous external command. To achieve tFr%jection operator has the following properties

objective we use the M-MRAC architecture introduced in [15] | emma 3.1: [12] Let 6y € Qo = {f € R™ | (6) < 0},
where the system (3) is called an ideal reference model. Itdgd let the parametek(t) evolve according to the following
not a part of the control design and is only used for the arglygjynamics
purposes. R R R

Taking into account Assumption 2.1 we write 0(t) = Pr(0(t), y), 6H(to) € N. (10)

&(t) = Apa(t) + Bpur(t) + By Alu(t) + 06(t) +d(t)] (4) Then 1)0(t) € Q1 = {§ € R" | (d) < 1} or [|(t)]| <
6% for all t > ty, whered0* = T+ € Omax, 2) [0(t) —

where for the convenience we dendie = —A~1, ¢(t) = 06T Pr(8(t), o) — ] < 0 for all ¢ > £,

[f T (x(t) =T(t) » ()7, andd = [W K, Kl
IIl. CONTROL DESIGN IV. ERRORDYNAMICS

According to M-MRAC architecture, the design of the Introducing the parameter estimation errogs) = 6(t) —

adaptive control is based on the modified reference model tef,]etr;grg]ynamics of the tracking erra(t) can be written in

T (t) = Ay (t) + Bpr(t) + Xe(t), ,(0) = xq, 5 . - N

" (O Bur@) 20, 20 =20 O ) (4, _51,)et) + Bad[-0(08(0) + dit) — 1),
wheree(t) = z(t) — x.,(t) is the error between the system _ _ ) i i

and the modified reference modal,> 0 is a feedback gain where I,, denotesn-dimensional identity matrix. The error

to be specified in the analysis. The adaptive control is givéffnale(t) is used in stability analysis, but for the performance
by the equation analysis we also need the actual tracking ered(t) =

R R x(t) — z°(t), which satisfies the equation
u(t) = —0(t)p(t) — d(t),

o _ . e0(t) = Ame’(t) + B A[-0(t)(t) + d(t) — d(t)] .
whered(t) is the estimate of the unknown maté@x andd(t) ) ) ) )
is the estimate of a constant vecidr which is the constant These two error signals are related via the linear equation

part (or an average value) af(t). The ideal version of this d o o
control signal that exactly cancels the uncertainties is E[e(t) —e (B)] = Amle(t) —e"(t)] — Ae(?). (11)
ul(t) = —0¢(t) — d(t). (6) SinceAy, is Hurwitz, the£, norm of the the state transition

) ) 0 © matrix®(t) = e is bounded. That is, there exists a positive
Obviously, the ideal contrak®(¢) reduces the system (4) intoconstantsk,, such that]| ®(¢)||z, < k. Therefore, it follows
the ideal reference model (3), which always can be specifiggdy the equation (11) that

from the performance perspective. However, the ideal obntr 0
signal (6) cannot be implemented and is only used for the lez®llee < (1 +Mewm)ller )]z (12)
analysis purposes.

) . . . . where the subscript indicate the extended., norm on the
The adaptive laws for the estimat®$) andd(t) are defined

interval 0 < t < 7 (see [7], p. 200 for details). Moreover, if

using the projection based adaptive law e(t) € Lo, then
0(t) = ~Pr (9(t), BLPe(t)ch(t)) 1€2(1)l o < (1 4+ M) lle(®)] 2o (13)
él(t) = ~vPr (El(t), B;Pe(t)) , (7) In the following analysis we will also need the control error

_ _ _ signal that is defined a&(t) = u(t) — u’(t). From M-MRAC
wherey > 0 is the adaptation rate> = P' > 0 is the grchitecture it follows that

solution of the Lyapunov equation . -
a(t) =d(t) — d(t) — 6(t)p(t) . (14)

Al P+ PA,, =-Q (8)
Therefore, the error dynamics (11) can be also represested a

for some@Q = QT > 0, andPr (-,-) denotes the projection . .
operator [12] defined aBr(d,y) = [I — G(6)]y, where é(t) = (Am — Aln)e(t) + B Aa(t), (15)
0, if gp(é) <0 Since the ideal control signal is the best achievable sjgmal
G6) = 0, A if o) >0, VpT(d)y<o ae mtere_sted in minimizing the coontrol erraft), as well as
Ve(0)Ve (6) (é) i (é) -0 v T(é) >0 the tracking error signale(t) and e’ (t) by selecting proper
[ve@? ¥\ e =0 Ve 0y values for the adaptation rateand feedback parametar



