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13 Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate 

14 Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the 

15 Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually 

16 high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are 

17 unusually low. High Low differences are consistent with a weakened Western Pacific 

18 atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This 

19 relative change in tropospheric circulation inhibits planetary wave propagation into the 

20 stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The 

21 number of winters with sudden stratospheric warmings is approximately tripled in the Low 

22 ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more 

23 stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in late 

24 winter, affecting the April clear-sky UV index at Northern Hemisphere mid-latitudes. 

25 
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26 The severity of Arctic ozone depletion is highly dependent on the evolution of polar lower 

27 stratospheric temperature in late winter and spring [WMO, 2011]. In 2011, unprecedented 

28 Arctic ozone depletion resulted from a sustained period of below-average temperatures and an 

29 extremely isolated polar air mass [Manney et aI., 2011]. The cold 2010-2011 winter resulted in 

30 a large volume of polar stratospheric clouds (PSCs), and thereby, high levels of activated 

31 chlorine that catalytically destroyed ozone in the Arctic lower stratosphere [Manney et aI., 2011]. 

32 It is important to understand the causes of these 2011 conditions, in order to assess how Arctic 

33 ozone and ultraviolet (UV) radiation levels will likely evolve as the abundance of ozone-

34 depleting substances decline. 

35 

36 Hurwitz et al. [20l1a] considered possible dynamical causes of the 2011 ozone depletion event. 

37 March was the focus of the authors' study, because conditions in the Arctic stratosphere were 

38 particularly anomalous during that month. Several causes were rejected: Direct radiative 

39 cooling by greenhouse gases was dismissed because cooling of the Arctic lower stratosphere 

40 observed during the satellite era [0.17 ± 0.14 K yea{l, in the MERRA reanalysis] was too weak 

41 to explain the roughly 10 K cooling in 2011. Both EI Nino/Southern Oscillation (ENSO) and the 

42 quasi-biennial oscillation (QBO) modulate the strength of the Arctic vortex but could not 

43 explain the anomalous stratospheric cooling in 2011. Relative strengthening of the Arctic vortex 

44 during La Nina events, as observed in 2011, weakens and begins to reverse by March. Similarly, 

45 the authors found that relative strengthening of the mid-winter vortex during the westerly phase 

46 of the QBO, relatively to the easterly phase, does not persist through March. Furthermore, the 

47 structure and magnitude of dynamical anomalies in the Arctic stratosphere were similar in March 

48 1997 and March 2011, two episodes of low temperatures and large ozone losses, despite different 

49 phases ofthe QBO. 

50 

51 Hurwitz et al. [20lla] showed that winters with exceptionally high North Pacific SSTs, 

52 including 2010-2011, were often characterized by weak planetary wave driving in mid-winter 

53 and by a cold, persistent vortices, providing the conditions necessary for severe polar 

ozone 

55 
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56 dataset. North Pacific SSTs may affect planetary wave driving by modifYing the large-scale 

57 circulation. Weakening of the West Pacific (WP) pattern, characterized by positive upper 

58 tropospheric ridges in the western and central North Pacific, tends to inhibit planetary wave 

59 driving and strengthen the Arctic vortex in winter [Garfinkel and Hartmann, 2008; Orsolini et ai., 

60 2009; Woolings et aI., 2010; Garfinkel et ai., 2010]. North Pacific ridges are an efficient way to 

61 reduce planetary wave driving in the Northern Hemisphere because they destructively interfere 

62 with the climatological stationary wave pattern [Garfinkel and Hartmann, 2008; Orsolini et aI., 

63 2009; Nishii et ai., 2010; Garfinkel et aI., 2010]. Specifically, ridges in the North Pacific (i.e., 

64 weakening of the WP pattern) have been shown to precede prolonged polar stratospheric cooling 

65 of up to 6 K [Nishii et ai., 2010] and months with very high PSC volumes [Orsolini et aI., 2009]. 

66 

67 While observational evidence suggests that North Pacific SSTs can affect polar stratospheric 

68 conditions, the Arctic winter climate is highly variable and few anomalous cooling events have 

69 occurred during the satellite era. Thus, it is not possible to attribute the dynamical cause(s) of a 

70 particular event, such as the unusual meteorology and ozone loss observed in 2011. To pinpoint 

71 the role of North Pacific SSTs on the Arctic troposphere and stratosphere in winter, the present 

72 study compares two ensembles of chemistry-climate model (CCM) simulations forced by 

73 composites of observed SSTs, each providing many samples of the atmospheric response to high 

74 or low North Pacific SSTs. Section 2 describes the model and experimental set-up. Section 3 

75 will diagnose ensemble mean differences in Arctic geopotential height, eddy heat flux, 

76 temperature, ozone and UV index. Also, Section 3 will assess the frequency of strong eddy heat 

77 flux events and major sudden stratospheric warmings (SSWs), characterized by a reversal of the 

78 climatological westerly zonal winds at 60oN, 10 hPa, in the two ensembles. Section 4 will 

79 provide a discussion and summary. 

