
U.S. Government work not protected by U.S. copyright

 1

Integrating Engineering Data Systems for NASA

Spaceflight Projects
Robert E. Carvalho

NASA Ames Research Center
Moffett Field, CA 94035

650-604-3593
Robert.E.Carvalho@nasa.gov

David G. Bell
USRA RIACS

Moffett Field, CA 94035
650-604-0771

David.G.Bell@nasa.gov

Irene Tollinger
NASA Ames Research Center

Moffett Field, CA 94035
650-604-5740

Irene.Tollinger@nasa.gov

Daniel C. Berrios
University of California Santa Cruz

Moffett Field, CA 94035
650-604-0470

Daniel.C.Berrios@nasa.gov

Abstract—NASA has a large range of custom-built and

commercial data systems to support spaceflight programs.

Some of the systems are re-used by many programs and

projects over time. Management and systems engineering

processes require integration of data across many of these

systems, a difficult problem given the widely diverse nature of

system interfaces and data models. This paper describes an

ongoing project to use a central data model with a web services

architecture to support the integration and access of linked

data across engineering functions for multiple NASA

programs. The work involves the implementation of a web

service-based middleware system called Data Aggregator to

bring together data from a variety of systems to support space

exploration. Data Aggregator includes a central data model

registry for storing and managing links between the data in

disparate systems. Initially developed for NASA’s

Constellation Program needs, Data Aggregator is currently

being repurposed to support the International Space Station

Program and new NASA projects with processes that involve

significant aggregating and linking of data. This change in

user needs led to development of a more streamlined data

model registry for Data Aggregator in order to simplify adding

new project application data as well as standardization of the

Data Aggregator query syntax to facilitate cross-application

querying by client applications. This paper documents the

approach from a set of stand-alone engineering systems from

which data are manually retrieved and integrated, to a web of

engineering data systems from which the latest data are

automatically retrieved and more quickly and accurately

integrated. This paper includes the lessons learned through

these efforts, including the design and development of a

service-oriented architecture and the evolution of the data

model registry approaches as the effort continues to evolve and

adapt to support multiple NASA programs and priorities.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. CURRENT AND FUTURE STATES 2
3. IMPLEMENTATION APPROACH 4
4. RE-IMPLEMENTATION AND EXTENSION 6
5. CHALLENGES REMAINING 8
6. BENEFITS... 9
7. LESSONS LEARNED ... 10

8. SUMMARY ... 11
REFERENCES ... 11

BIOGRAPHIES .. 12

1. INTRODUCTION

Spaceflight projects at the National Aeronautics and Space

Administration (NASA) are governed by a broad set of

standard procedural requirements [7]. These procedures

span the project lifecycle from concept studies through

technology development, system integration and test,

launch, operations, and closeout.

To develop the capability for flight projects to readily

implement these standard procedural requirements in a cost

effective manner through the use of modern information

systems, NASA chose to embed an information systems

project in its flagship human spaceflight program –

Constellation. By embedding the information systems

project in the flight program, the project was able to readily

obtain clear priorities and requirements for integrated

systems, conduct user acceptance tests, and deploy systems

to yield the benefits of the integrated systems. Benefits for

the program were seen as critical for NASA as a whole, as

the Constellation program represented ~19% of the overall

NASA budget ($3.4B of $17.8B, based on actual costs in

fiscal year 2009).

NASA's Constellation Program was charged with designing

and developing the vehicles and systems to replace the

Space Shuttle, return humans to the moon, and do so more

cost-effectively over the mission lifecycle than previous

human spaceflight efforts [10]. To support this goal, the

Program needed to develop new systems and processes that

would improve efficiency over the long term, and at the

same time meet near-term schedule constraints.

One of NASA's goals was to limit the gap between the final

Shuttle flight in 2011 and the first Constellation flight. Both

near-term schedule and budget drove the need to reuse

existing technologies. In terms of hardware, this included

 2

reuse of the Solid Rocket Motors from Shuttle and the J-2

engine from Apollo's Saturn V rocket. For software, reuse

included adoption of systems purchased or developed for

previous programs. The Constellation Information Systems

project developed an architecture for the future and a

roadmap to achieve that vision. Central to this was an

iteratively developed, service-oriented architecture to

integrate engineering and operational data systems.

Data Aggregator (DAggr) was one of the first major steps in

proving a future-focused architecture could support an

environment of established legacy systems and new systems

coming online over time. With DAggr in production since

January 2010, this paper describes: 1) the problem NASA

was working to solve, 2) the chosen implementation, 3) a

discussion of the revisions made, 4) the challenges

encountered, and 5) the benefits and lessons learned

throughout the process with an eye toward helping other

projects with similar needs for integrated engineering data

systems.

2. CURRENT AND FUTURE STATES

Current State of Engineering Data Systems

The engineering data systems in different areas of the

Constellation Program involved a mix of proprietary, open

source, and NASA developed information systems. The

proprietary systems included Cradle [4] for managing

requirements and architectures, Windchill [13] as a Product

Lifecycle Management tool, and Primavera [9] for schedule

management. Other systems were NASA developed or

NASA customizations of open source software such as the

Integrated Risk Management Application (IRMA), the

Problem Reporting and Corrective Action (PRACA) [8],

and the Constellation Analysis Integration Tool (CAIT).

Only after these tools were in widespread use was there an

effort to bring these disparate information sources together

to support the planned new ways of doing business.

