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Abstract

Muñoz, Seidel, and Muga [Phys. Rev. A 79, 012108 (2009)], following

an earlier proposal by Pollak and Miller [Phys. Rev. Lett. 53, 115 (1984)]

in the context of a theory of a collinear chemical reaction, showed that

suitable moments of a two-flux correlation function could be manipulated

to yield expressions for the mean quantum dwell time and mean square

quantum dwell time for a structureless particle scattering from a time-

independent potential energy field between two parallel lines in a two-

dimensional spacetime. The present work proposes a generalization to

a charged, nonrelativistic particle scattering from a transient, spatially

confined electromagnetic vector potential in four-dimensional spacetime.

The geometry of the spacetime domain is that of the slab between a pair

of parallel planes, in particular those defined by constant values of the

third (z) spatial coordinate. The mean N th
power, N = 1, 2, 3, . . ., of the

quantum dwell time in the slab is given by an expression involving an N -

flux-correlation function. All these means are shown to be nonnegative.

The N = 1 formula reduces to an S-matrix result published previously [G.

E. Hahne, J. Phys. A 36, 7149 (2003)]; an explicit formula for N = 2, and

of the variance of the dwell time in terms of the S-matrix, is worked out. A

formula representing an incommensurability principle between variances

of the output-minus-input flux of a pair of dynamical variables (such as

the particle’s time flux and others) is derived.

1 Introduction

In 1984, Pollak and Miller [1] proposed a formula for computing the quantum
mean time for the system of a forward or reverse collinear chemical reaction
AB+C↔ A+BC to dwell between two spatial surfaces exterior to, and includ-
ing, the reaction zone. Their formalism depended on calculating the algebraic
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sum of weighted averages of the two-flux correlation function between the nor-
mal fluxes of particles at the same, or opposite, pairs of the spatial surfaces,
and was based on a microcanonical ensemble for choosing the density matrix
of the quantum mixture. In 2009, Muñoz, Seidel, and Muga ([2], Eq. (14)) re-
formulated the two-flux method of Pollak and Miller to allow the estimation of
mean powers of the dwell time in potential scattering in one spatial dimension;
they in effect presumed a density matrix derived from a pure quantum state.
They showed that the two-flux formalism could be manipulated and reduced to
a known single-flux method for computing the mean dwell time, and that the
mean-square dwell time formula in the context of Pollak and Miller’s approach
was mathematically equivalent to a previously known, but distinct, formula also
involving a two-flux correlation function.

Muñoz, et al. also advanced a formula for the mean-cube quantum dwell
time in terms of Pollak and Miller’s two-flux correlation functions, and gave or
implied another formula for the mean N

th power of the dwell time in terms
of N -flux correlation functions. For N = 3, in the free-particle case, the two
formulas gave different results.

In the present work, a general formula for the mean N
th power of the dwell

time for a particle between a pair of z=constant planes containing the interaction
zone, in terms of N -flux correlation functions, is proposed. The physical system
is that of a charged, structureless particle moving in four-dimensional spacetime,
and scattering from a specified, transient, spatially confined, electromagnetic
four-vector potential. The formulas for N = 1 and N = 2 reduce to those of [2],
and the results for all higher powers reduce to a straightforward generalization
of [2], rhs of Eq. (18). An incommensurability principle will be derived that
establishes a lower bound to the product of variances of the output-minus-input
fluxes of a pair of distinct dynamical variables of the particle.

The ensuing material is organized as follows: In Section 2, we shall define
general N -flux correlation functions for the probability four-currents at an or-
dered set of N points, N = 1, 2, 3, . . ., of a simple charged particle moving in
a time-dependent electromagnetic field. The correlation function will prove to
have zero four-divergence with respect to each set of coordinates and associ-
ated vector indices (generalizing [2], Eq. (9)). We shall show further that a
weighted average of such a correlation function of normally-directed currents
on the direct product of N three-dimensional spacetime boundaries equals, by
an N -fold application of Gauss’s theorem, to a 4N -dimensional volume integral
that is a weighted sum of the current correlations in the direct product of the
interior spacetime volumes. Section 3 applies the method to propose a general
formula for the mean N

th power of the dwell time; the formula entails the com-
putation of the N -flux correlation function of the particle’s probability current,
and can be expressed either as an integral over the product of N copies of a
four-dimensional slab-like spacetime domain, or as integrals over the product of
N copies of the three-dimensional boundary of the domain. All mean powers
of the dwell time calculated according to the general formula are shown to be
nonnegative, thereby satisfying an important physical criterion. We then show
that the general formula reduces to results given in [2] for the mean first and
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mean second powers of the dwell time. In Section 4, an explicit formula for the
mean-square dwell time in terms of the S-matrix is derived, and it is shown
the mean-square dwell time is greater than, or equal to, the square of the mean
dwell time—hence, the variance of the dwell time is well defined. There are
four appendixes: In Appendix A, the properties of the U operators, which are
expressed in the familiar form exp[−i(tb− ta)H/�] for time-independent Hamil-
tonians, are studied particularly in the context of spacewise propagation of wave
functions, and where the Hamiltonians are time-dependent. In Appendix B, a
formula giving a lower bound to the product of the variances of two delocal-
ized observables in terms of the mean value of a generalized commutator of the
observables is derived. In Appendix C, an expression closely resembling the
Aharonov-Bohm operator for arrival time is shown to arise from calculating the
mean flux of time across a single z=constant surface in spacetime. Appendix D
gives arguments that are intended to provide insight into the presence of flux
correlations in the computations involving delocalized (i.e., for measurements
not confined to a single timelike or spacelike hyperplane) observables.

