Airships 101: Rediscovering the Potential of Lighter-Than-Air (LTA)

John Melton
NASA Ames Research Center
John.Melton@nasa.gov (650) 604-1461

Ron Hochstetler
SAIC
hochstetlerr@saic.com (703)516-3162
Agenda

• Intro to NASA Ames Aeronautics
• Airship classifications
• LTA Theory
• LTA Revival – Why Now?
• R&D Challenges
• LTA “Game-Changers”
Aeronautics at Ames Research Center

- Video available at:
Airships were focus of much early NACA work (Munk, Zahm)
ARC home of the Macon (1933-35) and various USN blimp squadrons until 1947
Approximately 50 research papers from the mid-1970s to mid-1980s were spawned by the energy crisis of 1973-1974
1970s research identified three potential LTA roles:
- Heavy-lift airship
- Short-haul commercial transport
- Long-endurance naval patrol
1979 AIAA LTA conference in Palo Alto
1980s studies confirmed potential role for LTA in lifting heavy and oversized cargo
1980s research focused on quad-rotor + LTA concepts for heavy lift
Minor involvement with Piasecki quad-rotor and Cyclocrane
1994 operations research with Westinghouse used Vertical Motion Simulator
USS Macon on Mooring Mast near Hangar 1 Moffett Field 1935
70+ Years of Innovation

- Tektites
- Apollo Re-Entry Shape
- Blunt body Concept (H. Allen)
- Transonic Flow
- Apollo Heat Shield Tests
- Flight Research
- Conical camber
- Swept-Back/wing
- Arcjet Research
- Lifting body
- Apollo Guidance System
- Air Transportation System
- Hypervelocity Free Flight
- Flight Simulation
- Computational Fluid Dynamics
- Life Sciences Research
- 80x120 Wind Tunnel
- Galileo
- Viking
- Pioneer
- Pioneer Venus
- Tiltrotor
- ER-2
- Lunar Prospector
- Nanotechnology
- Astrobiology
- Kuiper Observatory
- NASA Research Park
- World’s fastest operational supercomputer
- X-36

Ames Spacecraft and Aeronautics Expertise

- Inflatable (Fabric) and Lightweight Structures
 - Advanced FEA tools: LS-DYNA, Abaqus, NASTRAN
- Piloted Simulation requiring Vertical Motion Sims
 - Helicopters, Moon landers
 - Controls development for VTOL aircraft
- Aerodynamics Design, Analysis, and Test
 - CFD tools: OVERFLOW, STAR-CCM+
 - Large wind tunnels, Supercomputers

LTA vehicles face many of the same engineering challenges that confront current NASA Ames aircraft AND spacecraft programs
LTA Taxonomy and Theory
Aircraft Taxonomy

Aircraft

Heavier-Than-Air (HTA)
- Fixed Wing (Airplanes)
 - Hybrid (V-22)
 - Powered Lift (JSF)
- Rotary Wing (Helicopters / Autogyros)

Lighter-Than-Air (LTA)
- Unpowered
 - Untethered (Balloons)
 - Tethered (Aerostats)
- Powered and Steerable (Airships = Dirigibles)
 - Conventional (Fully buoyant)
 - Rigid
 - Semi-rigid
 - Non-rigid
 - Hybrid (Semi-buoyant)
 - Rigid
 - Semi-rigid
 - Non-rigid
Airship Examples

Powered and Steerable

Airships = Dirigibles

- **Conventional** *(Fully buoyant)*
 - Rigid
 - Semi-rigid
 - Non-rigid

- **Hybrid** *(Semi-buoyant)*
 - Rigid
 - Semi-rigid
 - Non-rigid

Design space for LTA is at least as large as HTA, but has only been “randomly sampled” with flight vehicles spaced over decades

LTA engineering is MUCH broader than the Hindenburg (LZ-129) and Goodyear Blimp

AMS Skyship 600 Airship

Graf Zeppelin LZ-127

Russian Lenticular Airship

21st Century Airships

Spherical Airship

Boeing SkyHook

Lockheed ADP P-791

Piasecki PA-97 Helistat
Conventional airships control heaviness by changing aerostatic (buoyant) lift and ballast.