V. ANALYSIS OF THEM-MRAC PERFORMANCE the square root can be arbitrarily decreased by increabimg t
A. Boundedness adaptation rate. The first term is independent of but can be
arbitrarily decreased by increasing This is not the case for
Theorem 5.1 Let the system (1) be controlled by the M- ‘the conventional MRAC design. Indeed, whega= 0, the only

MRAC scheme given by (5), (6), and (7). Then all closed-log 8e5|gn parameter that affects that term\js, (Q). However,
signals are ultimately bounded. "

increasing\nin (@) scales alsadP, hence increases,.
Proof: Consider the following candidate Lyapunov func- The bound orj|e®(t)| . follows from the inequality (13)

tion ) and has the form

_ T L tanaT 2T
V(t) =e (t)Pe(t) + 7tr([6‘(t)9 (t) + d(t)d (t)]A) N (16) Heo(t)Hﬁx S C(l + /\km) (23)
where d(t) = d(t) — d. Computing its derivative along We notice that the derived bound dje’(¢)||.. cannot be

the trajectories of the systems (11) and (7), and using thgpitrarily decreased by increasing the design paramatensi
properties of the projection operator, it is straightforsvao . If we set\ = ¢y,/7, where the proportionality coefficient
obtain the inequality co Will be defined shortly, the following asymptotic bound can
. - be written
V() < —e'(t)(Q+2)\P)e(t) +2¢' (t)PB[d(t) — d]
< el [alle(®t)] - 2d.] , A7) i () < km\/Amax(P)dQ TP

Yoo /\13nm(P) " Amin(P)
where we denoter = Apin(Q) + 2Amin(P)A and d. =
|PB,,A(d(t) — d)|c.. with \nin(S) being the minimum which can be decreased by increasing, (P).
eigenvalue of the matrixS. It follows that V() is negative
semi-definite wheneved|e|| > 2d., which along with the
properties of the projection operator imply that the clokexp To investigate the behavior of the control signal with respe
error signalse(t), 6(t), h(t) are uniformly ultimately bounded. to design parameters we recall thatt) does not explicitly
The boundedness af°(t) follows from the inequality (13). depend on design parametevsaind~y. Instead,u(t) depends
Since 4,, is Hurwitz, the bounded signalg(t) and e(t) on-~ through the adaptive laws, afidt) depends or\ through
produce a bounded signal,,(t). Thereforex(t) is bounded. the tracking error dynamics. Therefore, for the purposéisf t
It follows thatw(t) andu(t) are bounded as well. m subsection we assume thatt) has bounded time derivatives.
This assumption is only needed for the analysis purposes and
is conditioned on the way the bound on the control signal is
The projection operator in the adaptive laws (7) guarantegérived. Alternatively one could use the integral représen
the inequalities tion of the parameter estimates and the error sigifal to
derive an integral equation for the(t) without assuming the

C. Transient behavior of the control signal

B. Transient behavior of the tracking error

6l < 6%, lld@)] < a7, (18) differentiability of r(¢). However, for more transparency we
therefore use the differential form of the equations.
< - AT Differentiatingw(¢) and substituting the adaptive laws we
(00" (t) +d(t)d (1)]A) <5, obtain
where 3 = 46*% + 4h*2. From Theorem 5.1 it follows that S T
12 B where we denote(t ) ¢ (1)p(t) + 1, ra(t) = 07 (1) (1),
V() > Vi = Amax(P) — + g (19) and H(t) = G(0)¢' (t)p(t) + G(d). We notice that the

termsp(t), r,(t) and H(t) do not explicitly depend on the
Therefore, it follows that the trajectories Stay inside th@esign parameters and . Moreover’ from the results of
Lyapunov level set the previous subsection it follows that all signals invalve

_ 5o 5o in the equation (25) are bounded. In particular, there exist
L= {(e,@,d). Ve, 0,d) = V*} ’ (20) positive constantsy;, sz, as such that||p(t)]z. < a1,
From the definition ofV’(¢) we have 16l < o and||rq(t)|| .. < as. We also notice that the
matrix F(t) = p(t)I, — H(t) is symmetric and positive semi-
Amin(P)|le(t)]|* < e (t)Pe(t) < V(t) < Vi. (21) definite, sincg|G(0)| < 1, which follows from the properties

of the projection operator.