2 Single-particle, multiple-point-current corre-
lation functions

In this section we shall define, and study some properties of N
th-order (N =

1, 2, 3, . . .) correlations of the probability flow currents of a simple charged par-
ticle moving in a given background electromagnetic field. The space of quantum
states will be that of suitably well-behaved functions of the four real coordinates
labeling points in spacetime:

ξ = (ξµ) = (ξ0
, ξ

1
, ξ

2
, ξ

3) = (t, x, y, z) = (t, r1
, r

2
, r

3) = (t, r). (1)

Matrix elements of operators between quantum states in Dirac notation will
entail integrals over a four-dimensional domain D

4 of spacetime:

�Φ|Ω|Ψ�D4 =
�

D4
d
4
ξ1

�

D4
d
4
ξ2 Φ(ξ1)∗ �ξ1|Ω|ξ2�Ψ(ξ2), (2)

where we omit |Ω on the lhs and substitute δ
4(ξ1 − ξ2) for �ξ1|Ω|ξ2� on the rhs

if Ω is the unit operator on spacetime functions. It will normally be the case
that Φ(ξ) and Ψ(ξ) in the above are both solutions of the Schrödinger equation.
Convergence problems can be dealt with by restricting the operators used, the
spacetime domain involved, or the wave functions.

The dynamics is given by the nonrelativistic Schrödinger equation, and the
components of the four-vector current operator have the usual form in terms
of the derivative operators and the electromagnetic four-vector potential ([3],
Eq. (24.39), and [4], Eqs. (11.16) and (11.22)). In fact, we have the specified
four-vector electromagnetic-field potential

(Aµ(ξ)) = (V (ξ),A(ξ)) (3)
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and the Schrödinger equation for Ψ(ξ) of a particle with mass m and charge e

i� ∂

∂t
Ψ(ξ) =

1
2m

3�

j=1

��
i

∂

∂rj
− e

c
A

j(ξ)
���

i

∂

∂rj
− e

c
A

j(ξ)
�
Ψ(ξ)

+ eV (ξ)Ψ(ξ). (4)

We define the spacetime matrix of the four-current operator J µ(Ξ) at position
(Ξ) = (T,R) as follows:

�t2, r2|J µ(T,R)|t1.r1� = δ(t2 − T )δ(T − t1)

×






δ
3(r1 −R)δ3(R− r2) if µ = 0;

δ
3(r2 −R)

�
�

2im

�
∂

∂Rj

−−→
− ∂

∂Rj

←−−

�

− e
mcA

j(T,R)
�
δ
3(R− r1), if µ = j = 1, 2, 3,

(5)

where the under-arrows indicate the direction in which the derivative acts when
the operator is sandwiched into a matrix element. Note that the matrices of
the J µ(Ξ) operators are all Hermitean, at least on the space of differentiable,
complex-valued test functions on spacetime. One can also verify that, if both
Φ(ξ) and Ψ(ξ) are solutions of (4), then the four-divergence of the associated
(and in general, complex-valued) current distribution is everywhere zero (the
summation convention on a µ = 0, 1, 2, 3 is operative henceforth):

∂

∂Ξµ
�Φ|J µ(Ξ)|Ψ� = 0. (6)

Now let Ψ(ξ;k), where k ranges over all real three-vectors, be a complete,
orthonormal set of solutions to (4), in that at every time t,

�
d
3
kΨ(t, r2;k)Ψ(t, r1;k)∗ = δ

3(r2 − r1); (7)

orthonormality will be defined in terms of the matrix F0(T ) in a wave vector
basis,

�Ψ(k2)|F0(T )|Ψ(k1)�

=
�

d
3
R�Ψ(k2)|J 0(T,R)|Ψ(k1)�

= δ
3(k2 − k1). (8)

An analogous flux-related matrix, called F3(R3) for z-propagation, will be de-
fined in (A11).

The vector k will be taken to be the wave vector of an input plane wave
such that the state Ψ(t, r;k) contains purely outgoing scattered waves. We
can now define a U

(1) operator that propagates solutions of (4) in time, where
the superscript (1) is intended to indicate that not free-particle states, but
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interacting-particle states are involved; the symbol U
(0) will be used for the

corresponding operator in the interaction-free case—see (A7ab). We take

�t2, r2|U (1)|t1, r1� =
�

d
3
kΨ(t2, r2;k)Ψ(t1, r1;k)∗, (9)

which by (7) reduces to the unit operator on a time=constant slice when t1 = t2.
Note that the operator U

(1) yields a Hermitean matrix in spacetime, in that

�t2, r2|U (1)|t1, r1�∗ = �t1, r1|U (1)|t2, r2�. (10)

We shall also make use of a generalized density operator which has a complete
matrix in spacetime. Let ρ̃(k2;k1) be a Hermitean, positive semidefinite ma-
trix with unit trace that represents the particular mixture of plane-wave states
that existed at times before the particle interacts significantly with the electro-
magnetic field. The spacetime matrix of the density operator ρ

(1) is taken to
be

�t2, r2|ρ(1)|t1, r1� =
�

d
3
k1

�
d
3
k2Ψ(t2, r2;k2)ρ̃(k2;k1)Ψ(t1, r1;k1)∗. (11)

The matrix of both operators U
(1) and ρ

(1) evidently satisfy (4) on the left
spacetime arguments, and the complex-conjugate equation applied to the right
spacetime arguments.

