
 U.S. Government work not protected by U.S. copyright
 1

Optimizing Flight Control Software
With an Application Platform

Irene Skupniewicz Smith
SGT, Inc.

NASA Ames Research Center
P.O. Box 1, MS 269-3

Moffett Field, CA 94035
650-604-4414

irene.s.smith@nasa.gov

Nija Shi
SGT, Inc.

NASA Ames Research Center
P.O. Box 1, MS 269-3

Moffett Field, CA 94035
650-604-1376

nija.shi@nasa.gov

Christopher Webster
Carnegie Mellon University

NASA Ames Research Center
P.O. Box 1, MS 269-3

Moffett Field, CA 94035
650-604-5192

chris.webster@nasa.gov

Abstract—Flight controllers in NASA’s mission control centers
work day and night to ensure that missions succeed and crews
are safe. The IT goals of NASA mission control centers are
similar to those of most businesses: to evolve IT infrastructure
from basic to dynamic. This paper describes Mission Control
Technologies (MCT), an application platform that is powering
mission control today and is designed to meet the needs of
future NASA control centers. MCT is an extensible platform
that provides GUI components and a runtime environment.
The platform enables NASA’s IT goals through its use of
lightweight interfaces and configurable components, which
promote standardization and incorporate useful solution
patterns. The MCT architecture positions mission control
centers to reach the goal of dynamic IT, leading to lower cost
of ownership, and treating software as a strategic investment.

TABLE OF CONTENTS
1. INTRODUCTION ...1
2. ARCHITECTURE OVERVIEW.............................1
3. DESIGNING FOR FLEXIBILITY2
4. DESIGNING FOR STANDARDIZATION................6
5. SUMMARY ...8
REFERENCES...8
BIOGRAPHIES..9

1. INTRODUCTION

NASA’s Mission Control Center (MCC) at Johnson Space
Center in Houston is operated day and night, ensuring that
scientists and specialists aboard the International Space
Station (ISS) remain safe. ISS flight controllers currently
rely on over a thousand separate software applications
developed over the years to perform specific monitoring and
control functions. At other mission control centers at
NASA’s Ames Research Center and the Jet Propulsion
Laboratory in California, flight controllers are similarly
controlling small satellites and autonomous rovers.

Mission Control Technologies (MCT) is software designed
to power mission control centers in NASA today and into
the future. MCT must support high system availability,
composition, and certification of flight controller designed
components; and rapid reconfigurability of equipment in the
control center. The MCT platform architecture enables these
goals through its use of lightweight interfaces and loosely
coupled components.

Our customers’ goals are similar to those of most
businesses: to evolve their infrastructure from basic to
dynamic. Dynamic infrastructure is a goal of a mature IT
organization model put forth by Microsoft and others [1]. In
the context of space operations, a dynamic infrastructure can
support missions and simulations concurrently, will
accommodate data migrations such as changes to telemetry
streams, and can readily support the next generation of
vehicles. Applications written via the MCT platform help
move the MCC toward this goal by providing software
standardization, software reconfigurability, rapid
certification, and by capturing operation patterns (best
practices, business processes). Reaching the goal of
dynamic infrastructure means lower cost of ownership, and
software as a strategic investment.

While these are the MCT platform’s goals, it also has
clearly defined “non-goals.” MCT is designed to be an
extensible application platform, but not to provide IT
infrastructure services such as identity management, data
protection and data recoverability.

2. ARCHITECTURE OVERVIEW
MCT [5, 6, 7] is organized around “user objects” that are
designed to mirror the data and behavior of their real-world
counterparts. An MCT user object is referred to as an “MCT
component.” Some examples of components are telemetry
elements, procedures, commands, physical parts such as
pumps or batteries, and collections of other MCT
components. An MCT collection component contains other
MCT components; MCT displays are compositions of views
of these components.

An MCT component is implemented as an OSGi (Open
Service Gateway Initiative) [4] bundle. OSGi provides Java
classpath isolation, version support, and a service model.
Additionally, the OSGi service programming model isolates
faults in specific code bundles that can be handled
generically in the platform. Finally, OSGi provides the
ability to dynamically deploy software bundles, allowing a
patch to be applied to a running system.