80 

81 2 Method 

82 The Arctic winter response to changes in North Pacific SSTs is simulated using the Goddard 

83 Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM). The GEOS 

couples general circulation model (GCM) with a comprehensive 

LJ"JV<u. et et has 
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hPa. Predicted distributions of water vapor, ozone, greenhouse gases (C02, CH4, and N20) and 

CFCs (CFC-II and CFC-12) feedback to the radiative calculations. An earlier version of the 

GEOS V2 CCM generally performed well in the SP ARC CCMVal [2010] detailed evaluation of 

stratospheric processes, though in the Arctic winter, lower stratospheric temperatures were 

warm-biased and thus the model tended to underestimate polar ozone loss [see SP ARC CCMVal 

(2010), figures 4.1 and 6.37]. The present formulation of the GEOS V2 CCM is as described by 

Hurwitz et al. [2011b]. The model formulation includes an updated GCM, with an improved 

representation of tropical stationary wave patterns, and a new gravity wave drag scheme that 

allows the model to produce an internally-generated quasi-biennial oscillation (QBO) with 

realistic periodicity and magnitude. 

This study compares two GEOS V2 CCM ensembles, each composed of 40 simulations of an 

extended Arctic winter season. Each of the 40 pairs of simulations is initialized independently, 

using a 1 st October restart file from a perpetual ENSO neutral (ENSON) simulation [Hurwitz et 

aI., 2011 b], and is run through April 30th
• The independent set of initial conditions, together with 

the model's internal QBO, imply that the simulated winter conditions sample the range of 

possible QBO phases. Both ensembles are forced by greenhouse gas and ozone-depleting 

substances representative of the 2005 climate [as in Hurwitz et aI., 2011b]. 

The two ensembles differ only by the SST and sea ice boundary conditions imposed north of 

20oN. Annually repeating SST and sea ice climatologies are each constructed from the average 

of two observed winters when North Pacific (40-500N, 160-2000E) SSTs were either unusually 

high (1990-1991 and 1996-1997; Figure la, blue stars) or unusually low (1986-1987 and 1987-

1988; Figure la, cyan stars). Note that this experimental design tests the atmospheric sensitivity 

to changing North Pacific SSTs, rather than the linearity of atmospheric response. South of 

20oN, ENSO neutral SST and sea ice climatologies are prescribed in both ensembles [as in the 

ENSON simulation as described by Hurwitz et aI., 2011b]. Using ENSO neutral conditions 

removes the potential impacts of El Nino and La Nina conditions on the simulated Arctic 

stratospheric response to unusually high or low North Pacific SST sea Ice are 

et at, 



M. M. Hurwitz et al. (2012) 
North Pacific SSTs and Arctic Winter Climate 

6 

118 Figure Ib shows the evolution ofNOlih Pacific SST differences throughout the extended winter 

119 season. High - Low differences increase from approximately 1 K in October to 2 K in January, 

120 and gradually decrease to 1 K by the end of each simulation. Note that the seasonal evolution of 

121 High - Low SST differences resembles that of the North Pacific SST anomalies during the 

122 2010-2011 winter, though the magnitude of the imposed High Low SST differences is 

123 approximately twice as large. Figures Ic and Id, respectively, show January/February 

124 climatological mean SSTs and High Low SST differences, in the Pacific sector. In the North 

125 Pacific, SSTs range from 5-8°C in the High ensemble (Figure Ic). Positive High - Low 

126 differences span the Pacific at mid-latitudes, with negative SST differences along the west coast 

127 of North America and Alaska, and in the subtropical western Pacific. Note that the pattern of 

128 High - Low SST differences resembles the pattern of SST anomalies observed during the 2010-

129 2011 winter (not shown). 

130 

131 In order to interpret the High Low differences, simulated stratospheric ozone and temperature 

132 fields are compared with observational datasets. Simulated total ozone is compared with the 

133 TOMS/SBUV dataset [updated from Stolarski and Frith, 2006]. Simulated temperature fields are 

134 compared with the Modem Era Retrospective-Analysis for Research and Applications 

135 (MERRA) reanalysis. The MERRA reanalysis is based on an extensive set of satellite 

136 observations and on the Goddard Earth Observing System Data Analysis System, Version 5 

137 (GEOS-5) [Bosilovich, 2008; Rienecker et aI., 2011]. The MERRA reanalysis has vertical 

138 coverage up to 0.1 hPa, and for this study, is interpolated to 1.25° x 1.25° horizontal resolution. 