We now define a quantum average of an ordered N -point current correlation
function:

�
J

µ1µ2...µN (Ξ1; Ξ2; . . . ; ΞN )
�
ρ̃

= Tr�ρ(1)J µ1(Ξ1)U (1)J µ2(Ξ2)U (1)
. . .J µN (ΞN )�. (12)

In view of (9) and (11), (12) reduces to

�
J

µ1...µN (Ξ1; . . . ; ΞN )
�
ρ̃

=
�

d
3
k1 · · ·

�
d
3
kN+1 ρ̃(kN+1,k1)

× �Ψ(k1)|J µ1(Ξ1)|Ψ(k2)� · · · �Ψ(kN )|J µN (ΞN )|Ψ(kN+1)�. (13)

Since in (13) each J µ(Ξ) is sandwiched between two solutions of (4), (6) implies
that the four-divergence of the lhs of (12) or (13) at each of the N points is
zero:

∂

∂Ξµs

�
J

µ1...µN (Ξ1; . . . ; ΞN )
�
ρ̃

= 0, for each s = 1, 2, . . . , N. (14)

We suppose that the particle is effectively free on or near the boundary of,
and everywhere outside, the slab S

4 in spacetime, defined as follows:

S
4 = {(T,R)|−∞ < T, R

1
, R

2
<∞, za < R

3
< zb}. (15)

The boundary ∂S
4 of the slab comprises the two three-dimensional planes de-

fined by

∂S
4 = {(T,R)|−∞ < T, R

1
, R

2
<∞, R

3 = za or R
3 = zb}. (16)
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We define the weighted current matrix as follows. Let ws(ξs), s = 1, 2, . . . , N ,
be a sequence of suitable real-valued weight functions. Then we take

�ξs|Wµs(Ξs)|ξs+1� = (1/2)[ws(ξs)�ξs|J µs(Ξs)|ξs+1�
+ �ξs|J µs(Ξs)|ξs+1�ws(ξs+1)], (17)

where the symmetrization of the operator J with the weight function w is done
because for µ = 1, 2, 3, the current operator includes differentiations so generally
doesn’t commute with w. We can use the delta-functions to replace the argu-
ments of w by Ξ; because of the particular bidirectionality of the differentiation
process the terms involving differentiation of w cancel out, so that we can factor
the w out of the quantum matrix element:

�Ψ(ks)|Wµs(Ξs)|Ψ(ks+1)� = �Ψ(ks)|J µs(Ξs)|Ψ(ks+1)�ws(Ξs). (18)

Because of (6), the four-divergence of such a matrix is

∂

∂Ξµs
s
�Ψ(ks)|Wµs(Ξs)|Ψ(ks+1)� = �Ψ(ks)|J µs(Ξs)|Ψ(ks+1�

∂ws

∂Ξµs
s

. (19)

The weighted mean N -order current is now well-defined as follows:

W
µ1...µN

ρ̃ (Ξ1; . . . ; ΞN ) =
�
J

µ1...µN (Ξ1; . . . ; ΞN )
�
ρ̃

N�

s=1

ws(Ξs). (20)

We further define the mean total divergence (creation) W̄ρ̃ of the quantity�N
s=1 ws in the slab as the N -fold integral over the slab of the N -fold diver-

gence of the current density W :

W̄ρ̃ =
�

S4
d
4Ξ1 . . .

�

S4
d
4ΞN

∂
N

∂Ξµ1
1 · · · ∂ΞµN

N

W
µ1...µN

ρ̃ (Ξ1; . . . ; ΞN ). (21)

In view of (19), we have

W̄ρ̃ =
�

S4
d
4Ξ1 · · ·

�

S4
d
4ΞN

�
J

µ1...µN (Ξ1; . . . ; ΞN )
�
ρ̃

N�

s=1

∂ws

∂Ξµs
s

. (22)

An N -fold application of Gauss’s theorem to (21) yields the following surface
integral for W̄ρ̃:

W̄ρ̃ =
�

∂S4
dT1dR

1
1dR

2
1 · · ·

�

∂S4
dTNdR

1
NdR

2
N

×W
31...3N
ρ̃ (T1,R1; . . . ;TN ,RN )

���
R3

1=zb

R3
1=za

· · ·
���
R3

N=zb

R3
N=za

. (23)

The latter is a weighted average over N -flux correlation functions, generalizing
the two-flux weighted averages used in [1] and [2].
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We remark that a sum of product weight functions will also lead to a sum
of entities as in (21) and (22). The particular choices of weight functions for
N = 2, that is, −(1/2)|T1−T2| and −(1/2)(T1−T2)2, provide alternative means
of deriving [2], Eqs. (17) and (18), respectively, when expressed in the form of
[5], Eq. (D2); note, however, that the first of these does not fit the pattern of a
sum of products of functions of T1 and T2.

3 Mean powers of the dwell time

The methods of Sec. 2 permit the construction of expressions that are candidates
for the expectation values of the N

th powers of the dwell time—see also the
discussion in Sec. 5. We take the weight functions ws to be

ws(Ξs) = Ξ0s
s = Ts, for s = 1, . . . , N, (24)

and factor these into (23), while calling the result TS4∗∗N . We have from (22)

TS4∗∗N =
�

S4
d
4Ξ1 · · ·

�

S4
d
4ΞN

�
J

01...0N (Ξ1; . . . ; ΞN )
�
ρ̃
. (25)

In view of the simple structure of the operator J
0(Ξ) (see (5), (25)),

�

S4
d
4Ξ �Ψ(k)|J0(Ξ)|Ψ(k�)�S4 =

�

S4
d
4
ξ Ψ(ξ;k)∗Ψ(ξ;k�)

= �Ψ(k)|Ψ(k�)�S4

=
�
�Ψ(k�)|Ψ(k)�S4

�∗
. (26)

We now have

TS4∗∗N =
�

d
3
k1 · · ·

�
d
3
kN+1ρ̃(kN+1;k1)

× �Ψ(k1)|Ψ(k2)�S4 · · · �Ψ(kN )|Ψ(kN+1)�S4 (27)

The cases N = 1 and N = 2 are given or derived in [2], Eqs. (1) and (18),
respectively. For larger N , (27) reduces to, in the notation of [2], an expectation
value of the operator (T̂D)N .