Hybrid airships combine aerostatic (buoyant) lift with aerodynamic lift (wing-borne) and direct (propulsive) lift.
LTA Theory

- Lifting force from displacement (Archimedes, 287-212 BC)
 - Useable Lift = \(\text{Vol} \times (\rho_{\text{He}} - \rho_{\text{air}}) \times g - W_{\text{dead}} \)

- Hydrogen (H\(_2\)): 70 lbf per 1000 ft\(^3\) (1.14 kg/m\(^3\))
- Helium (He): 65 lbf per 1000 ft\(^3\) (1.06 kg/m\(^3\) or 93% of H\(_2\))

- Dead weight historically > 50% of displacement lift
 - Hindenburg (H\(_2\)): 54%, 260K lbs Dead, 220K lbs Useable

- Fuel, ballast, crew, consumables further reduce useable lift available for cargo

- Lift, Drag, Weight, and Thrust still apply – but apparent mass, buoyancy control, and ballast complicate design
LTA Revival and Missions
Reviving the LTA Dream – Why Now?

• Commercial – the “E’s”
 – Environment, Emissions, Energy, and Economics
 – New market opportunities
 – New aerospace exports
 – Endurance for scientific and commercial missions

• National Security
 – DoD transport and surveillance needs
 – Homeland security
 – Humanitarian airlift

There are numerous LTA missions besides tourism and advertising!
Environment, Emissions, and Energy

- Low noise
- Pavement “optional” – concrete not required
- Reduces port, freeway and railway congestion
- Reduces cargo aircraft at airports, reducing ramp/taxi delays and emissions
- Utilization of secondary airports and shallow ports
- Operations at lower altitudes reduce air traffic conflicts
- Large size and low speeds promote autonomous operations

Airships have minimal infrastructure requirements and their low-altitude operations are inherently green
Environment, Emissions, and Energy

• Safe, convenient, airborne platform for the development and demonstration of green propulsion technologies: biodiesel, electric, solar technologies

• Emissions restrictions:
 • will continue to tighten
 • provide barriers to trade
 • may supercede fuel costs
 • are aviation’s biggest environmental challenge

• Low altitude operations eliminate high-altitude aviation emission concerns

Unlike 1973-74, emissions will become increasingly important regardless of short-term oil price trends. Airships can stimulate the development of low-power green aviation prototype propulsion systems
Dramatically reduced power requirements

\[\text{Power} = D \cdot V = \frac{1}{2} \rho_{\text{air}} S C_D V^3 = \text{Fuel Flow/SFC} \]

Uncertain future of oil prices and supply

Energy independence is a national goal

Speed will likely become MUCH more expensive due to rising energy costs and emissions

Strong arguments for LTA in 70s and 80s...

Modern airships can be a component of GREEN aviation
C-130, C-17, B747-400 and Hindenbug

<table>
<thead>
<tr>
<th></th>
<th>C-130</th>
<th>C-17</th>
<th>B747-400F</th>
<th>Hindenbug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel + ballast (tons)</td>
<td>32</td>
<td>119</td>
<td>200</td>
<td>53+16</td>
</tr>
<tr>
<td>Cargo (tons)</td>
<td>22</td>
<td>85</td>
<td>124</td>
<td>43</td>
</tr>
<tr>
<td>Useful Lift (tons)</td>
<td>54</td>
<td>204</td>
<td>324</td>
<td>112</td>
</tr>
<tr>
<td>Range (miles)</td>
<td>2360</td>
<td>2785</td>
<td>5120</td>
<td>6840</td>
</tr>
<tr>
<td>Fuel/cargo-kmile</td>
<td>0.62</td>
<td>0.50</td>
<td>0.31</td>
<td>0.18</td>
</tr>
<tr>
<td>Power (hp)</td>
<td>4x4300</td>
<td>4x22000</td>
<td>4x1200</td>
<td></td>
</tr>
<tr>
<td>Speed (mph)</td>
<td>460</td>
<td>518</td>
<td>560</td>
<td>90</td>
</tr>
</tbody>
</table>

Data is VERY approximate and from multiple sources

- LTA can be VERY competitive on fuel use
- If Hindenbug ballast is considered cargo, F/c-km = 0.13
- Productivity comparisons *must* include speed differential
Advanced cargo airships will be the only aircraft capable of approaching trucks in freight fuel efficiency.
Economics

• LTAs open trade and supply routes to regions lacking surface transportation infrastructures
 – Logging
 – Mining
 – Oil exploration
 – Arctic/Africa/Asia and others
• Satellite surrogate, WiFi/Broadband relays
• Short haul passenger transport/feeder
• New class of aerospace vehicles for export (aka, jobs!)