139 Both the TOMS/SBUV and MERRA datasets span the 1979-2011 period. 

140 

141 3 

142 3.1 

Differences Between the High and Low Ensembles 

Troposphere 

143 Figure 2 shows the evolution of High Low monthly mean geopotential differences at Arctic 

144 latitudes in December and March. At 850 hPa, a region of positive geopotential height 

145 differences the North Pacific, co-located with the region of increased SSTs (see Figure ld), 

develops December 2a) and persists through spring (Figure 2d). Positive 

a to 
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149 decrease tropospheric wave driving. A region of negative differences develops over the Arctic 

150 cap in December (Figure 2a), and persists through the spring (Figure 2d). In January through 

151 March, sea level pressure decreases at polar latitudes, and increases in the European and Atlantic 

152 sectors, suggest a strengthening of the North Atlantic Oscillation (NAO). Specifically, the sea 

153 level pressure difference between 335°E, 37°N (i.e., the Azores High) and 339°E, 64°N (i.e., the 

154 Icelandic Low) is significantly different in the High and Low simulations at 95% confidence 

155 level in January. 

156 

157 The tropospheric response to the North Pacific SST difference is structurally barotropic. 

158 Consistent with Frankignoul and Sennechael [2007], upper tropospheric (300 hPa; Figures 2b 

159 and 2e) geopotential height differences mimic the near-surface (850 hPa; Figures 2a and 2d) 

160 geopotential height differences. From January through March, High - Low differences indicate 

161 a strengthening of the Arctic Oscillation: negative differences at Arctic latitudes, and positive 

162 differences at mid-latitudes, particularly in the Pacific and Atlantic sectors. 

163 

164 Eddy heat flux at 40-80oN, 100 hPa is a measure of the planetary wave energy entering the 

165 Arctic stratosphere. Time-integrated eddy heat flux in this region is highly correlated with polar 

166 lower stratospheric temperatures, with a 1-2 month lag [Newman et ai., 2001]. Figure 3 shows 

167 the mean eddy heat flux in the preceding 45 days, in the High (blue, upper panel) and Low 

168 (cyan) ensembles, as well as the mean differences between the two ensembles (dotted black line, 

169 lower panel). High Low differences are negative and statistically significant from early 

170 January through mid-February, suggesting an increase in eddy heat flux in December and 

171 January. By early February, eddy heat flux in the Low ensemble is both larger and more variable 

172 than in the High ensemble. The sign of High - Low eddy heat flux differences flips in mid-

173 April (lower panel). 

174 

175 Not only do the 45-day mean eddy heat fluxes differ between the two ensembles, so does the 

176 frequency of strong wave events. Table 1 lists the total of days where the eddy heat flux at 40-

SOON, 100 hPa is greater or equal to 25 K m Strong eddy heat "events" are defined as 

1 to m two or 

events is 
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180 ensemble than the High ensemble, as is the number of strong eddy heat flux days. In December 

181 and February, note that the number of strong heat flux days is roughly doubled in the Low 

182 ensemble as compared with the High ensemble. 

183 
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3.2 Polar Stratosphere 

Polar geopotential height at 50 hPa is a measure of the strength of the Arctic vortex. Negative 

High Low geopotential height differences over the polar cap (Figures 2c and 2f) persist from 

January through March. Negative geopotential height differences shift toward the Siberian 

sector in April. Polar cap temperature at 50 hPa is used to examine the seasonal evolution of the 

High - Low changes. The polar cap cools in the mid- to late winter, in the High ensemble 

relative to the Low ensemble (Figure 3, lower panel). 50 hPa polar cap temperature differences 

are statistically significant in January and February, consistent with the negative eddy heat flux 

differences, and in late March (black and gray XS below the center panel). Polar cap temperature 

differences reverse sign in mid-April. Early winter temperature differences are negligible. 

Arctic variability is also affected by North Pacific SSTs. In Figure 3 (center panel), blue (cyan) 

dashed lines indicate the 90th-percentile (fourth-highest) and 10th-percentile (fourth-lowest) 

temperature values of the High (Low) ensemble. The 10th-percentile values are similar in the 

two ensembles. However, the 90th-percentile values are significantly warmer (denoted by the Xs 

above the plot) in the Low ensemble than in the High ensemble in January and early February. 

This suggests that mid-winter polar stratospheric variability is enhanced when North Pacific 

SSTs are relatively lower. Section 3.3 will relate this result to the relative frequency of sudden 

stratospheric warmings (SSWs) in the two ensembles. 

204 The mean and distribution of seasonal mean January-February-March (JFM) polar cap 

205 temperature at 50 hPa differs robustly between the two ensembles. Figure 4a shows histograms 

206 of the JFM mean polar cap temperature; the mean High Low difference is 1.91 K. Note the 

207 upper tail of temperature values in the Low ensemble (cyan bars). While polar stratospheric 

208 conditions depend on phase of simulated QBO winter the 

IS 
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211 between 100 S and lOON [following Hurwitz et ai., 2011b]. QBO-easterly years are 

212 characterized by JFM zonal winds greater than 2 m S-I, while QBO-westerly years are 

213 characterized by zonal winds less than m S-I; the QBO-E and QBO-W means and 

214 distributions are statistically indistinguishable. 