We shall now show that the rhs of (27) is real and nonnegative for each
N ≥ 1. The proofs for even and odd N differ slightly. For N = 2M = 2, 4, 6, . . .,
we can rearrange the rhs of (27), as given by (13):

TS4∗∗2M =
�

d
3
kM+1

��
d
3
k1 · · ·

�
d
3
kM

�
d
3
kM+2 · · ·

�
d
3
k2M+1

×
�
�Ψ(kM+1)|Ψ(kM+2)�S4 · · · �Ψ(k2M )|Ψ(k2M+1)�S4

�

× ρ̃(k2M+1,k1)
�
�Ψ(k1)|Ψ(k2)�S4 · · · �Ψ(kM )|Ψ(kM+1)�S4

��
.

(28)
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For each kM+1 the inner integral on the rhs of (26) is the expection value of a
state (within large parentheses) with respect to the positive semidefinite density
matrix ρ̃; the result TS4∗∗2M is therefore real and nonnegative.

For N = 2M − 1 = 1, 3, 5, . . ., using (3), we rearrange as follows:

TS4∗∗2M−1 =
�

S4
d
4
ξM

��
d
3
k1 · · ·

�
d
3
k2M

×
�
Ψ(ξM ;kM+1)∗�Ψ(kM+1)|Ψ(kM+2)�S4 · · ·

× �Ψ(k2M−1)|Ψ(k2M )�S4

�

× ρ̃(k2M ;k1)
�
�Ψ(k1)|Ψ(k2)�S4 · · ·

× �Ψ(kM−1)|Ψ(kM )�S4Ψ(ξM ;kM )
��

. (29)

For each fixed ξM , the inner integral above is an expectation value with respect
to ρ̃; hence TS4∗∗2M−1 is real and nonnegative.

Classically, a particle’s trajectory can be contrived to be tangential to the
boundary ∂S

4, whence its mean dwell time and all powers would be zero; for the
present system, we shall avoid tangentially-moving wave function components
(k3 = 0) due to mathematical singularities there. Nevertheless, one could choose
a ρ̃ such that the particle moves fast enough normal to the slab that it spends an
arbitrarily small, but necessarily nonzero, quantum time in S

4; zero is therefore
the greatest possible lower bound for the quantum dwell time for a slab of any
thickness.

4 Variance of the dwell time

In order for there to exist incommensurability relations for the dwell time of a
particle in S

4 and other dynamical variables, it is necessary at least that there
exist a nonnegative variance V (T )S4 of the dwell time, which should be given in
terms of the mean square and mean dwell times as defined in (25), as follows:

V (T )S4 = TS4∗∗2 −
�
TS4∗∗1

�2
. (30)

The standard deviation ∆(T ) of the dwell time for the domain S
4 will then be

∆(T )S4 =
�
V (T )S4

�1/2
. (31)

We shall define presently an expression for the variance of the dwell time in S
4

that has the desired properties. The question of incommensurability of mea-
suring the dwell time jointly with other dynamical variables is discussed in
Appendix B.
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First, note that the result is trivial for the domain Q
4 defined below in (D1),

since

TQ4∗∗N =
�

∂Q4
d
3
R1 · · ·

�

∂Q4
d
3
RN

×
�
T1 · · ·TN

�
J

01...0N (Ξ1; . . . ; ΞN )
�
ρ̃

����
T1=tb

T1=ta

· · ·
���
TN=tb

TN=ta

= (tb − ta)N
, for N = 1, 2, . . .. (32)

The variance V (T )Q4 is therefore zero. This simple result carries over only partly
into the predicted averages of powers of (zb − za) (“normal travel distance”) of
the end points of the slab S

4. In particular, if there is total reflection of the
particle approaching either boundary, the normal travel distance of the particle
inside the slab is zero, while if there is transmission but never a reflected signal,
the normal travel distance is (zb − za), with a continuum of possible outcomes
for partial transmission and reflection; a more complicated result obtains for
the mean of the square of the normal travel distance [6].

We now define the variance of the dwell time so that it is nonnegative and
satisfies (30):

V (T )S4 =
�

d
3
k1

�
d
3
k2

�
d
3
k3

×
��

S4
d
4Ξ2

∂

∂Ξµ2
�Ψ(k3)|Ξ0

2J µ2(Ξ2)|Ψ(k2)� − TS4∗∗1δ
3(k3 − k2)

�

× ρ̃(k2;k1)

×
��

S4
d
4Ξ1

∂

∂Ξµ1
�Ψ(k1)|Ξ0

1J µ1(Ξ1)|Ψ(k3)� − δ
3(k1 − k3)TS4∗∗1

�
.

(33)

The variance so defined is nonnegative, as for each fixed k3, the remaining
expression is an expectation value of a state-vector-like entity with respect to
the positive semidefinite ρ̃, and multiplying out the integrand yields four terms
that reduce to (30).

Next we shall give the formulas for TS4∗∗1 and TS4∗∗2 in terms of the S-
matrix. The former was obtained in [7], Eqs. (89)–(92) (the closed-channel
terms of [7], Eq. (93) play no role here); inasmuch as [7] used the wave vector
comprising (kt

, k
x
, k

y) instead of the (kx
, k

y
, k

z) used herein, we shall state the
old result in terms of the new variables. It is convenient first to introduce a
Hermitean operator-function Λ(zb, za), which acts on suitable complex-valued
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functions in wave-vector space, that appears in both formulas:

�Ψ(k5)|Λ(zb, za)|Ψ(k4)� =
�

∂S4
dT3dR

1
3dR

2
3�Ψ(k5)|T3J 3(T3,R3)|Ψ(k4)�

��R3
3=zb

R3
3=za

=
�

d
3
k6

�
δ
3(k5 − k6)

�
− i

2(k3
6)2

+
i

k
3
6

∂

∂k
3
6

+
θ(−k

3
6)zb − θ(k3

6)za

k
3
2

�
δ
3(k6 − k4)

+ S
†(k5;k6)

�
i

2(k3
6)2

− i

k
3
6

∂

∂k
3
6

+
θ(k3

6)zb − θ(−k
3
6)za

k
3
6

�
S(k6;k4)

+ δ
3(k5 − k6)

i

2k
3
6|k3

6|

×
�
θ(−k

3
6) exp(−2ik

3
6zb)− θ(k3

6) exp(−2ik
3
6za)

�
S(k1

6, k
2
6,−k

3
6;k4)

+ S
†(k5; k1

6, k
2
6,−k

3
6)

�
− i

2k
3
6|k3

6|

�

×
�
θ(−k

3
6) exp(2ik3

6zb)− θ(k3
6) exp(2ik3

6za)
�
δ
3(k6 − k4)

�
(34)

Note that the above is a differential operator that will act on arguments of the
density matrix in the formulas to follow.