Most of these applications provided their full functionality

through a human user interface accessible via a web browser

(e.g. Windchill, Primavera), and some provided limited

functionality via their web interface. Most of these systems

provided HTTP-based Application Programming Interfaces

(APIs) using REST or SOAP, while a few only provided

non-HTTP-based APIs. Each engineering data system was

considered to be the authoritative source for records of one

or more data types. For example, CAIT was considered to

be the authoritative source for engineering analysis

activities, and IRMA for risks.

Current State of Engineering Data

The engineering data were being copied between systems

(used by different functional areas), resulting in multiple

static copies of data. Each of these copies were stale to

various extents, and therefore inconsistent with the

authoritative source. For each copied data set, links were

created that were not available in the authoritative source.

For example, risks (from IRMA) were copied into the

authoritative source for analyses (CAIT), and relationships

were created to show that a particular analysis is being

conducted to mitigate a particular risk. These links would

not be available in IRMA.

In order to understand the current state of the entire

Program, data has to be integrated from these various data

source applications. This integration includes the links

between the data items. The volume of data that is required

to be integrated is significant. The first and second columns

of Table 1 show the number of records for a sample of data

types included in DAggr as of September 2010, and the

third column shows the number of links between those

records and data of another type.

Table 1. The quantity of selected records and links

illustrates the large volume of data to be integrated by

DAggr

Data Types # Records # Links

Requirements 61,197 Risks (199)

Verifications

(56,625)

Verifications 46,542 TVR (25,851)

Test

Verification

Requirements

(TVR)

5435 Events (1365)

Risks 3904 Requirements (199)

Change

Requests

943 Products (534)

Documents (530)

With a large volume of data and links, trying to understand

the current state of the program can prove daunting, even

with the best of tools. With so many different tools, trying

to manually bring together all the necessary data for

integration is an expensive, time consuming, and error-

prone task.

One user community, the Systems Integration Planning

group, had a requirement to ensure that each Test

Verification Requirement (TVR) (stored in Cradle) was

checked against the associated Test Event (stored in

Primavera). These checks served the purpose of giving the

engineering community confidence that NASA understood

the current state of the system (i.e., which TVRs have been

performed, which are scheduled but have not occurred, and

which ones are missing from the schedule). For example, a

TVR that is missing an associated Test Event is a red flag

against approval at milestone reviews and being confident in

flight readiness assessments.

The Systems Integration Planners initially took a data

import approach to capturing the links between TVRs

 3

(stored in Cradle) and Test Events (stored in Primavera). All

Test Events were imported into Cradle as a new data type

and manually linked to the appropriate TVRs. After the

initial import, the Test Event data in Cradle needed to be

kept up to date via re-imports. However, upon re-import all

the manually created links were invalidated because the Test

Event IDs changed. Thus, each time the Test Events were

re-imported into Cradle, the links had to be manually re-

established. At that point, the user community started to

track the relationships between TVRs and Test Events in

MS Excel spreadsheets based on manually looking up the

data in each of the authoritative systems (Cradle and

Primavera).

These processes were time consuming both for the initial

manual creation of the links (even in MS Excel) and

subsequent updates. The data became stale quickly, and

were prone to human error if an item was skipped or the

wrong record happened to be pulled up in an authoritative

source.

Other user communities had similar problems. For example,

the Configuration Management community needed to link

Change Requests (stored in the Change Request tracking

system) to the Documents (stored in Windchill) that would

be changed if the Request was approved.

In 2009 Constellation Information Systems had identified

14 different user communities looking to integrate data from

more than 20 different data sources, with both of these

numbers expected to grow as the Program progressed. It

was recognized early on that neither the manual integration

nor the copying of data would be sustainable for a Program

that was intended to last for more than 20 years.

To understand the error rates in the copying approach better,

imports between the risk system and the requirements

system were analyzed at two points in time (March 2009

and April 2010).

In the March 2009 import, 182 Risk-Requirement links

existed between 60 risks and 120 requirements. 25 of the 60

linked risks were not yet in the requirements system (42%)

and 12 of the other 35 needed updates, resulting in 37 of 60

risks being updated (62%). In addition, three requirements

that were linked to risks in the risk system did not exist in

the requirements system. Metadata for 25 of the 120

requirements (21%) were found to be out of date in the risk

system. 25 of the 182 links (14%) were missing and

subsequently added in the requirements system (one for

each of the newly created risks, with 23 of the links to one

requirement, and the other two links to two other unique

requirements).

In the April 2010 import (prior to the risk system being

integrated with DAggr), there were 199 Risk-Requirement

links between 76 risks and 130 requirements. 74 of the 76

copied risks (97%) were updated (52 involving one field

only, and 22 (29%) involving other fields). In addition, 8

requirements that were linked to risks in the risk system did

not exist in the requirements system. Metadata for 29

requirements of the 130 (22%) were found to be out of date

in the risk system. No links were added in this import.

This analysis clearly shows that users of both tools were

frequently attempting to integrate incomplete or outdated

sets of data. The resulting integration had to be corrected

and reviewed each time the data was transferred from one

system to another. These results confirmed a clear need for

an automated capability to integrate these data in order to

reduce both the effort required and the rate of error in

results.

Future State Goal

The desired future state was an engineering environment

where data is automatically integrated directly from the

authoritative sources, with uniform authentication and

access, and common interfaces. The goal of this future state

was to: 1) improve data accuracy, 2) improve data

accessibility over the full program lifecycle, and 3) provide

efficiencies in data management. To support this future

state, the Constellation Information Systems project focused

on implementing a Service Oriented Architecture (SOA),

including semantic information in the style of the semantic

web [11]. This would support adaptive machine

understanding and improved navigation and search of data.