The MCT platform uses several persistent stores, as shown
in Figure 1. A MySQL relational database serves as the
internal storage mechanism. The database stores the
component models and the relationships between

 2

components, as well as the persistent view information.
Database replication provides read availability during
failure of the master (write) instance. The database contains
information about the user objects but not telemetry values.
Real-time telemetry values are buffered in a local embedded
Oracle Sleepycat Berkeley database and are used to
populate short-term historical values on plots. MCT serves
to combine multiple disparate data sources. For example,
during spacecraft operations MCT combines telemetry
metadata, real-time data and archive data stores for the
telemetry values.

Figure 1 – MCT Application Platform

MCT provides a metadata service. Metadata is information
about the data symbols, such as units and calibration.
Metadata data stores can be quite large. Furthermore,
metadata may be frequently managed and revised; for
example, when a new instrument is added to a vehicle, a
new set of sensors may be added. Telemetry components
can be written for future telemetry types that allow defining
and creating data components and their metadata.

The MCT platform provides a policy system that allows
control over the CRUD (create, read, update, and delete)
aspects of the site policy. The policy system controls which
views are available on which component types, view
ordering, and composition (the embedding of components
into other components).

The DataProvider service gets streams of data (“data feeds”)
identified by feed IDs. Typically, feeds are streams relayed
from a monitored vehicle. However, MCT’s component
architecture can support various feed types, such as for
scaling to large amount of data or to accommodate for new
data formats and heterogeneous types, by plugging in a new
DataProvider component. Components have been written to
support both near-real-time data and archived data
(preserved from previous missions), simulation, and
predictive data. Predictive data is typically generated using
archived samples and scientific models and serves to
anticipate a flight failure event.

DataProvider interfaces handle data asynchronously and use
a standard interprocess communication mechanism such as
TCP Sockets or RESTful Web Services. Each data provider
component is identified by a “feed ID,” and an MCT core
service aggregates the feeds for display in MCT
components. Thus in the preceding discussion, feed
provider components can simultaneously provide near-real-
time, simulated, archived, and predictive data.

The MCT object sharing mechanism allows a component to
be shared with any other MCT user. Direct sharing involves
dragging a set of components into a drop box. The drop
gesture makes the component available to the user (or set of
users, depending on the drop target) for viewing or
modifying based on policy, and also changes the object’s
state “shared.” Once a component becomes shared,
modifications to the state of the component (including the
persistent state of its views) require coordination to prevent
issues such as lost updates. MCT currently supports the
ability to unlock an object for exclusive writing (pessimistic
locking) wherein the object is unavailable for editing until
the lock is released. The common work practice is to do
most development in a user’s private sandbox prior to
sharing objects (specifically for building displays that are
destined for certification for shared use). The object sharing
mechanism is implemented by polling the database for
updates, maintaining “dirty” markers, sending component
updates over the network, and remotely invoking a refresh
on the GUI element for that component.

MCT also offers tagging and labeling. The tagging
mechanism allows attaching attributes to components. This
is employed in control center workflows such as a
certification workflow.

The labeling mechanism allows flight controllers to
abbreviate and shorten labels while ensuring consistency in
the computation of the abbreviation. MCT has a user-
customizable labeling algorithm for plot legends and tabular
alpha display views. MCT’s labeling is automated,
eliminating manual verification of each label resulting in
predictable abbreviations.

3. DESIGNING FOR FLEXIBILITY
The pioneers of patterns in software development defined
patterns for user interfaces such as patterns Window per
Task and Standard Panes [2]. The software community
adopted these patterns as best practices because they
promoted consistent user navigation experience. As the set
of patterns grew, they were classified and defined in ways to
make it easy for software developers to find and use.

On such classification is where they are used. Patterns may
be used in the application domain—in our case, flight
operations—or in the solution domain. When we look at the
domain of the solution we are looking at the internal
structure of the software, and are reflecting primarily
software-centric concerns. Patterns in the solution domain
include idioms that are related to specific programming

 3

languages, architectural designs, and design patterns (these
are smaller in scope than architectural designs) [2]. In our
world, the application domain is that of the flight controller.
Their daily processes include user-centric patterns that can
be captured, implemented and enforced via the application
platform. For example, a flight controller who needs to
certify a display uses peer reviews and group lead
verifications, and passes along the display to users in "drop
boxes". This workflow and its drop boxes were captured in
our software.