We remark that the terms linear in S or S
† in (34) represent interference

between forward- and backward-traveling waves at one or the other boundary
plane. For an electron with energy E = 10−3 eV, the rationalized wave number
(2mE/�2)1/2 ≈ 2×108 m−1, so that the thickness (zb−za) of a slab would have
to be roughly 10 nm or less in order that the exponents in these interference
terms be small enough that oscillations—due to unavoidable slight smearing
out of the energy distribution—do not average these terms to zero.

We remark also that in the free-particle case (unit S-matrix), the operator
Λ(zb, za) reduces to (see also (C3))

�Ψ(k5)|Λ(zb, za)|Ψ(k4)�
��free = δ

3(k5 − k4)
�

zb − za

k
3
4

�

+ δ
1(k1

5 − k
1
4)δ

1(k2
5 − k

2
4)δ

1(k3
5 + k

3
4)

× i

2k
3
4|k3

4|
�
exp(2ik

3
4zb)− exp(2ik

3
4za)

�
. (35)

We can now state the formulas for the mean and mean square dwell time in
S

4:
TS4∗∗1 =

m

�

�
d
3
k1

�
d
3
k2 �Ψ(k1)|Λ(zb, za)|Ψ(k2)�ρ̃(k2;k1), (36)

and

TS4∗∗2 =
�

m

�

�2
�

d
3
k1

�
d
3
k2

�
d
3
k3 �Ψ(k3)|Λ(zb, za)|Ψ(k1)�∗

× �Ψ(k3)|Λ(zb, za)|Ψ(k2)�ρ̃(k2;k1). (37)
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In (37), the Λ-operators both differentiate only the density matrix, so their order
is immaterial. It is worthy of note that the formula (37), and others (see App. B)
herein, can involve the calculation of mean values of a vector-like entity, given
the positive semidefinite density matrix ρ̃, where the “vector” can be a linear
partial differential operator in k-space; given suitable differentiability properties
of ρ̃(k2;k1), it is plausible, but, so far as I can determine, not yet subject to
mathematical investigation, whether the positive semidefinite property persists
when the vector is of this type or possibly a generalized function. In the case
of (36) and (37) the nonnegativity of these expressions was demonstrated in
the mathematically distinct forms of (28) and (29), where the “vectors” are, or
seem to be, ordinary functions.

Appendix A: U operators in spatial propagation
In this Appendix we shall elaborate on the properties of plane-wave states,

and on the free-particle U
(0) and interacting particle U

(1) operators in spatial
propagation of quantum states.

First we consider the plane-wave states, which are solutions of the free-
particle Schrödinger equation.

ψ(t, r;k) = (2π)−3/2 exp[ik · r− i�k · kt/(2m)]. (A1)

These functions are orthonormal and complete on t=constant slices of spacetime:
�

d
3
rψ(t, r;k1)∗ψ(t, r;k2) = δ

3(k1 − k2), (A2a)
�

d
3
kψ(t, r1;k)ψ(t, r2;k)∗ = δ

3(r1 − r2). (A2b)

The same plane waves are also orthogonal and qualifiedly normalized, but not
complete, on r

3=constant slices of spacetime, provided that we use the 3-
component of the current operator instead of the unit operator as the entity
with respect to which the matrix elements are calculated. We have

�
dtdr

1
dr

2
ψ(t, r1

, r
2
, r

3;k1)∗
�

2im

�
∂

∂r3
−−→

− ∂

∂r3
←−−

�
ψ(t, r1

, r
2
, r

3;k2),

=
�

2m
(k3

1 + k
3
2)δ(k

1
1 − k

1
2)δ(k

2
1 − k

2
2)

× δ

� �
2m

�
(k3

1)
2 − (k3

2)
2
��

exp[ir3(k3
2 − k

3
1)]

= σ(k3
1)δ

3(k1 − k2) (A3a)

where in the last step no contribution arises from the zero of the argument of
the third δ-function at k

3
2 = −k

3
1, and

σ(k3) = k
3
/|k3|. (A4)
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As stated, we must avoid plane-wave input contributions from k
3 ≈ 0 in prob-

lems involving S
4. The plane wave states are not complete on the r

3=constant
surface, however, as only states of positive energy (= �k

0), which can be con-
strued as the negative of the momentum conjugate to time, are involved. Since
for “on shell” states

k
3 = ±[(2mk

0
/�)− (k1)2 − (k2)2]1/2

, (A5)

those states for which the argument of the square root is negative have real
exponential r

3-dependence, i.e., are closed channels. Closed-channel contribu-
tions appear in the Green’s functions, but not in the U

(0) operators—see [5],
Eqs. (A17) and (A21).

The propagation operator U
(0)J 3 gives rise to the following evolution of

free-particle states in the z direction:
�

d
4
ξ2

�
d
4
ξ3

�
dTdR

1
dR

2�ξ1|U (0)|ξ2�

× �ξ2|J 3(T,R
1
, R

2
, R

3)|ξ3�ψ(ξ3)

=
�
Π+ψ

�
(ξ1)−

�
Π−ψ

�
(ξ1), (A3b)

where ψ is any solution of the free-particle Schrödinger equation having only
real wave-vector (i.e., open-channel) components, and Π+ and Π− are projection
operators on the “positive k

3” and “negative k
3” parts of its operand—this

result follows at once from (A3a). The minus sign for free-particle states with
negative k

3 is desirable physically in that, for all terms in, say, TS4∗∗1 or TS4∗∗2,
the particle passes the boundary planes in reverse order as those with positive
k

3, and dwell times must be nonnegative. The calculation is more complicated
in the interacting case as both reflections and transmissions can occur.