Differentiating the equation (25) with respect to time and
Amax (P) 4d2 B using the equation (15) we obtain the following second order
el <c= om(P) @2 T (P (22)  differential equation

Hence, the following conservative bound can be derived

Since the inequality (22) holds uniformly in the bound (t) + Aa(t) +yF(t) Lu(t) = —F(t)B, PAne(t)
le®)|lz. < c follows. We notice that the second term in  —~F(t)B,] Pe(t) + vF(t)Lu®(t) — Ar,(t) — 74 (t) ,(26)



where L = B;PBmA. It follows from the definition of for all components simultaneously, whetg = min{d;;, i =
the projection operator that and Theorem 5.1 tlﬁat) is 1,...,p}. A similar inequality holds (as it is derived in the
piecewise continuous and bounded. Since all the termsdppendix) for the vectoo(t)

equation (26) are bounded, it can be considered as a seconci —ut 0

order linear equation with time varying coefficients ft). Ol < cae™ +anflvT(B)llen (32)
Although the equation (26) is non-autonomous, it can bé stil + i|\21(t)lla + (e1 + 2)\/P_0||22(t)”£
inferred that the adaptation rate determines the frequency do = Vidoy -

of the control signalu(t). Therefore, increasing increases Since 7' is orthogonal with||T||; = 1, we have|lu(t)|| =
the oscillations inu(¢) as it is the case for the conventional|y(t)||, ||lz2(t)|| = |7 (t)| and

MRAC design. On the other hankl determines the damping

ratio. Therefore increasing suppresses the oscillations in the [21(1)lz.. < [a1l|By, PAn| + aol| By, P lle(t)]| ...

control signalu(t). That is, by selecting a proper value forCombining the above relationships we obtain
A the desired performance can be achieved. This is the main

difference from the MRAC design, which results whes= 0. lu@®)] < ce™ +ar]|[u’®)|c.. +cslled)|cn
We select a proper value of from the perspective of (e14+2)y/po ; 33
minimizing the norm bound on the control signalt) in + Vdoy Ira(®)lc (33)

transient. To this end we notice that selection of the ihitia

_ 1 T T
parameter estimates inside the convex sets defined by ‘(H%efe% ~ do [O‘lanPAm” +O‘2HBmP|H'
It is easy to see that the bound ¢n(t)|| has the form

projection operator results i (¢) = 0 on some initial

interval [0 ¢;1] by continuity. ThereforeF'(t) = p(¢t)I, on lu®)lee < cae™ + arl[ul(®)|c +C_6’ (34)
[0 t1]. To simplify computations we notice that the matrix =T VAT

L is symmetric and positive definite, therefore there exists gpere

orthogonal matrixI” such thatD = T LT is diagonal with Amax (P) 3

positive entriesd;;, ¢ = 1,...,p. That is, introducing a new Ce = 65\//\3_ (P) dz + Nomin (P

variablev = Tu (v° = Tu®), we can write the equation (26) min m

in the following form and the constants, ¢4, c¢ do not depend on the adaptation

S0+ No(t Do(t)o(t) — rate~. We notice that the first term on the right hand side of
(t) + A0 (t) +yDp(t)o(?) - (34) represents the exponentially decaying effect of tiitealn

Yp(t) DO (t) +yz1(t) — Az2(t) — 22(1) - (27)  conditionsu(0) and(0), and the last term can be decreased

T[-p(t)Bl PAn — p(t)B] Ple(t) and by increa_singy. Therefore we can _co_nclude thqt for large

the adaptive control(t) behaves similar to the ideal control

u®(t). That is unlike the conventional MRAC design, the fast

adaptation in the M-MRAC design does not generate high gain

where z,(t) =
za(t) = T'rq(t). Let pg = 2221, Then for each component of
vectorv(t) we can write the following equation

Bi(t) + Xbi(t) + ydiipovi(t) = 1p(t)diivy (¢) effect.
+yz214(t) — Azai(t) — Z2(t) + y[dopo — diip(t)]vs(t) .(28) The transient behavior of the error signals is summarized
as follows.