Airships can promote new markets for US exports and service environmentally sensitive and remote regions
Transport Airship Markets

• Short distance movement of cargo, equipment, and supplies
 – Direct delivery of materials, equipment, prefab structures, etc...for roadway, rail, port, bridge, and building construction projects
 • Reduces ground footprint and disruption to areas surrounding construction sites compared to conventional approach
 • Permits “just-in-time” movement of materials and supplies; reduces on-site storage, shortens project schedules, and reduces project costs
 – Moving cargo where deep water port facilities aren't available

• Long distance freight transport
 – Transport between multi-modal shipping centers (trucking terminals, etc.)
 – Transport within transportation poor developing countries
 – Transport into and out of remote or otherwise inaccessible regions
DoD Mobility Needs

- Insert materials into critical points that can’t easily be reached
- Provide additional deployment lift for current force
- Service Operational Concepts + Network-Centric Operations (NCO)
 - Reduce number of moves required in the Area of Operations
- Move new things in new ways (support to Seabasing concepts)
- US forces need advantage of adaptive power projection
 - Bypass choke points
 - Deliver intact capabilities at multiple entry points
 - Maintain uninterrupted deployment momentum
 - Move select air cargo forward from last secure area
 - Minimize surface convoys
 - Avoid IEDs and ambushes
2005 CAA Transport Airship Study

- Heavy lift airships are feasible with current technologies up to around 90 tons.
- Follow on development to larger sizes require timed S&T investments
 - 5 years and 8 years for two distinct development phases
- 12 years development to achieve conventional airship with 360 tons lift.
- 18 years development to achieve hybrid airship with 450 tons lift.
- Commercial market demand is strongest for project freight
 - Ranges for commercial demand are 25 to 250, and 400 to 800 miles.
 - Ranges for military demand are 400 to 800 miles, and (1,000 to 3,000 miles).
- Recommended airships be commercially developed, for lease to DoD.
Major Project Freight Applications

Oil and Gas Pipeline Construction

• In-land logistics (from main entry port) is 25% of construction costs
• 90% of cost is just moving heavy equipment, materials, and consumables up and down the project right of way
• For typical 52” pipeline, this is $100-150 million per 1000 km of pipeline
• $100 to 120 billion in pipeline projects scheduled over next 10 – 15 yr

Logistics Support to Canada

• University of Manitoba study shows interest in airships for shipping fuel
• Forecast for transport airships in Canada alone could range between 185 to 635 airships, of 50 metric tons lift
Vertical Lift for Precision Positioning

- Installing pre-fab windmills and geothermal generation equipment in optimized locations
- Electrical grid installations
 - Towers, transmission lines, switches, transformers, etc.
- High speed rail components

- Supports regional movement of equipment which otherwise must be moved by conventional means
 - Airship transport reduces handling steps, point-to-point distances, overall transport time, and overall expense
- Vertical lift airships can deliver and install temporary capital equipment to meet cyclical industrial production demands
 - Production equipment and facilities can be leased on as needed basis
 - Reduces investment commitment and financial risks
 - Encourages industrial expansion, and economic growth

MAGLEV Pylons and Rail Segments

Generator Moving Through a Village

Crane Hoisting Propeller onto Windmill
Outsized Freight and Load Exchange Handling

- Internal winch in gondola can accommodate high point loads
 - Supports sling loads and palletized freight
- Wide landing gear stance can handle outsized payloads
 - Extended fixed landing gear provides ground clearance for large outsized items
- Internal payload bays can be equipped for roll-on-roll-off load handling

- Initial operations can utilize ballast exchange
 - Pre-loaded ballast bags can be winched or loaded into gondola structure
 - Lightweight composite boxes allow more payload weight
 - Roll on, roll off boxes can facilitate quick movement of wheeled loads
 - Facilitates quick payload/ballast load exchange in austere areas
 - Ballast environmental issues minimized in short distance operations within region
- NASA Ames R&D needed to facilitate development of optimal buoyancy control system
Operational Concepts and Missions

• Approximately 82% of Alaskan communities are not served by roads
• The Canadian North has only 48 certified airports and 73 aerodromes
• How can a cargo airship operation best serve this community?
 – Cargo only, or combination cargo and passengers (combie)
 – Out and back flights from a central hub (with “deadhead” returns)
 – Three way (triangle) flights between sites
 – Two ships flying in opposite directions between several sites
• What mix of cargos will be most efficient, useful, and profitable?
 – Diesel fuel, jet fuel, gasoline, kerosene
 – Dry cargo in containers
 – Outsized freight in sling loads
 – Passengers
Why aren’t there more Cargo Airships?

• Many cargo airships have been proposed but have failed to succeed or have yet to come to fruition for various reasons
 – Inadequate program funding and resources
 – Poor management practices
 – Shortage of designers and engineers with unique airship skills
 – Insufficient customer input on airship design and operation
 – Unmanageable gap between airship capabilities and customer expectations
 – Excessively short or unachievable development schedules
 – Investor or customer impatience with airship development time and costs
 – Reluctance by investors and customers toward staged development approach
 – Schedule delay or increased costs due to unanticipated technical obstacles
 – Investors and customers impatience with airship technology R&D efforts to reduce future program risks
 – Unfamiliarity by aviation authorities with factors governing airship design, operation, and promulgation of appropriate regulations
What is the Right Size for a Cargo Airship?