Let us next consider the operator U
(1) in the temporal evolution (Q4) envi-

ronment. With a plane wave (A1) as the input state, we infer from [7], following
a translation of notation, that, given an input wave vector k1, the S-matrix plays
the following role in the interacting-state wave functions of (7), (8):

Ψ(t, r;k1) = ψ(t, r;k1), for t ≤ ta, (A6a)

Ψ(t, r;k1) =
�

d
3
k2 ψ(t, r;k2) S(k2;k1), for t ≥ tb. (A6b)
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We can now find explicit forms for U
(1) outside or on ∂Q

4:

�t2, r2|U (1)|t1, r1� = �t2, r2|U (0)|t1, r1� =
�

d
3
k ψ(t2, r2;k)ψ(t1, r1;k)∗,

for t2 ≤ ta and t1 ≤ ta, or for t2 ≥ tb and t1 ≥ tb, (A7ab)

�t2, r2|U (1)|t1, r1� =
�

d
3
k2

�
d
3
k1 ψ(t2, r2;k2)S(k2;k1)ψ(t1, r1;k1)∗,

for t2 ≥ tb and t1 ≤ ta, (A7c)

�t2, r2|U (1)|t1, r1� =
�

d
3
k2

�
d
3
k1 ψ(t2, r2;k2)S†(k2;k1)ψ(t1, r1;k1)∗,

for t2 ≤ ta and t1 ≥ tb, (A7d)

where we used the fact that S is unitary.
Let k1 and k2 represent input and output wave vectors, respectively. The

matrix S(k2;k1) comprises four blocks, according to the algebraic signs of its
arguments k

3
2 and k

3
1, as follows:

k
3
2 < 0, k

3
1 > 0 : output at r

3 = za, input at r
3 = za, (reflection), (A8a)

k
3
2 > 0, k

3
1 < 0 : output at r

3 = zb, input at r
3 = zb, (reflection), (A8b)

k
3
2 > 0, k

3
1 > 0 : output at r

3 = zb, input at r
3 = za, (transmission), (A8c)

k
3
2 < 0, k

3
1 < 0 : output at r

3 = za, input at r
3 = zb, (transmission). (A8d)

(The above correspond to the open-channel reflection and transmission matrices
of [7], Eqs. (73) and (74), with changes in variables and notation.)

We shall now specify the wave functions Ψ of (7), (8) outside or on ∂S
4, in

three steps: We define

ζ(r3) =






+1, if r
3 ≤ za,

undefined, if za < r
3

< zb,
−1, if r

3 ≥ zb.
(A9a)

We also define

X±1(k2;k1) = θ(±k
3
2)δ

3(k2 − k1) + θ(∓k
3
2)S(k2;k1). (A9b)

where θ is the unit step function. The desired result is

Ψ(t, r;k1) =
�

d
2
k2 ψ(t, r;k2)Xζ(r3)(k2;k1). (A9c)

We note that (A9) entails the assumption that so long as r
3 is outside of

S
4, but t ventures inside Q

4, the properties of the S-matrix guarantee that
the the time development of the wave functions in (A9) is still given correctly;
conventionally, the S-matrix is developed in terms of its time dependence, as

13



an input-to-output map valid only in mapping the pre-interaction to the post-
interaction wave function, as in (A6b). We are presuming that the same S-
matrix also maps wave functions correctly when the input and output surfaces
are merely exterior to S

4, whatever be the choice of time variable.
Let us define and calculate the k-space matrix of the net probability flux

F3(R3) flowing across planes R
3 =constant [compare (8)], for R

3 ≤ za or for
R

3 ≥ zb. We find, respectively, that

�Ψ(k2)|F3(R3)|Ψ(k1)�

=
�

dTdR
1
dR

2�Ψ(k2)|J 3(T,R
1
, R

2
, R

3)|Ψ(k1)� (A10a)

= ζ(R3)
�
θ(ζ(R3)k3

2)δ
3(k2 − k1)

−
�

d
3
k3 S

†(k2;k3)θ(−ζ(R3)k3
3)S(k3;k1)

�
; (A10b)

the equality of the two forms of (A10b) is equivalent to the unitarity of the
S-matrix. In fact, because of (6), once the rhs of (A10b) is evaluated at an
R

3 ≤ za, say, these values hold for any R
3, including za < R

3
< zb. When the

S-matrix is block-diagonal (no reflections), the rhs of (A10b) reduces to (A3a).
If the S-matrix is block-off-diagonal (no transmissions), the rhs of (A10b) is
zero, corresponding to the fact that there is then zero net current for all R

3;
hence, the combined spatial propagation operator U

(1)J 3 zeroes wave functions
in systems for which no transmissions occur, and is of little use in these cases.
That the latter outcome is not associated with zero for the powers of the dwell
time arises from the fact that in carrying out the integrals in (23) with the
weight functions (24), it is not the net probability current but the net time
current that is calculated—what results is a differential operator, as in (35).

We now exhibit how the U
(1) operators of (A7) propagate the wave functions

of (A9) along z, from R
3 to r

3:
�

dTdR
1
dR

2�t, r|U (1)J 3(T,R
1
, R

2
, R

3)|Ψ(k1)�

=
�

d
3
k2Ψ(t, r;k2)�Ψ(k2)|F3(R3)|Ψ(k1)�. (A11)

The last result is independent of R
3.