215 

216 Polar stratospheric temperature anomalies propagate from the upper stratosphere in mid-winter 

217 to the lower stratosphere in spring. The evolution of High - Low temperatures at 800 N through 

218 the extended winter season is summarized by Figure 5. Temperature differences are negligible 

219 in November through mid-December. By late December, relative cooling develops at and above 

220 10 hPa. In January, relative cooling of the middle stratosphere exceeds 8 K. The anomalous 

221 cooling slowly descends, with weaker cooling extending to the 400-hPa level in February. 

222 Lower stratospheric cooling is strongest in March and early April. In March, relative cooling of 

223 1-2 K extends to the surface layer, suggestive of downward stratosphere-troposphere coupling. 

224 Stratospheric cooling is followed by relative warming of 2-4 K, with an approximately two-

225 month lag. 

226 

227 Interannual variability of mid-winter North Pacific SSTs explains some of the observed 

228 interannual variability in polar lower stratospheric conditions in late winter. Figure 6 shows the 

229 observed January/February North Pacific SST index [as in Hurwitz et aI., 20lla] as a function of 

230 February/March V psc timeseries for the 380-550 K potential temperature layer, updated from 

231 Rex et al. [2004, 2006]. Vpsc represents the volume of polar air that is below the formation 

232 threshold for polar stratospheric clouds (approximately 195 Kat 50 hPa). February/March Vpsc 

233 is thus a measure of the potential for late winter ozone depletion. The V psc correlation with the 

234 January/February North Pacific SST index is greater for February/March (r 0.38) than for the 

235 December-March average (r 0.33; not shown). Furthermore, the SST-Vpsc correlations 

236 increase when only the largest Vpsc values are considered: r 0.76 for February/March Vpsc > 

237 15x106 km3
; this result is consistent with the finding that blocking in the North Pacific tends to 

238 precede very high monthly mean Vpsc values [Orsolini et ai, 2009]. However, while Vpsc and 

2 Pacific were both unusually high in 2011, North Pacific SSTs do not "'"""JHA-'CH high 

2000. pairs 

a 
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244 Major sudden stratospheric warmings (SSWs) are characterized by reversals in the zonal wind 

245 direction at 60oN, 10 hPa. The observed occurrence of SSW events, during years when 

246 January/February North Pacific SSTs were unusually high or low, is compiled from a list of 

247 historical SSW s [Butler and Polvani, 2011]. Distinct zonal wind reversals are required to take 

248 place at least 20 days apart and only when distinct from the final warming [Charlton and Polvani, 

249 2007]. SSWs occurred during all of the four winters with the lowest North Pacific SSTs between 

250 1979 and 2011 (see Figure la), while no SSWs were observed during the four winters with the 

251 highest North Pacific SSTs. Therefore, the High and Low GEOS V2 CCM ensembles serve to 

252 test if this strong observed sensitivity of the SSW frequency to North Pacific SSTs is robust to a 

253 larger sample size. 

254 

255 Table 2 shows the number and frequency of SSWs in the two GEOS V2 CCM ensembles. 

256 Simulated SSW identification follows Charlton and Polvani [2007] and Butler and Polvani 

257 [2011]. The relative frequency of simulated SSWs is consistent with the mean strength of the 

258 Arctic vortex: the frequency of winters with at least one SSW is approximately tripled in the 

259 Low ensemble (20 active winters) as compared with the High ensemble (7 active winters). There 

260 are two winters each with two SSWs in both ensembles. The increased SSW frequency in the 

261 Low ensemble is consistent with the overall increase in variability in January (see Figure 3). The 

262 frequency of active winters during perpetual ENSO neutral conditions (10 active winters in a 40-

263 year sample) lies between that for the North Pacific SST extremes. 

264 

265 The dynamical situation preceding SSWs in the High ensemble is distinct from that preceding 

266 SSWs in the Low ensemble. For example, Figure 7 shows composites of the zonally asymmetric 

267 component of 300-hPa geopotential height anomalies in the 5-20 days preceding SSWs, at 

268 Arctic latitudes. While a blocking high is located in the North Pacific in both ensembles, the 

269 High ensemble (Figure 7a) has a wavenumber-2-like structure while the High ensemble has a 

270 wavenumber-I-like structure. structures are, respectively, consistent the 

2 

2 
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High - Low ozone differences at 800 N reflect temperature differences at 80oN. Figure 8 shows 

the slow descent of negative stratospheric ozone differences in January through April, with 

corresponding positive ozone differences above, and a further layer of negative ozone 

differences in the uppermost stratosphere. Negative ozone differences are largest at 10 hPa (~0.3 

ppmv) and are approximately 0.1 ppmv in the lower stratosphere. The reversal in the sign of 

High Low 50-hPa temperature differences in mid-April (see Figures 3 and 5) does not occur in 

the ozone difference field. Weak, negative ozone differences are seen in the Arctic troposphere 

in mid-February through March, indicating a downward coupling between the stratosphere and 

troposphere, as in the 800 N temperature differences (Figure 5). 