In this future state, use of non-authoritative copies of data

would be minimized through automated data aggregation,

and consequently rates of engineering data discrepancy

would also be reduced wherever automated data aggregation

was used. User communities could continue to manage

specific data in tools explicitly designed for the

management of that data. Other user communities would

also be able to implement their specific processes with tools

designed for them, but using aggregated data direct from the

authoritative sources.

In addition to improved decision making in engineering, this

future state would also provide benefits to operations by

enabling integrated access to engineering data in

applications optimized for processes associated with

operations. One of the central goals of the Constellation

program was the need to reduce operational costs for the

integrated system as compared to Space Shuttle and

International Space Station programs. Within those

programs, much of the data required for operations was

compartmentalized into various systems, and quite often

data were manually copied from one system to another, or

managed through paper documents. Creating accurate

associations between such data could be greatly enhanced if

links were restricted to only authoritative source data.

Constellation planned to improve the situation by making all

essential data and the links between the data available to

operators. An example of the utility of this is when an

operator is attempting to address an anomaly in flight, they

often need to refer to the history of a particular part, the

 4

various tests it went through, the problem reports and

waivers associated, and the design of the part [6].

At the same time, NASA as a whole was moving to

consolidate the authentication approaches across all agency

tools, so that users would have only one username and

password to manage, rather than one for each system. This

plan was incorporated into the information systems

roadmap.

As much of the Constellation data was sensitive, access

would have to be controlled and tracked. Initially, each of

the tools had their own account management approaches,

and users had to get separate approvals to access each one.

Any integration of the data would need to provide the same

levels of access and data protection as was available in the

original data source.

3. IMPLEMENTATION APPROACH

The core of our approach was to enable automated

integration of authoritative engineering data via

development of the DAggr System. DAggr was intended to

be developed in a rapid fashion, using existing capabilities

where possible, and to have minimal impact on the existing

data systems or processes. DAggr was defined as a core

architectural capability to meet the fundamental user need to

 access and integrate authoritative data regardless of the

system the user or data is in. The fundamental functionality

objectives for DAggr are:

 Accessing data from authoritative sources

 Querying to find the necessary data

 Linking data together and managing these links as

authoritative data

 Retrieving and combining selected data for

reporting and analysis

The initial drive to get DAggr operational was to support the

Systems Integration Planning for Constellation's

Preliminary Design Review. This provided a total

development time for DAggr of only four months to

production release. The initial release was accomplished

with twenty person-months of work on the core DAggr

system.

DAggr Architecture

The DAggr system was composed of several layers, as seen

in Figure 1. The core system was composed of a set of data

source adapters to provide standardized interfaces for

retrieving data, a link registry to manage the cross-system

links, and the core DAggr system to decompose the requests

and compose the responses.

Figure 1 -- Architecture showing the various components of the DAggr system

 5

The team decided to standardize the following aspects of the

services: 1) approach for retrieving authoritative data, 2)

approach for managing links between data, and 3) approach

for controlling data access.

For retrieving authoritative data, the approach chosen was to

provide two main services: 1) discovery service to identify

available source systems and queries allowed with those

source systems, and 2) query interface to retrieve

authoritative data from one or more sources. The discovery

service enables integrated applications to dynamically adapt

to an evolving set of available services. The query service

provides a standard interface for browsing and querying

authoritative sources (e.g., field-value pair queries), and

retrieving cross-system links stored in the external link

service and/or the internal links available in the source

system. The standard interface was enabled with a modular

set of adapters to authoritative source systems. Adding a

new source system requires authoring a new adapter that

maps the standard API to the source-specific API, and

registering the source system in the link management

service.

This approach was implemented using HTTP with Uniform-

Resource Identifiers (URIs) in a RESTful manner. This

approach was chosen for the ease by which application

developers could learn and use it, including the ability to

simply use URLs in a web browser to make requests to the

services and view sample responses. A list of sample

requests was the most commonly used documentation by

developers integrating applications with the web services.

For managing links between data, the approach chosen was

to establish a link management service external to other

source systems, as the authoritative source for two data

types: 1) source system identification for each data type, and

2) links between data in two different source systems. The

link management service provides standard functionality

including link Create, Read, Update & Delete (CRUD)

services, link access controls for individuals and groups,

version history, and a link approval workflow. The

endpoints of each authoritative link include unique

identifiers to the source system and to the specific record

being linked to in the source system. Additionally, any

approved user of the service can create personal links to any

data items they can access. A configurable workflow allows

personal links to be promoted for use by all approved users.

Cross-system links are required for various work processes

and required reports. Two types of reports that were

analyzed include those produced for Systems Engineering

referred to as System Integration Planning (SIP) reports, and

those produced for Configuration Management referred to

as Configuration Status Accounting (CSA) reports. As an

example, one of the SIP reports required integration of 10

unique data types (e.g., requirements, verifications, test

verification requirements, and events) with two to five fields

each, from two separate authoritative data sources (e.g.,

requirements, verifications and test verification

requirements from one source, and events from a second

source). As another example, one of the CSA reports

required integration of three unique data types (i.e., change

requests, products, and documents) with one to eleven fields

each, from two separate authoritative data sources (i.e.,

change requests from one source, and products and

documents from another source). For these example

reports, four required link types were cross-system links

(TVR-Event, CR-Product, CR-Document).