Sincep(t) > 1, this equation is in the form of equation (38)
from Appendix withk(t) = di;p(t), 2a = \, w? = ~vd;;ipo and
three external inputs

Theorem 5.2: Let the system (1) be controlled by the M-
MRAC scheme given by (5), (6) and (7), and the design
parameters are chosen according to equatien cy,/y with

0 0 0 ‘ 1 . co = 1/2d°(a; + 1). Then, the inequalities (22), (23) and (34)
|: 1 :|’Yp(t)d”'l}z (t)7 |: 1 :| /yzll(t)a |: )\ :| ZQZ(t) . are true

Applying the inequality (48) we obtain VI. SIMULATION RESULTS

i) < e34/v2(0) + 02(0)e ! + ay|[?(t)| .. (29) For the simulation we consider a wing rock motion of a
slender delta wing given by the equation [14]

1 (c1 +2)/p0 : _

for eachi = 1,...,p, if X > 2\/w; = \/vdi;ipo. Therefore whereg(t) is the roll angle,

selecting ' ' . . 3
f(9,0) = a1¢ + a2 + a3|¢?|d + aa|dld + aze® . (35)
A= VEdar 7 1), (6.6) = 19+ a2 + 031610 + auldlo + a

with a; = —0.0186, as = 0.0152, a3 = —0.0625, ay =
whered” = max{d;;, i = 1,...,p} results in the inequality 0.0095, a5 = 0.0215, b = 1. The disturbancei(t) rep-
resents unknown atmospheric effects and is a square wave
of amplitude0.15 and of frequency).5 rad/sec. Only the

sign of the control effectivenedsis assumed to be known
(positive). The parameters of the reference model are chose

i < ey /v7(0) + 07 (0)e™" + an o) (B)] 2. (3D)

(c14+2)/po
+  —lzit)lce + ——m=—122:(t)l| .
0Hl()llc T l|22:(t)| 2



as follows 4,, = [0 1;—-1 — 1.6}, by, = [0;1]. The external to bounded disturbances. It is shown that the systems’ input
input to follow is a step command of magnitudd5 degrees and output tracking errors can be decreased as desired by
att = 15. We run two simulations respectively from thencreasing the adaptation rate, when the error feedbacgk gai
small initial conditions(6deg., 3deg/sec) and large initial is selected according to derived rule. This design method
conditions (30deg., 10deg/sec). The adaptation rate is setprevents high frequency oscillations in the control signal
to v = 10000 with X\ defined according to equation (30)which are unavoidable in conventional MRAC systems. The
The simulation results are displayed on Figures 1 and p2rformance of M-MRAC is demonstrated on a benchmark
respectively. It can be seen that a good tracking is achieyawblem of controlling wing rock motion of slender delta
for both output and control signals, and the later does netngs in a turbulent atmosphere.

exhibit any high frequency oscillations even for the sedct

high adaptation rate. The disturbance effect is completely APPENDIXA
attenuated. AN UPPER BOUND FOR A SECOND ORDERTYV SYSTEM

Consider a second order time variant linear system
Bank angle response in degrees

10 ‘ ‘ ‘ Ideal response I(t) + 2a5b(t) =+ 'Yk(t)x(t) = bl.f(t) + be(t) (36)
\ Adaptive response . .
or 1 with 2(0) = =z, ©(0) = &0, wherey > 0 is a constant
parameterf(t) is continuous witht* > k(t) > k. > 0 and
-10r 1 has a bounded derivative. The functig(¥) is assumed to be
piecewise continuous and bounded. The equation (36) can be
2% 5 10 15 20 25 30  written in the matrix form as
2 Aileron‘deflection c?mmand in degrees Z(t) — Az(t) + Bf(t) (37)
Ideal command
Adaptive command where

10f 3
LV el (3]
10 ‘ : - = = We are interested in minimizing the upper bound oft)

0 5 10 e 30 py the choice of the parameter To this end we introduce
notationsw? = ko, ko = £+ a = (w and represent the
Fig. 1. Tracking a step command from the small initial condis. system (37) in the followmg equwalent form
2(t) = Dz(t) + Bf(t) + Clw? — vk(t)]z(t) (38)
Bank angle response in degrees where
40 ; ‘ :
o] e ]o- 1]
Ideal response —w —2Cw 1

20t _ i
Adaptive response

For the convenience of derivations we decompe$§g into
oF X 1 initial responsez‘(t) of the homogeneous system

() = AZ'(b) (39)