285 While High - Low polar ozone differences are consistent with polar temperature differences, 

286 ozone differences are small and are generally not statistically significant. Weak polar ozone 

287 differences result from a polar lower stratospheric warm bias in the GEOS V2 CCM. Figure 9 

288 shows that the High and Low ensemble mean temperatures at 80oN, 50 hPa remain above the 

289 threshold for PSC formation (approximated by the black dotted line), and thus for chemical 

290 ozone depletion, throughout the winter. In contrast, observed temperatures during the e.g., 

291 2010-2011 winter (solid black line) dropped below the PSC formation threshold for sustained 

292 periods in February and March. However, the area where polar temperatures are below 195 Kat 

293 50 hPa (i.e., the approximate area of PSCs, or the potential for ozone depletion), is significantly 

294 different in the High and Low ensembles in January, February and March (see Table 3). 

295 

296 In April, High - Low ensemble mean total ozone differences are consistent with the observed 

297 total ozone anomalies in 2011. In the GEOS CCM simulations (Figure lOa), positive differences 

298 of 5-10 DU are seen in the Canadian sector, while negative differences of up to 37 DU are seen 

299 in the European and Siberian sectors. Weaker, negative total ozone differences span the mid-

300 latitude Pacific and the eastern USA. The observed total ozone anomalies in April 2011 (Figure 

301 lOb) match the pattern the simulated differences, with two main differences: First, the 

302 are r"",v,,,/YV, 

ozone sector. 
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305 Decreased total ozone in spring enhances the flux of clear-sky UV radiation to the earth's 

306 surface, while increased total ozone diminishes the UV flux. Simulated April UV differences are 

307 calculated for four cities: Washington, Calgary, London and Moscow. These cities span the 

308 longitudinal circle at northern mid-latitudes. Figure 11 shows the April UV index in the four 

309 cities, in two years when North Pacific SSTs were unusually low, three years when North Pacific 

310 SSTs were unusually high, as well as the High and Low ensemble mean values. In Washington, 

311 London and Moscow, North Pacific SSTs and the April UV index are correlated: UV index is 

312 highest when North Pacific SSTs are elevated and Arctic ozone depletion is relatively more 

313 severe. The statistical significance of High - Low UV differences is highest for Washington. In 

314 Calgary, the UV index exhibits the opposite sensitivity to North Pacific SSTs, consistent with the 

315 total ozone response in April. 

316 

317 4 Conclusions 

318 GEOS V2 CCM simulations show that SSTs in the North Pacific region significantly affect the 

319 Arctic troposphere and stratosphere in winter. Two ensembles, each of 40 extended winter 

320 season simulations, differ only by the SST boundary conditions imposed north of 20oN. The 

321 largest, positive SST differences are in the North Pacific region. By imposing no tropical SST 

322 differences, the impact of EN SO on Arctic winter variability is removed. While the phase of the 

323 QBO varies between each of the ensemble members, differences in the simulated Arctic late 

324 winter response during QBO--easterly versus QBO-westerly conditions are negligible. 

325 

326 In the troposphere, enhanced North Pacific SSTs tend to weaken the Aleutian low, inhibiting 

327 planetary wave propagation into the stratosphere. An Arctic relative low-pressure center is 

328 established from December through March, throughout the tropospheric column. Furthermore, 

329 enhanced North Pacific SSTs can affect winter weather in the Northern Hemisphere: relatively 

330 lower surface pressure at polar latitudes coupled with relatively higher pressure at mid-latitudes 

331 imply a strengthening of the North Atlantic Oscillation and Arctic Oscillation. However, SST 

332 differences between the High and Low ensembles are non-zero the North Atlantic, and thus, 

3 to 
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335 Reduced tropospheric planetary wave driving, in winters with relatively warmer North Pacific 

336 SSTs, acts to strengthen the Arctic vortex. Relative cooling of the Arctic stratosphere begins in 

337 the upper stratosphere in January and slowly descends to the lower stratosphere by March and 

338 early April. The JFM seasonal mean difference in polar cap temperature at 50 hPa is 1.91 K. 

339 When North Pacific SSTs are relatively low, not only is the seasonal mean Arctic vortex 

340 weakened, the frequency of simulated sudden stratospheric warmings is considerably larger 

341 (consistent with Jadin et al. [2010]). Furthermore, the sudden warmings that do occur when 

342 North Pacific SSTs are anomalously cool (warm) tend to be associated with wavenumber-l 

343 (wavenumber-2). 