The choice was made initially to implement the link

management with a semantic repository. This would

provide benefits as described in [5]: using semantic

knowledge to integrate and link the data, and providing a

standardized representation of all data and links. Further

benefits of the semantic approach are discussed in section 5.

The data source specific data models were mapped to the

ontology within the DAggr server to provide a common

framework. A selection of data types was retrieved from the

data sources and populated into the ontology used by the

link registry. Cross-system links were also stored in the

ontology. The ontology also served to provide a

standardized XML data structure to deliver all data to the

clients, including the cross-system links.

Authentication of users is handled via a single Lightweight

Directory Access Protocol (LDAP) directory service,

initially with all applications behind a single Apache HTTP

server, and subsequently with all applications behind their

own HTTP servers using the NASA eAuth approach. A

group of users is managed in an LDAP directory service,

and only members of that group are authorized to access the

DAggr web services or clients. To access the clients, the

users log in through Apache, which checked their

membership in the group, and if they were a member then

Apache passed their credentials to the requested DAggr

client application (e.g. SIP), which would then pass their

credentials to DAggr web services and on down to each of

the data sources being accessed.

Users who had an account in an authoritative source were

given access to whatever their account was authorized to see

in the authoritative source. Users who did not have

accounts but were approved DAggr users were given access

only to baseline data. The specification of baseline data was

left to the data owners within each data source. This policy

ensured that the users were only allowed to see the same

data they would be able to see in the data sources directly,

or baseline data if they did not have an account in the source

system.

In addition to the core DAggr components, a cache was

developed as a work-around for significant performance and

API limitations of the key authoritative source for

requirements data. The cache was automatically loaded

with an updated copy of all data from this source every

night, and made accessible to users via a RESTful web

service integration with DAggr. The caching rate was set to

nightly for two reasons: 1) this would not impact server

load during primary usage times, and 2) any given data item

 6

in the system did not change so rapidly that a more frequent

update would be required.

Initial DAggr Clients

DAggr is a service-oriented middleware. Each client was

provided the same set of services. These were:

 Get available (sources, data types, fields, links),

 Multi-system search (decomposed by DAggr to

search each data source),

 Structured Query (query by source, data type, field,

or link),

 Get item details,

 Get linked items,

 Create Link,

 Approve Link

 Get data source status (up or down)

Through the development cycles, the DAggr team

developed or supported the development of various DAggr

client applications. Each is described below.

Systems Integration Planning

The first client application developed using DAggr services

was the Systems Integration Planning tool (SIP). The

primary function of this tool was to provide the information

and links to ensure that all space vehicle requirement

verification activities were appropriately planned for. SIP

users would search for the TVRs and link them to the

appropriate schedule events to make sure the plan included

all required verifications. The data sources integrated for

this tool were Cradle (providing requirements, verification

requirements, and verification objectives), Primavera

(providing schedules and schedule events), and CAIT

(providing analysis and integration activity descriptions).

The SIP user community also wanted to extend the

capabilities of the tool to search and link data from other

sources, including part information (from Windchill), risk

data (from IRMA), problem reports (from PRACA), and test

result data from a system yet to be selected. SIP was

deliberately developed so that as new data sources and types

were added to DAggr, they would be available to the user

without changes to the client application code. As the first

DAggr client, SIP served to demonstrate and test the

accuracy and efficiency of data aggregation.

Certification of Flight Readiness

The second client application developed using DAggr

services was the Certification of Flight Readiness (CoFR)

Dashboard. The primary function of this tool was to

provide mission managers and system integrators the

capability to monitor the overall progress of a mission or

test flight to launch. The goal was to allow monitoring at a

high level, and then the capability to drill down where issues

were identified, to get the details. The primary users of this

system would take advantage of the links created by other

users earlier in the design cycle. The data sources integrated

for this tool were Cradle (verification status), Primavera

(schedule from now to launch), CAIT (analyses to be

completed before launch), IRMA (risks identified for this

mission), PRACA (problem reports for this mission's

hardware and their status), and a CoFR specific system to

track the actions assigned at reviews until they were closed.

The future desired data would include a broad range of

program data, from training status for crew and flight

controllers to test and inspection results. This client also

served as a demonstration of the extensibility of the DAggr

architecture previously proven in the SIP release. The entire

development for the CoFR release, including adding the

additional data sources and types to DAggr, took only two

months, with four person-months worth of work on the core

DAggr system.

Configuration Status Accounting

The next client application developed using DAggr services

was a tool for Configuration Status Accounting Reports.

The primary function of this tool was to support the tracking

of the integrated baseline of the Constellation Program. It is

important when conducting analyses to ensure that a

consistent set of data is being used. To do this with so large

a parallel effort required the capability to know which

version of the Orion design and which version of the Ares I

design were being used, all the way down to the atomic

level of components and requirements. This client allowed

the users to link all of the appropriate data items with each

Change Request as it went through the system, and then get

the proper approvals for those links. The data sources

integrated for this tool were IRMA, PRACA, and CAIT,

plus Windchill for documents and product structure

information, and the configuration data management tool

suite for tracking the approval of documents and products.

Data Sources as Clients

Several user communities who directly used one or more

data sources also expressed interest in receiving data from

the DAggr system. For example, the user community

responsible for Hazard Reports wanted to be able to make

links to related TVRs and parts within their application.