20 i i i
0 5 10 15 20 25 30

Aileron deflection command in degrees with the initial conditionzo = [z 0] ', and force response
20 ; ; ; ; ; 2/ (t) of the system (38) with zero initial conditions, which
can be represented in the equivalent integral form

2 (t) = [} G(t — 7)Bf(r)dr +

i

-20 Ideal command | ¢
Adaptive command fO Gt — T)C[LUQ — ’yk(t)]xf (T)dr . (40)
405 s 0 15 20 P 0 Here,G(t) = eP! is the state transition matrix, which can be
time computed by direct integration (see for example [5]).
In order to minimize the bound on{(t) = z/(t) we
Fig. 2. Tracking a step command from the large initial cdod. compute theZ; norm of the elements in the first row of matrix
G(t). For g12(t) we obtain
VIl. CONCLUSIONS 1 S .
. . w2 wT ) <
We have presented design and performance analysis of M- |[g12(t)||z, = { “* ¢*5" 1 ¢ , (41)
MRAC architecture for a class of uncertain systems subject w—12, (>1



where§ = wy/[I-¢?[ and0 < ¢ = tan~'(Z) < 3.
Obviously, [|g12(t)|z, reaches its minimum ol for all

Therefore the equation (44) and the upper bound (46) hold
for each component/ (¢) of vectorz? (¢) with f(t) replaced

¢ > 1. On the other hand, thé; norm of g1 (t) is computed Wwith f;(t). On the other hand, the inequality (47) is true for

to be the 2¢-vector z(t), hence it is true for the vectots’ (t) and
o &/ (t). That is
%(<+ %’i) c<1 s t | t
lon@®lle, =2 \° 7 SN Cr) |2 (1) < ese™ /ol + &2 = cac™  (49)
2. >1 _ .
“ ¢z It follows that the inequality
It can be shown that the minimum d#1(¢)||z, is reached
* H H —vt Cllbll\/k—o |b2|
at some¢* < 1. The analytical computations are somewhat lz@)] < cae ™ + | ———=+ —| [|F®)|lc.  (50)
involved, but numerical computations results gh = 0.66 ke K.y

with the minimum value o%, wherec = 0.8026.

Since there is no common minimum point for the entries
of G(t), one can use a "suboptimal” valie= 1, which is
good enough for our purposes. In this cdge:(t)||z, = 2 [1]
and||g12(t)||z, = Z=. We notice that selecting a larger value
of ¢ while leaving ||g12(¢)||z, intact, increases|gi1(t)||z,
proportional to%. Therefore, we can select agy> 1 with
llg11(t)|lc, = <, wherec; > 2 is determined by the selected
¢ and is independent a.

Next we computeC., bound onz/ (¢)

2f (t) = [7[brgui(t — 7) + bagra(t — 7)1 f(7)dr

+ JY qua(t = T)w? — yk(D)]2! (T)dr .

|
2

(2]

(3]

[4]
(43)

Since||w? —vk(t)|| .. = w® =7k =7

[7], p. 199 for details)
127 )l < IFOllalBrlllgn® e, + balllgrz®lle] 7
SR e ()| e 912Dl - (44) "

Substituting the£; norm values and solving the resulting
inequality for||z/ (¢)||c.. we obtain

k* — k. c1]b1]
1-— (it
(1- 52 )1/ Ole. < |2

which results in
< [Cl|b1|\/k—0
To obtain a bound forz‘(¢), we recall that according to
Theorem 8.7 [13] the origin of the system (39) is uniformIyi3]
exponentially stable, sincg A(¢)|| is bounded,| A(t)| is [14]
essentially bounded, and the point wise eigenvalues ofixnatr
A(t) have negative right hand sides. Therefore

Hzl(t)” < c3||z(0)He—Vt

, we obtain (see

El

+ Bl e, es)

A

[20]

|b2| [11]

n —] FOle . (46)

ft
llz! (t)[ o

[12]

[15]
(47)
for some positive constants andv, (16]
Sice (49) is true for each component #f(t), adding the

corresponding inequalities we finally arrive at

01|b1|\/%+@
ko

[17]

|2(t)] < esl|z(0)][e™" + 1f (Ol .. (48)

kay [18]

for all a > /vko.

We notice that whene and f are ¢-dimensional vectors
in the equation (36), thew = [z1 #1...2, %, and the
matricesA, B, C, D and G have repeated block structures.

holds in the vector case as well, wher> /~vkq.
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