344 

345 The Arctic ozone response to enhanced North Pacific SSTs is consistent with the dynamical 

346 response. Relative cooling of the Arctic stratosphere corresponds with a relative decrease in 

347 polar ozone. Negative ozone differences begin in late December, around 10 hPa, and descend to 

348 the lowermost stratosphere through mid-April. Negative ozone differences are centered over the 

349 polar cap from January through March. Positive ozone differences are seen above the region of 

350 negative differences. Though the pattern of simulated ozone differences is consistent with the 

351 dynamical response, the ozone differences are not statistically significant, likely because of the 

352 GEOS V2 CCM's mid-winter warm bias. 

353 

354 In April, negative High - Low ozone differences shift away from the pole and toward the 

355 Siberian sector. The pattern of simulated total ozone differences is similar to the pattern of 

356 ozone anomalies observed in April 2011; however, the magnitude of the simulated differences is 

357 approximately a third of that observed. In April, negative total ozone differences exceeding 30 

358 DU are simulated in Europe and the Siberian sector (leading to small increases in clear-sky UV 

359 index in e.g., London and Moscow), while total ozone increases exceed 20 DU over northern 

360 Canada (slightly decreasing the UV index in e.g., Calgary). Weaker negative differences are 

361 seen at northern mid-latitudes (increasing the April UV index in e.g., Washington). 

362 

363 results present study suggest one of the keys to predicting the behavior of the 

a 

IS a 
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366 of decadal variability that is independent of ENSO and the Pacific Decadal Oscillation (PDO) 

367 [Nakamura et aI., 1997; Frankignoul and Sennechael, 2007]. However, the IPCC Fourth 

368 Assessment report attributes recent warming of the North Pacific upper ocean to the positive 

369 phase of the PD~. CMIP5 simulations of likely 21 5t century climate scenarios will provide 

370 updated forecasts of future changes in North Pacific SSTs. 

371 

372 The above model results support the hypothesis that anomalously warm North Pacific SSTs 

373 contributed to the strong and prolonged cooling of the polar lower stratosphere, and severe ozone 

374 depletion, that were observed during the 1996-1997 and 2010-2011 winters [Pawson and 

375 Naujokat, 1999; Manney et aI., 2011; Hurwitz et aI., 2011a]. However, elevated North Pacific 

376 SSTs alone do not predict polar stratospheric cooling in late winter. January/February North 

377 Pacific SSTs are well correlated with late winter Vpsc, though some of the "coldest winters" 

378 (e.g., 2004-2005) as identified by Rex et al. [2004, 2006] and Manney et ai. [2011] were not 

379 associated with elevated North Pacific SSTs. Similarly, in the GEOS V2 CCM simulations, not 

380 all winters forced by high North Pacific SSTs lead to late winter stratospheric cooling, because 

381 stochastic atmospheric variability also plays a role in modulating the Arctic winter climate. 

382 
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478 Table 1: Number of events and days when eddy heat flux at 40-80oN, 100hPa 2: 25 K m S-I, for 

479 the High and Low ensembles. 

480 

481 Table 2: Simulated number and frequency of winters with at least one SSW (2nd and 3rd 

482 columns), and number and of winters with two SSWs (4th and 5th columns). 40 winters for each 

483 of the High, Low and ENSO neutral simulations are considered. The 6th column shows the 

484 frequency of active winters during the 1979-2011 period, based on a list of historical SSWs 

485 [Butler and Polvani, 2011]. For the historical SSWs, the four years with the highest (lowest) 

486 January/February North Pacific SSTs represent the High (Low) case. 

487 

488 Table 3: Ensemble and monthly mean area where 50-hPa polar temperature is less than 195 K 

489 [106 m2
]. Differences between the High and Low areas are significantly significant at the 90% 

490 level, in a two-tailed t-test, in January, February and March. 

491 

492 Figure 1: (a) Timeseries of the January/February mean North Pacific SST index. Blue (cyan) 

493 . stars denote winters used to construct the High (Low) SST and sea ice boundary conditions. The 

494 red star denotes the North Pacific SST index in 2011. (b) Timeseries of North Pacific SST 

495 anomalies through the extended winter season, for High - Low (black line) and 2010-2011 

496 anomalies (red line). (c) January/February mean SSTs used as boundary conditions in the High 

497 ensemble. (d) January/February mean differences between the High and Low SST fields. Gray 

498 contours indicate zero difference. Black boxes in (c) and (d) indicate the North Pacific region. 

499 

500 Figure 2: High - Low geopotential height differences [m] at Northern Hemisphere mid- and 

501 high latitudes at 850 hPa (left column), 300 hPa (center column) and 50 hPa (right column), in 

502 (a-c) December and (d-±) March. Note the different color scale for each pressure level. White 

503 contours indicate zero difference. Gray dashed contours show geopotential heights in the ENSO 

504 neutral simulation. Black wedges indicate the North Pacific region. An of the major features are 

505 statistically significant at the 95% ma 
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507 Figure 3: Upper panel: Eddy heat flux [K m S·I] at 40-80oN, 100 hPa in the preceding 45 days. 

508 Solid blue and cyan lines indicate the High and Low ensemble mean values. Dashed blue and 

509 cyan lines indicate the 3rd -highest and lowest values of each ensemble. Days when the High 

510 Low eddy heat flux difference is significant at the 95% (80%) level are indicated by the black 

511 (gray) Xs below the plot. Days when the difference in variability between the High and Low 

512 ensembles is significant at the 95% (80%) level are indicated by the black (gray) XS above the 

513 plot. Center panel: Like the upper panel, but for polar cap temperature [K] at 50 hPa. Lower 

514 plot: High - Low ensemble mean differences in eddy heat flux (dotted black line) and 

515 temperature (solid black line). 