Since Hazards was a NASA modified open source

application, it was possible to embed a DAggr client. This

would enable them to stop the copying of data from other

systems, and would also enable them to create, approve, and

display the links between their data and the data in other

systems. The PRACA, IRMA, and CAIT tools all proved

capable of showing links and data from DAggr with two to

four person-months worth of work. The users of the Cradle

tool were also interested in this capability, but as it was a

COTS (Commercial Off-The-Shelf) tool, this effort was

postponed until it could be incorporated by the vendor at a

later release.

4. RE-IMPLEMENTATION AND EXTENSION

With the termination of NASA‟s Constellation Program, the

driving forces behind the continued development of the

 7

DAggr changed. Instead of targeting data linkage

capabilities for Constellation Program managers and

analysts, the system was redesigned and re-purposed for

integration of data from existing ISS applications and new

NASA human spaceflight programs and projects with

substantial data linking needs. The shifts in targeted systems

and users required a more streamlined data model registry

for Data Aggregator in order to simplify adding these

systems‟ new data. We also required a unified query

specification for Data Aggregator to support cross-

application querying by client applications.

Simplified Data Model Registry

As we discussed earlier, the initial implementation of the

system required that source data descriptions be modeled in

a semantic repository (AllegroGraph). Configuring,

maintaining and extending the repository proved to be

laborious and unwieldy. We decided to remove the

semantic repository and build our own repository for this

information using a common RDBMS (MySQL), so that

new data sources and their objects could be more quickly

and easily added.

New Data Sources

The demonstrated ability of the DAggr middleware to

support integrated views on data from multiple

Constellation Program systems stimulated interest in similar

capabilities for systems used by the International Space

Station Program. The program identified a specific need to

coordinate records from the PRACA, Vehicle Master

Database (VMDB), and Drawing Access and Retrieval Tool

(DART) systems. The PRACA system contains over

26,000 records related to identifying, analyzing and tracking

ISS part issues. The VMDB and DART systems contain

metadata and drawings for all ISS Program parts, including

physical dimensions, manufacturer information and CAD

drawings. Users of PRACA manually enter information

such as part number, drawing number, and manufacturer

name, without automated support for looking up this

information in the systems where it is stored, DART and

VMDB. This leads to occasional errors of transcription of

the information as it was copied between the systems.

We developed data source wrappers for VMDB and DART

to support automated access and integration of the part data

from these two systems as users create PRACA records.

The wrappers called Oracle PL/SQL scripts to look up part,

manufacturer, and drawing information in the databases that

VMDB and DART access, and transform the information

into DAggr items, which can be delivered to clients such as

the PRACA system. We similarly “wrapped” the PRACA

system so that users could create DAggr links to VMDB and

DART records when creating or updating PRACA records

(Figure 2). This dynamic, semi-automated linking process

ensures that part information from the VMDB and DART

sources is incorporated into PRACA records without the

errors that can happen through manual transcription.

Unified Query Specification

The original design of DAggr required that clients use the

legal syntax of queries accepted by each data source.

Queries submitted to DAggr were merely re-transmitted to

data sources unchanged, and legal query syntax was wholly

Figure 2 -- VMDB Search within PRACA Interface

 8

dictated by the data sources. Thus, if an application using

data from sources A, B and C wanted to query each data

source through DAggr, it had to use 3 different query

syntaxes. In order reduce this burden on clients, we chose

to develop and implement a single DAggr query syntax. We

selected SQL92 as its basis, with DAggr item type names

replacing data source and table names, and DAggr item type

attribute names replacing table column names in the syntax.

For example:

SELECT * FROM VMDB_PART

 WHERE PART_NUMBER LIKE „683-100%‟

5. CHALLENGES REMAINING

Although DAggr's early releases are in production, there

remain several significant challenges ahead. This section

discusses three categories of challenges and possible

solutions that the DAggr team considered for each.

Version Control

Each of the data sources which were brought into DAggr

had a different approach to version control. Some handled

versioning at a larger granularity (e.g. an entire hazard

report), while others handled it very atomically (down to the

field level). Additionally, some changes required a formal

review and re-approval, while others did not. Users of the

various DAggr clients, and other future users also had their

own ideas about what level of versioning they were

interested in. In some cases, users were also interested in

version-sensitive links between items. For example, Flight

Software Load 3.6 would meet version 8 of a requirement.

Version 8 of that requirement was generated based on a

particular PRACA which occurred in Flight Software Load

3.5. Users were also interested in using the version-

sensitive links to monitor changes. So if a particular Hazard

was addressed by version 3 of a requirement, then before

version 4 of that requirement could be approved, the Hazard

would need to be checked.

While the ontology would have no issue in tracking all these

variations of versions, the issue would be in standardizing

the version information provided by the data sources, and in

determining a reasonable process for the various approvals.

While one could theoretically impose a standard for

versioning on most data sources, inclusion of COTS and

legacy systems can make such an approach very expensive

or even impossible. One alternative considered was to have

the registry track all the versions of the data items, but this

would require either significant polling or moving to a push

model instead of a pull model which may impact

performance. This option was considered especially

valuable for certain user communities, as they had

requirements not only to see the current state, but also to see

the state of the system at a particular point in time. For

example the CoFR client needs to be able to show the

knowledge of the system at the time the Certification of

Flight Readiness was issued in case there was a question

later.