Appendix B: Lower bound for
incommensurability

We study the question of mean values and variances of system dynamical
variables analogous to the dwell time, and of the compatibility or incommensu-
rability of joint measurements of pairs of such dynamical variables, one of which
can be the dwell time. “Joint measurements” does not mean simultaneous, as
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we are working primarily with spatial rather than temporal propagation, and
the measurements determine flux correlations that occur at different times and
spatial positions. In this connection, note that, in the Heisenberg picture, dy-
namical variables that commute at equal times generally do not commute when
taken at unequal times. For example, the difference in r

1 positions of (D2)(i),
will normally not commute with the similarly defined difference in r

2 positions.
In time intervals such that the interaction-free realm is attained by the particle
both at input and at output, one might use the S-matrix to compute standard
deviations and quantitative estimates of incompatibility for the measurement
pairs; instead, we shall study measurements across z intervals and the slab S

4.
Let K and L be Hermitean operators for which we want to compute mean

and mean square differences of their values upon exit from, and entry to, the
slab S

4; we shall also define an expectation value for a generalized commutator,
and show that the product of the variances of K and L is greater than, or equal
to, one-fourth of the square of the mean of the commutator.

Since the operators do not generally commute with J 3, we use a symmetrized
version to maintain the Hermitean property. We shall not construct a general
current density for K in the interior of S

4, but work with boundary fluxes only.
The average net output minus input flux of K for S

4 we call K∂S4∗∗1, which is
taken to be

K∂S4∗∗1 =
�

∂S4
dTdR

1
dR

2

× Tr

�
(1/2)

�
KJ 3(Ξ) + J 3(Ξ)K

�
ρ
(1)

����
R3=zb

R3=za

=
�

d
3
k1

�
d
3
k2

�

∂S4
dTdR

1
dR

2

× �Ψ(k1)|(1/2)
�
KJ 3(Ξ) + J 3(Ξ)K

�
|Ψ(k2)�ρ̃(k2;k1)

��R3=zb

R3=za
. (B1)

Similarly, we find for mean square of the flux difference K∂S4∗∗2

K∂S4∗∗2 =
�

d
3
k1

�
d
3
k2

�
d
3
k3

�

∂S4
dT1dR

1
1dR

2
1

�

∂S4
dT2dR

1
2dR

2
2

× �Ψ(k3)|(1/2)
�
KJ 3(Ξ1) + J 3(Ξ1)K

�
|Ψ(k1)�∗

��R3
1=zb

R3
1=za

× �Ψ(k3)|(1/2)
�
KJ 3(Ξ2) + J 3(Ξ2)K

�
|Ψ(k2)�

��R3
2=zb

R3
2=za

× ρ̃(k2;k1). (B2)

The variance V (K)∂S4 and standard deviation ∆(K)∂S4 are calculated as in
(30), (31), and (33), using the symmetrized operator product of K and J 3

instead of the time operator.
Next we follow, in part, a procedure given by Stoler and Newman [8] to

obtain a quantative estimate of the incommensurability of measurements of K

and L. Let λ be a real number, and define

M(λ) = K + iλL = M(−λ)†, (B3)
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where the † means Hermitean conjugate in the spacetime sense. We take the
variance of M(λ) to be

V (M(λ))∂S4 =
�

d
3
k1

�
d
3
k2

�
d
3
k3

×
��

∂S4
dT1dR

1
1dR

2
1�Ψ(k3)|(1/2)

�
M(λ)J 3(Ξ1)

+ J 3(Ξ1)M(λ)
�
|Ψ(k1)�

��R3
1=zb

R3
1=za

− δ
3(k3 − k1)M(λ)∂S4∗∗1

�∗

×
��

∂S4
dT2dR

1
2dR

2
2�Ψ(k3|(1/2)

�
M(λ)J 3(Ξ2)

+ J 3(Ξ2)M(λ)
�
|Ψ(k2�

��R3
2=zb

R3
2=za

− δ
3(k3 − k2)M(λ)∂S4∗∗1

�

× ρ̃(k2;k1). (B4)

Since for every fixed k3 in the integrand, the remaining expression in (B4)
is, in effect, the expectation value of a function in k-space with respect to ρ̃,
V (M(λ))∂S4 is nonnegative. If we use (B3) in (B4), multiply out, and combine
terms, we find that

V (M(λ))∂S4 = V (K)∂S4 + λ
2
V (L)∂S4 + λC(K, L)∂S4 , (B5)

where C(K, L)∂S4 is an expectation value of an entity that is plausibly described
as a generalized commutator of K and L, adapted to ∂S

4:

C(K, L)∂S4 =
i

4

�
d
3
k1

�
d
3
k2

�
d
3
k3

�

∂S4
dT1dR

1
1dR

2
1

�

∂S4
dT2dR

1
2dR

2
2

×
��
�Ψ(k3)|

�
KJ 3(Ξ2) + J 3(Ξ2)K

�
|Ψ(k2)�ρ̃(k2;k1)

× �Ψ(k1)|
�
LJ 3(Ξ1) + J 3(Ξ1)L

�
|Ψ(k3)�

�

−
�
K � L

�����
R3

1=zb

R3
1=za

���
R3

2=zb

R3
2=za

. (B6)

Note that C(K, L)∂S4 is real. The quadratic expression in λ of (B5) is nonneg-
ative for all λ, so that the discriminant of the expression must be nonpositive,
whereupon

V (K)∂S4 V (L)∂S4 ≥ (1/4)
�
C(K, L)∂S4

�2; (B7)

(B7) is the desired inequality that sets a lower bound to the product of the
variances of two output-minus-input fluxes on ∂S

4.
Something like a true uncertainty principle for arrival, or crossing, times

of the particle at the R
3 = zb plane might arise as follows: Choose K and L

to be smoothly R
3-dependent in a way that they both take the value zero at

R
3 = za and have a nonzero value at R

3 = zb, with zero R
3-derivatives at both

za and zb. Then the values of (B1), (B2) and (B6) all have zero contributions
from R

3
1,2 = za. The problem then becomes that of choosing K, say, to be T
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at R
3 = zb, and L to be something like the conjugate momentum pT also at

R
3 = zb, and trying to show that (B6) is nonzero for any physical ρ̃, including

pure states. I have not attempted this line of investigation.