516 

517 Figure 4: Histograms of the January-February-March (JFM) seasonal mean polar cap 

518 temperature [K] at 50 hPa: (a) High and Low ensembles, and (b) QBO-easterly years and QBO-

519 westerly years. The black-tipped bars indicate the location of the ensemble mean values; the 

520 High and Low ensemble mean difference is significant at the 95% level, in a two-tailed t-test. 

521 

522 Figure 5: High Low temperature differences [K] at 80oN, as a function of date and altitude. 

523 White contours indicate zero difference. Black XS indicate differences significant at the 95% 

524 confidence level, in a two-tailed t-test. 

525 

526 Figure 6: January/February North Pacific SST anomaly [K] as a function of February/March 

527 Vpsc in the 380-550 K layer [106 km3
], for the 1980-2011 period. SST anomaly and Vpsc 

528 values are denoted by year number (e.g., '11' denotes 2011). 

529 

530 Figure 7: Zonally asymmetric component of the 300-hPa geopotential height anomalies in the 

531 5-20 days preceding SSWs in the High and Low ensembles. White contours indicate zero 

532 difference. 

533 

534 Figure 8: High Low ozone differences [ppmv] at 80oN, as a function of date and altitude. 

535 

5 

White contours indicate zero difference. Black (gray) 

a t-test. 

indicate differences significant at 
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538 Figure 9: Timeseries of zonal mean temperature at 80oN, 50 hPa during the 2010-2011 winter 

539 (black), as compared with the High (blue) and Low (cyan) ensemble means. 195 K is denoted by 

540 the dotted black line. 

541 

542 Figure 10: April total ozone differences [DU] (a) for the High Low ensemble means and (b) 

543 2011 climatology from the TOMS/SBUV dataset. In (a), black Xs indicate differences 

544 significant at the 95% level in a two-tailed t-test. White letters denote the approximate location 

545 of the four cities: London, Moscow, Calgary and Washington. 

546 

547 Figure 11: April UV index in four cities: Washington (approximately 283°E, 38°N), Calgary 

548 (246°E, 51 ON), Moscow (37°E, 55°N) and London (OOE, 51 ON). For each city, the first five 

549 vertical bars represent the UV index calculated based on April total ozone from the 

550 TOMS/SBUV dataset, for 1987 (unusually low North Pacific SSTs), 1988 (low), 1991 (high), 

551 1997 (high) and 2011 (high). The last two vertical bars represent the mean UV index calculated 

552 based on April total ozone for the High and Low simulations. Differences in the April UV index 

553 between the High and Low ensembles are significant at the 95% confidence level in Washington 

554 and at the 90% confidence level in London, in two-tailed t-tests. 

555 



555 Tables 

556 

# of 

Events 

Total Total 

High 143 414 

Low 153 497 

557 

# of Days 

Dec Jan 

89 82 

138 91 
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Feb Mar 

48 84 

103 51 

558 Table 1: Number of events and days when eddy heat flux at 40-80oN, 100hPa 2: 25 K m S-l, 

559 between December and March, for the High and Low ensembles. Totals represent the 

560 November-March extended winter season. 

561 

GEOS V2 CCM Simulations 1979-2011 

# of Active Frequency # of Frequency Frequency 

Winters of Active Winters of Two- of Active 

Winters with Two SSW Winters 

SSWs Winters 

High 7 0.18 2 0.05 0 

Low 20 0.50 2 0.05 1 

ENSO 10 0.25 0 0 0.42 

Neutral 

562 

563 Table 2: Simulated number and frequency of winters with at least one SSW (2nd and 3rd 

564 columns), and number and of winters with two SSW s (4th and 5th columns). 40 winters for each 

565 of the High, Low and ENSO neutral simulations are considered. The 6th column shows the 

566 frequency of active winters during the 1979-2011 period, based on a list of historical SSWs 

567 [Butler and Polvani, 2011]. For the historical SSWs, the four years with the highest (lowest) 

568 January/February North Pacific SSTs represent the High (Low) case. 

569 



569 

Dec Jan 

High 2.6 ± 1.2 19.2 2.6 

Low 3.7 ± 1.2 11.4 ± 2.5 

570 

Feb 

27.3 2.5 

16.4 ± 2.8 

Mar 

12.1 ± 2.2 

6.9 1.7 
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571 Table 3: Ensemble and monthly mean area where 50-hPa polar temperature is less than 195 K 

572 [106 m2
]. Differences between the High and Low areas are significantly significant at the 90% 

573 level, in a two-tailed t-test, in January, February and March. 