As Constellation was in the process of moving from a

document-centered approach to change management to a

data-centered approach, one of the key issues was what

level of item and what level of data change would trigger

formal reviews. Would each link between data items need

to be formally approved? The approach currently taken in

DAggr varies depending on the kind of link involved, but

generally follows the process where any user can create a

link, but only that user can see it until it is submitted to be a

Program Baseline link. Once approved, all users would be

able to see it. But with thousands of requirements, schedule

events, and parts, even just the full set of links for SIP

would be in the tens of thousands. What kind of review

process should be in place for that volume of data? This

issue remains unresolved.

Performance Limitations

Since DAggr is a system that pulls data directly from

authoritative sources distributed across the country, the time

for it to respond to a request depends on the time it takes for

the authoritative sources to respond to requests, plus the

network transfer time, plus processing time. Depending on

which sources are being queried in a request, the first page

of data in SIP comes up in as quickly as two seconds, with

all linked data showing up progressively over the next five

seconds. Linked data includes both cross-system links

stored in the link registry, as well as internal links stored in

the authoritative source. However, some of the data sources

were already approaching performance limits not only for

remote calls from the aggregation service, but also for their

direct users of their native user interface. If the user base of

DAggr expands, this may impact not only DAggr client

users, but the users of the source systems as well.

DAggr users were also interested in a broader search

capability, including full-text search of all data items and

fields, relevancy ranking, and the ability to sort results based

on particular criteria. Some of the sources did not provide

services for full-text searches. Some could only provide

back the first N results (with a maximum cap on N), which

would interfere with retrieving the full set to sort. In other

cases, the system might not be able to support such searches

from thousands of users.

To address these performance issues, caching data from the

sources when it was requested was one option considered.

This would speed response time for common requests and

searches. However, it would be of limited value for the

more full-featured searches as the search would still have to

be sent to each data source, to catch new and changed data

items.

Another approach considered was that of a Data Warehouse

(see cache discussion above), holding cached copies of all

the data in the sources. This would also then support

 9

common search indexing approaches. Two different

approaches to warehousing were considered.

The first was to move to a push model rather than a pull

model, so that any new or changed data in the data sources

would be reported to the Registry. However, this would

have required more extensive modifications of the data

sources to get them to push the data, and would have run

into trouble with their varying version control approaches

(since it is not clear which changes need to be pushed).

The other approach considered was to move to a polling

approach, where the Registry would periodically ask each

data source "What do you have that is new or changed?"

This would have required less modification of the sources,

but some sources would not have been able to answer that

consistently due to different approaches to versioning, so the

poll would shift to a full data pull every interval. This

would have imposed a load on the networks and the data

sources, which was considered unacceptable in some cases.

Authentication and Control

Not all of the data the users were interested in accessing

through DAggr was stored on NASA systems. In some

cases, NASA vendors were the primary source for

information. The solution of a NASA single sign-on would

not help in the case of such remote systems. Getting access

to the data in those systems would have required much more

extensive negotiations, as well as figuring out a way to

either share user identity information or to map from the

NASA system to the vendor's system. To simplify this in the

near term, DAggr focused on discrete transfers of data. On

a periodic basis, the vendor would provide a copy of their

data into a NASA system which would then provide the

services which DAggr needed.

Although NASA has begun migrating its systems to a single

approach to authenticating users, users must still request

access to each system individually, or get only baseline

level access under the current approach. The user

communities were asking why all System Integrators didn't

have access to all the same data. One approach considered

would use role-based access controls. However, in order to

do a role-based access, DAggr would need some way to

map the users to their various roles (as NASA employees

often have multiple functions). Initial efforts to build a tool

for this were begun, but the key effort in setting this up

would be to provide some way for the user community at

large to maintain this data. Once such a system achieved an

appropriate level of usage, then all data sources would need

to call on the services of such a role-mapper so that those

roles would be available internal to the tool. Then the

permissions within each tool would need to be reset to use

the roles, rather than the tools' internal groups and users.

This might prove difficult with COTS and legacy tools.

Lastly, while users were very happy to begin viewing

integrated data in their particular tool of interest, there was a

general consensus that eventually the users would need the

capability to modify this data, and have those changes

pushed back to the original source system. A flight

controller sitting on console in mission control should not

only be able to review all the past Problem Reports (PRs) on

a part, but should be able to create and file a new PR, and

have that go directly into PRACA. A next step would be to

move beyond just supporting Read permissions to

supporting all CRUD permissions. However, with the

current baseline user approach, there were strong concerns

that the traceability and control on such changes would not

be adequate. Moving to a role-based level of access would

improve this, but the system would still need to be set up to

show which flight controller filed that PR. Moving to a full

CRUD service model would also have required more

extensive development on the data sources to provide the

additional services. It was hoped that as industry moves

more generally to a service-based model that COTS tools

would provide this capability, but imposing it on legacy

systems would still prove a challenge.

6. BENEFITS

Our experience with DAggr revealed several benefits of this

initial implementation of a SOA. This section will

summarize the two most significant benefits.

Improved Business Intelligence

One of the primary benefits of the DAggr system is access

to better business intelligence. Business intelligence is

defined in [14] as "applications and technologies which are

used to gather, provide access to and analyze data and

information about an enterprise, in order to help make better

informed decisions."

At the most basic level, DAggr eliminates potential

discrepancies in data that get introduced when data is

manually copied from the authoritative source to other

sources and to reports and presentations. As described

earlier in this paper, discrepancies between the authoritative

data in one system and a copy of that data in another system

were observed to range from 14% to 97% for a range of

data. Automated data aggregation on demand eliminates

these discrepancies, allowing decisions to be made on the

authoritative data rather than an incorrect copy of the data.