Appendix C: Aharonov-Bohm operator
In 1961, Aharonov and Bohm proposed an operator for the mean arrival

time for a free particle at a specified (one dimensional) spatial position, given
the quantum state at some initial time: see [9], [10], and for recent work, [11]. In
this appendix, we state that what is in effect that operator can also be defined
on single z=constant slices of spacetime. Let τ(z)ρ̃ be the mean value of T=time
on the slice R

3 = z of spacetime. Then we have, omitting intermediate steps,

τ(z)ρ̃ =
�

d
3
k1

�
d
3
k2

�
dTdR

1
dR

2

× �ψ(k1)|TJ 3(T,R
1
, R

2
, R

3)|ψ(k2)�
��R3=z

ρ̃(k2;k1) (C1)

=
m

�

�
d
3
k1

�
d
3
k2

�
δ
3(k1 − k2)

�
i

2k
3
2|k3

2|
− i

|k3
2|

∂

∂k
3
2

+
z

k
3
2

�

+ δ(k1
1 − k

1
2)δ(k

2
1 − k

2
2)δ(k

3
1 + k

3
2)

×
�
− i

2k
3
2|k3

2|
exp(2ik

3
2z)

��
ρ̃(k2;k1). (C2)

In (C1), the ψ(k)’s are the free-particle wave functions of (A1). We remark that
(35) is related to (C2) by

τ(zb)ρ̃ − τ(za)ρ̃ =
m

�

�
d
3
k1

�
d
3
k2�Ψ(k1)|Λ(zb, za)|Ψ(k2)�

��freeρ̃(k2;k1).

(C3)

Appendix D: The basics of classical-to-quantum
correlation functions

In this section we shall attempt a physical motivation for the appearance of
correlation functions in formulas for certain expectation values.

Conventional matrix elements of quantum operators specify values of the
transition amplitude between two quantum states at a given instant of time. The
mean dwell time for a particle in, say, the slab S

4 is a more delocalized entity
that in effect involves integrals over a spacetime domain, or of the boundary
of that domain—two disjoint, parallel three-planes in (16). Let us consider a
familiar spacetime slab, call it Q

4, defined as follows:

Q
4 =

�
(t, r)|ta < t < tb,−∞ < r

1
, r

2
, r

3
<∞

�
,

∂Q
4 =

�
(t, r)|t = ta or t = tb,−∞ < r

1
, r

2
, r

3
<∞

�
. (D1)
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Next, in classical dynamics we may want to address the following questions:
Given an ensemble of classical dynamical trajectories {(r(t),p(t)), for ta ≤ t ≤
tb}. We take (· · · )av to represent a classical ensemble average. Then (i) what
is the mean of the difference in r

1 at the final time and initial time? (ii) what
is the mean of the difference of the squares of r

1 at the initial and final time?
(iii) what is the mean of the square of the difference of the final and initial r

1?
and so on. For the ensemble we have the following averaged entities:

(i)
�
r
1(tb)

�
av
−

�
r
1(ta)

�
av

,

(ii)
�
r
1(tb)2

�
av
−

�
r
1(ta)2

�
av

,

(iii)
�
(r1(tb)− r

1(ta))2
�
av

. (D2)

Let us rewrite (iii) as

(iii)
�
r
1(tb)2

�
av

+
�
r
1(ta)2

�
av
−

�
r
1(tb)r1(ta)

�
av
−

�
r
1(ta)r1(tb)

�
av

=
�
r
1(t1)r1(t2)

�
av

��t1=tb

t1=ta

��t2=tb

t2=ta
. (D3)

Moving to quantum mechanics, we need to hypothesize, what quantum-
mechanical entity represents the classical correlation on the rhs of (D3)? If the
Hamiltonian H is time-independent, a plausible choice is (quantum averages
with density matrix ρ̃ given at time t = ta are represented as (· · · )ρ̃)

(iii)
�
r
1(t1)r1(t2)

�
ρ̃

���
t1=tb

t1=ta

���
t2=tb

t2=ta

, (D4)

where the operators are

r
1(ta) = r

1
,

r
1(tb) = exp(iH(tb − ta)/�)r1 exp(−iH(tb − ta)/�). (D5)

We can also infer that the classical expression

(iv)
�
(r1(tb)− r

1(ta))N
�
av

(D6)

plausibly upgrades into the quantum-mechanical expression

(iv)
�
r
1(t1)r1(t2) · · · r1(tN )

�
ρ̃

��t1=tb

t1=ta

��t2=tb

t2=ta
· · ·

��tN=tb

tN=ta
. (D7)

Skipping some steps, we can infer for time-dependent Hamiltonians that (iii)
becomes

�

∂Q4
d
3
R1

�

∂Q4
d
3
R2

�
R

1
1R

1
2

×
�
J

0102(T1,R1;T2,R2)
�
ρ̃

���T1=tb

T1=ta

��T2=tb

T2=ta

=
�

Q4
d
4Ξ1

�

Q4
d
4Ξ2

�
J

1112(Ξ1; Ξ2)
�
ρ̃
, (D8)
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where the last step follows from Gauss’s theorem.
The lhs of (D8) simplifies when T1 = T2 = tb, say. Since according to (8) and

(5) the operator U
(1)J 0, when integrated over a T=constant slice of spacetime,

reduces to the unit operator at equal times, this contribution simplifies to a
single-flux computation:

�
d
3
R1(R1

1)
2
�
J

01(tb,R1)
�
ρ̃
. (38)
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