• The technology and engineering expertise to design and develop large cargo airships is available today
• But what airship size and performance capabilities are required?
 – Choose too large and it’s too costly in time and money to develop
 – Choose too small and it’s economic utilization is too limited for markets
• What is the performance “sweet spot” for a successful cargo airship?

Cargo airship requirement considerations:
• Cargo airships need the right mix of mature technologies and advanced technologies
• Payloads need to meet the freight shipment sizes preferred by customers
• Utilization rates must be high to maintain operational profitability
 – The shorter the distances, or greater the speed, the greater the utilization
• Freight transport costs must be attractive compared to current alternatives
• Should accommodate current cargo shipping systems preferred by customers
• Have the capability of operating at well developed sites (airports) and austere sites
• Facilitate ease of operation and maintenance in remote areas
• **MUST MAKE MONEY FOR ALL PARTICIPANTS!**
Customer and User Inputs Needed

Alaska and Canada are the best initial markets for cargo airships

• Designers need user inputs to develop the right airship and operation
 – Cargo types, sizes, and weights
 – Priorities for freight type, delivery locations, and schedule
 – Critical cost points for freight and delivery locations
 – Specific cost factors that govern airship operations
 • Local cost and availability of airship fuel
 • Manpower costs for experienced aviation crews (flight and ground)
 – Local weather and site info on proposed airship cargo delivery areas
Research, Challenges, and Technology “Game-Changers”
LTA Research Opportunities

- Incorporation into future airspace
 - Utilization of secondary airports
 - Impacts of low-altitude operations
- Lightweight structures (design, analysis, fabrication)
- Materials (engineered fabrics, composites)
- Controls and Dynamics, especially near ground
- Ground operations
- Drag reduction, BLC, and synergistic propulsion
- Thrust vector control
- Showplace for green power sources (solar, biodiesel, hydrogen, fuel cells, etc.)
- Localized weather prediction
LTA Research Challenges

• Few modern examples, difficult to predict ultimate economic success
• Large lightweight structures are historically risky to build and fly
• Competition with HTA and surface transport industry
• Hindenburg imagery, public confusion of He and H₂
• Speed and Size do matter - must successfully match vehicles, cargo, and missions for economic success
• Weather and ground handling
• Conveying seriousness of emissions and environmental challenges
• Small number of LTA engineers
• LTA not included in aerospace engineering curriculum
• No existing national LTA “culture” (as compared to HTA)
• Existing LTA infrastructure (hangars) in disrepair...
Modern LTA can capitalize on advances in:

- Materials and instrumentation
- Digital/optical electronics and computers
- Structural design, analysis, and testing
- Aerodynamic design, analysis and testing
- Digital control
- Fabrication and advanced manufacturing
- Weather prediction and avoidance
- Propulsion system efficiencies
- Systems engineering processes
LTA “Game Changers”

• Eliminating Ballast: Buoyancy control via compression/cooling
 – Regulations governing brown/foreign water disposal
 – Heaviness avoids the cargo/ballast matching required during offloading
 – Availability of ballast materials in remote areas
• Ground handling: Control systems, thrusters, micro-climate
• Emissions: Solar cells, biodiesel, fuel cells, ocean sailing
• En route weather information and path optimization
• Autonomous capabilities
• Electrochromic paints
• Distributed, synergistic propulsion reduce P_{req} by additional 30%
• Materials: Engineered fabrics, composite structures
• Advanced structures and engineered materials
• Lifting gases: H$_2$, H$_2$ encased in He, Hot Air, Steam
• Analysis and Design Tools: CFD, FEA, Controls
NASA Ames Airship Analysis

Structures
- Design and Analysis
- Testing and Instrumentation
- Materials

Aerodynamics
- Steady Loads Estimation
- Performance
- Gust and Fin loads

Flight Simulation
- Handling Qualities
- Controls Development
- Mooring
- Buoyancy Management
- Vectored thrust

Mission Analysis
- Airspace Operations
- Cargo Handling
- Risk Analysis
Conclusions

- LTA remains one of the last unexploited aviation frontiers

- LTA is the most environmentally responsible aviation transport technology

- LTA vehicles face numerous challenges, but today's technologies can provide the solutions

- LTA vehicles offer significant, game-changing capabilities for major economic and social advances