Discrepancy rates observed in this DAggr effort are

comparable with another study where 40% discrepancy rates

were observed [1].

In addition, by automating data aggregation, engineers and

managers can spend more time on analyzing data rather than

just aggregating it, and can enable more standardized

formatting of data. This can make processes more

repeatable and improve human interpretation of the data.

As one example, systems engineers indicated in interviews

that they spent up to half of their time gathering and

assembling data from a variety of tools, and therefore had

less time to make the critical decisions they were tasked

 10

with. The links between the data were essential to providing

an integrated view. In the SIP application, the primary

function was to ensure that each TVR was scheduled. Since

this data lived in two different places prior to DAggr,

system integrators were forced to extract it all and use

Microsoft Excel to show the relationships between the data.

This led to challenges both in accuracy of the copying (as

discussed in section 2) and in keeping the link data up to

date so that the whole team could understand the current

state. DAggr's ability to integrate the data within one

application and store the relationships created by the system

integrators reduced these risks.

As a second example, under the existing practices, a

Certification of Flight Readiness was only signed after

months of tiered Flight Readiness Reviews (FRRs). For

each review, Microsoft PowerPoint charts would be

prepared manually summarizing the data gathered from a

variety of sources, including the PowerPoint charts prepared

for lower tier reviews. By the time the PowerPoint charts

reached the top FRR, the data shown on them could be stale.

By providing a CoFR client with direct access to the

original data sources, a mission manager need not wait

months to find out the status of the mission, but could check

at any time. This also improves the repeatability of the

process, so that the data seen does not vary depending on

the choices of the PowerPoint editors at several steps along

the way.

Support for Multiple User Communities

A key benefit of using an abstraction model such as the

ontology in the DAggr server is that it greatly facilitates

expansion of the system. The clients base their data model

on the DAggr server data model. Thus, when new data

sources are added, the client applications can incorporate

that data with no modification or recompilation. Even the

DAggr server did not require significant modifications to

incorporate the new data sources. The changes were

primarily adding a new adapter and updating the ontology.

The adapter development was fairly straightforward, as the

full list of calls for each data source was standardized and

short. This ease of adding data sources was demonstrated in

our second (CoFR) release, which took less than four

person-months to add three data sources.

Another benefit, as discussed in [14] is the ability to support

access to the data by new clients/tools with little

modification to the server and none to the data sources.

Different users will need to perform different tasks with the

data, and want to have their own tools to do this in. While

the SIP client developed was easily modified to function as

the CSA client, with the CoFR release it was also

demonstrated that an entirely new client could be added

with very little work on the server side, in a very short

amount of time.

7. LESSONS LEARNED

This section will describe the lessons learned from the

DAggr experience that should have a general applicability

for organizations seeking to move toward an SOA.

Complete the aggregation cycle quickly

The DAggr development experience shows that it is

possible to provide benefits to an organization quickly using

a SOA without much expense. With twenty person-months

of development effort in only four months time, three data

sources and one client application were integrated in a

production environment. Following that initial milestone,

roughly one new data source each month was added for a

current total of ten adapters to different authoritative data

sources, with sets of adapters deployed to production on a

quarterly basis.

One key step in doing this so quickly was the parallel

development, where the adapters, the DAggr server, and the

client were all developed concurrently. This was greatly

facilitated by a simple interface definition in REST, which

also made testing easier, as any developer could use a web

browser to test the various calls being made. This parallel

development effort also required multiple development and

integration environments, so that each layer had a stable

version of the next to test against while the other layers were

making rapid changes.

This parallel development was also facilitated by

implementing with the basics of what every developer has

on their development machine – a programming language

and an integrated development environment. Attempts at

using other approaches that involved tools marketed as

being facilitators of SOA implementation proved to be

inhibitors. Developers who wanted to participate needed to

procure a license for the tool and get specialized training to

learn how to use it. By implementing without such tools,

developers readily transitioned into the role of adapter

developer without requiring procurement of tools or

specialized training.

Develop incremental capabilities for specific applications

Organizations with established tools and processes can be

resistant to migrating to an SOA [2]. In order to avoid some

of the difficulties here, the DAggr development effort made

some conscious decisions to focus on developing

incremental capabilities for specific end user applications.

This included the decision to start with read-only services to

minimize impacts on legacy and COTS tools. Another

choice was to start with a small but critical user community

to prove the capability quickly and prove initial benefits.

Having this set of users enthusiastic about the work then

made it easier to move into other user communities and add

more data sources as the momentum built. It is important to

get the whole organization comfortable through small, quick

steps.

 11

Be flexible and adaptable

DAggr incorporated data sources that span the range from

proprietary COTS to open-source to in-house legacy tools

for a range of applications. The interfaces for these data

sources ranged from sources that didn't have any usable

http-based interface to ones that had RESTful interfaces. To

integrate across the range of these sources for a range of

applications, being flexible and adaptable was key.

Incorporating data sources requires use of a variety of

flexible solutions to adapting them [3].

In-house developed tools with active development teams

provided the easiest solution, by adding components

necessary to support the defined interface services. COTS

and legacy tools can be more difficult, depending on what

services or interfaces are available, and the overall

performance needs of those systems [12]. In one case we

were able to wrap the services of a modern COTS tool. In

another, for performance reasons, we wound up using a

caching solution to protect the original COTS source and

meet our functionality needs.

8. SUMMARY

Moving to a web of integrated engineering data systems is a

viable option today, using an incremental SOA approach.