574 
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(b) 

Dec Jan Feb Mar Apr May 

120 150 180 210 240 270 
longitude 

Figure 1: ( a) Timeseries of the January /F ebruary mean North Pacific SST index. Blue ( cyan) 

stars denote winters used to construct the High (Low) SST and sea ice boundary conditions. The 

red star denotes the North Pacific SST index in 2011. (b) Timeseries of North Pacific SST 

anomalies through the extended winter season, for High - Low (black line) and 2010-2011 

anomalies (red line). (c) JanuaryIFebruary mean SSTs used as boundary conditions in the High 

ensemble. (d) January/February mean differences between the High and Low SST fields. Gray 

contours indicate zero difference. Black boxes in (c) and (d) indicate the North Pacific region. 
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50 hPa 

585 Figure 2: High Low geopotential height differences [m] at Northern Hemisphere mid- and 

586 high latitudes at 850 hPa (left column), 300 hPa (center column) and 50 hPa (right column), in 

587 (a-c) December and (d-f) March. Note the different color scale for each pressure level. White 

588 contours indicate zero difference. Gray dashed contours show geopotential heights in the ENSO 

589 neutral simulation. Black wedges indicate the North Pacific region. All ofthe major features are 

590 statistically significant at the 95% level, in a two-tailed t-test. 

591 
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Apr 1 

-/ 

Mar 1 Apr 

Figure 3: Upper panel: Eddy heat flux [K m S-I] at 40-800 N, 100 hPa in the preceding 45 days. 

Solid blue and cyan lines indicate the High and Low ensemble mean values. Dashed blue and 

cyan lines indicate the 10th_ and 90th-percentile values for each ensemble. Black (gray) Xs 

below the plot indicate days when the High - Low eddy heat flux difference is significant at the 

95% (80%) level, in a two-tailed t-test. Black (gray) Xs above the plot indicate days when the 

difference in variability between the High and Low ensembles is significant at the 95% (80%) 

level, in an F-test. Center panel: Like the upper panel, but for polar cap temperature [K] at 50 

hPa. Lower plot: High Low ensemble mean differences in eddy heat flux (dotted black line) 

and temperature (solid black line). 
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II Simulation 

o Simulation 
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218 
60 2 (b) JFM Mean Polar Cap Temperature at 50hPa 

603 Figure 4: Histograms of the lanuary-February-March (JFM) seasonal mean polar cap 

604 temperature [K] at 50 hPa: (a) High and ensembles, and (b) QBO-easterly years and QBO-

bla.cK--tuJm:d bars indicate location the ensemble mean 

",,.,nVl.'- mean IS a t-test. 
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Figure 5: High - Low temperature differences [K] at 80oN, as a function of date and altitude. 

White contours indicate zero difference. Black XS indicate differences significant at the 95% 

confidence level, in a two-tailed t-test. 
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Figure 6: January/February North Pacific SST anomaly [K] as a function of February/March 

Vpsc in the 380-550 K layer [106 km3
], for the 1980-2011 period. SST anomaly and Vpsc 

values are denoted by year number (e.g., '11' denotes 2011). 
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Low 

616 Figure 7: Zonally asymmetric component of the 300-hPa geopotential height anomalies in the 

617 5-20 days preceding SSWs in the High and Low ensembles. White contours indicate zero 

618 difference. 

619 
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620 Figure 8: High Low ozone differences [ppmv] at 80oN, as a function of date and altitude. 

621 White contours indicate zero difference. Black (gray) XS indicate differences significant at the 

622 95% (80%) confidence level, in a two-tailed t-test. 

623 
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624 Figure 9: Timeseries of zonal mean temperature at 80oN, 50 hPa during the 2010-2011 winter 

625 (black), as compared with the High (blue) and Low (cyan) ensemble means. 195 K is denoted by 

626 the dotted black line. 

627 
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628 Figure 10: April total ozone differences [DU] (a) for the High Low ensemble means and (b) 

629 2011 - climatology from the TOMS/SBUV dataset. In (a), black XS indicate differences 

630 significant at the 95% level in a two-tailed t-test. White letters denote the approximate location 

631 of the four cities: London, Moscow, Calgary and Washington. 

632 



632 Washington Calgary 

M. M. Hurwitz et al. (2012) 
North Pacific SSTs and Arctic Winter Climate 

33 
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633 Figure 11: April UV index in four cities: Washington (approximately 283°E, 38°N), Calgary 

634 (246°E, 5FN), Moscow (37°E, 55°N) and London (OOE, 5ION). For each city, the first five 

635 vertical bars represent the UV index calculated based on April total ozone from the 

636 TOMS/SBUV dataset, for 1987 (unusually low North Pacific SSTs), 1988 (low), 1991 (high), 

637 1997 (high) and 2011 (high). The last two vertical bars represent the mean UV index calculated 

638 based on April total ozone for the High and Low simulations. Differences in the April UV index 

639 between the High and Low ensembles are significant at the 95% confidence level in Washington 

640 and at the 90% confidence level in London, in two-tailed t-tests. 