This approach enables automated integration of linked

engineering data, which eliminates discrepancies between

copies of linked data that were observed to impact from 14

to 97% of the copied data items due to manual copying.

This also enables reduction in lifecycle costs associated with

manual copying and linking of data. A data aggregation

service can readily be tailored to specific user community

procedural requirements, yielding near-term benefits

tailored to needs of engineering organizations. The

modularity and flexibility of the approach is expected to

enable long-term benefits as well.

Future large endeavours with large legacy systems and

processes must take an iterative approach in migrating to

SOAs to avoid significant disruptions. Flexible, modular

SOA migrations can be an important step for such efforts to

address the technical and organizational aspects of the

migration.

REFERENCES

[1] D. G. Bell, D. M. Maluf, Y. Gawdiak, P. Putz, K.

Swanson, "The NASA Program Management Tool: A

New Vision in Business Intelligence" IEEE Aerospace

Conference 2006, March 2006

[2] N. Bieberstein, S. Bose, L. Walker, A. Lynch, "Impact of

service-oriented architecture on enterprise systems,

organizational structures, and individuals", IBM Systems

Journal 44(4):691-708, 2005.

[3] G. Canfora, A. R. Fasolino, G. Frattolillo, P. Tramontana,

"A wrapping approach for migrating legacy system

interactive functionalities to Service Oriented

Architectures", The Journal of Systems and Software

81:463-480, 2008.

[4] "Cradle Overview" in

http://www.threesl.com/pages/Cradle/English/Content/Pro

ducts/overview.php, accessed October 2011.

[5] D. Fils, C. Cervato, J. Reed, P. Diver, X. Tang, G.

Bohling, D. Greer, "CHRONOS architecture:

Experiences with an open-source services-oriented

architecture for geoinformatics", Computers and

Geosciences 35:774-782, 2009.

[6] NASA Procedural Requirements for Mishap and Close

Call Reporting, Investigating, and Recordkeeping, NPR

8621.1B 2010.

[7] NASA Procedural Requirements for NASA Systems

Engineering Processes and Requirements, NPR 7123.1A

2009.

[8] C. B. Green, I. V. Tollinger, C. D. Ratterman, G. . Pyrzak,

A. A. Eiser, L. . Castro, & A. H. Vera (2009) "Leveraging

open source software in the design and development

process", In K. Hinckley, M. R. Morris, S. Hudson, and S.

Greenberg (Eds.): Extended Abstracts of the 2009

Conference on Human Factors in Computing Systems

(CHI 2009), (pp. 3061-3074). San Jose, CA: ACM 2009.

[9] "Primavera Scheduling Software" in http://www.ipsys-

3.com/primavera_scheduling.html, accessed October

2011.

[10] J. L. Rhatigan, J. M. Hanley, M. S. Geyer, Formulation

of NASA's Constellation Program, NASA Special

Publication SP-2007-563.

[11] N. Shadbolt, W. Hall, T. Berners-Lee, "The Semantic

Web Revisited", IEEE Intelligent Systems 21(3):96-101,

Jan-Feb 2006.

[12] X. Wang, S. X. K. Hu, E. Haq, H. Garton, "Integrating

Legacy Systems within the Service Oriented

Architecture", IEEE Power Engineering Society General

Meeting 2007:1-7, 24-28, June 2007.

 12

[13] "Windchill Business Process Management" in

http://www.ptc.com/products/windchill/, accessed

October 2011.

[14] L. Wu, G. Barash, C. Bartolini, "A Service-oriented

Architecture for Business Intelligence", IEEE Service-

Oriented Computing and Applications 2007:279-285,

June 2007.

BIOGRAPHIES

Robert Carvalho is a Systems Engineer with NASA Ames

Research Center’s Intelligent Systems Division. For

more than 15 years, he has supported a variety of NASA

projects. He is currently working on the ground and

mission operations systems for the Interface Region

Imaging Spectrograph mission. His research interests

include model based systems engineering and knowledge

management for safety and design. He received his B.S.

in Computer Engineering from Santa Clara University.

David Bell is Director and Senior Scientist at the USRA

Research Institute for Advanced Computer Science,

located at the NASA Ames Research Center. Prior to

working at NASA, David worked for ten years at the

Xerox Palo Alto Research Center, and previously held an

appointment at MIT where he led a research program in

the Center for Innovation in Product Development. David

is co-inventor of multiple patent and patent-pending

information system technologies, including extensible

blog technology called Sparrow Web, public and private

electronic markets, and the NASA Program Management

Tool; as well as co-inventor of an early crowdsourcing

technology called Eureka. David received his Ph.D. from

Cornell University with a dissertation on the dynamics of

product development processes.

Irene Tollinger leads the Human-Computer Interaction

(HCI) team in the Human Systems Integration Divsion at

NASA Ames Research Center. She has won numerous

awards for her work in support of NASA missions,

including Constellation and the Mars Exploration Rovers.

She graduated from the Human Computer Interaction

Institute at Carnegie Mellon University in 2002.

Daniel Berrios has over 15 years experience in the fields

of scientific computing and informatics. He has led multi-

center research projects in epidemiology while at the

University of California, and managed scientific and

technical information retrieval research while at

Stanford. He currently develops collaborative

information systems for scientists, technologists, and

engineers at the University of California, Santa Cruz. He

has a bachelor’s degree in mathematics from Brown

University, a doctorate of medicine from the University of

California, San Francisco, a master’s certificate in public

health from the University of California at Berkeley, and

a Ph.D. in biomedical information sciences from Stanford

University