Software-centric Patterns
MCT is no different than other product development efforts,
in that software patterns are adapted based on what is
appropriate for the product. In order to achieve flexibility,
design pattern definitions usually introduce additional levels
of indirection, which in many cases complicate the resulting
design pattern. In real-world applications, using all elements
of a pattern can unnecessarily complicate an implementation
and hurt performance. Invariably MCT’s implementations
of design patterns are modified so they are the simplest,
most testable solutions.

Dynamic Capabilities Ensure Extensibility—MCT employs
a modified form of the Extension Interface pattern to define
capabilities for a component type. The focus of Extension
Interface [3] is to engineer a class that supports additional
methods or services. Clients query the object first to
determine if it supports an extension before attempting to
use that extension. Normally, a class is extended by
subclassing and adding methods to the derived class.
Extension Interface provides extensibility without compile-
time subclassing. It allows multiple interfaces to be
implemented by a component, while preventing bloating of
interfaces and breaking of client code when developers
extend or modify the functionality of the component.

A full implementation of the Extension Interface pattern
would have added unnecessary levels of indirection, and
unneeded objects. Thus MCT’s Capability implementation
uses a simple Capability extended interface that gets the job
done. Figure 2 shows an MCT Component with its
Capability API. The client may query the component before
using an extended interface.

Figure 2 – Dynamic Capabilities

MCT Capabilities are not always known at compile time,
either because they are dynamic, or because the component
has not yet been defined. For example, an MCT component
has an Initializer capability at the beginning of its lifecycle
and then no longer. Also an MCT component may be up-
datable—or not—at various times during its lifecycle. The
MCT Capability interface has the getCapability() method
that takes a generalized capability object as input and
returns a specific capability class. Referring to the above
example, if a component is presently updatable, it will
return the Updatable class.

MCT provides an extensible component architecture,
therefore the APIs and capabilities of a component will be
defined both in the platform and also as part of the
unanticipated consequences of extending the platform.
Requiring the component implementation class to
implement a specific interface results in component code
that contains multiple concerns and quickly becomes
difficult to maintain. Instead, the MCT component API
defines a getCapability() API where components can return
instances of interface implementations if the capability is
supported. This allows component authors to cleanly
separate concerns.

Context-aware Objects Implement Flexible Policies and
Menus—To ensure that MCT meets the security
requirements of all our customers, we built an extensible
context-aware policy management system to control access
for user actions—in particular, the user actions that are
access-controlled include object inspection, modification,
and creation. We have implemented policy injection points
before execution of these user actions. The policy
management system maintains a map of policies. A policy
must implement our policy interface, which requires a
policy to take a context and then returns a Boolean. A
context is an object that contains information for executing
the policy. Such information includes items such as the
objects to be changed and the purpose for the change. A
policy is stateless and must be reusable in a different

 4

context. On top of the policies, the policy manager
maintains a list of policy categories. A policy category
corresponds to a user action, and it contains a list of policies
to execute for this user action. The execution is
implemented using a variant of the Chain of Responsibility
pattern [10]. For a given context, a user action is granted
when all policies return true. Figure 3 illustrates the policy
execution flow. Each circle represents a policy, and the
policy manager executes a list of policies registered for a
policy category. A solid green circle means the execution of
that policy returns true; red means otherwise. The gray
circle illustrates a policy that was not executed. The first
scenario illustrates a failed case, while the second illustrates
a successful case. Policy execution fails when the first
policy returns fails. The implementation of a policy must be
context-free and must not depend on the execution results
and sequence of other policies.

Figure 3 – Policy Execution Flow

Figure 4 – Context-Aware Policy

Figure 4 shows a PolicyManager providing the execute()
API. The execute() call returns false unless the policy
decision is supported by all the context elements, including
the action, the target, and the policy context. For example, a
flight controller may want to edit the display name of a
symbol, and site policy dictates that only group lead
controllers have edit capabilities. The policy context defines
the role of the flight controller, the type of component to be
edited (this is the target), and the action which in this case is
to lock the component. If the policy returns true, the lead
controller locks the component, makes the edit and then
unlocks the component. Note that in the locked state, we
make an editable clone of the component, and upon
completion we merge the changes back to the component.

We use context-aware objects in a similar manner to
implement dynamic menus. Each MCT menu item is
defined with its action list. Whether a menu item is enabled
and displayed depends on the action and the menu context.
For example, if a component is displayed in a directory tree,
its “delete” menu item is disabled, whereas if the same
component is displayed in a composition canvas, the delete
menu item and its action are enabled. Policy decisions can
be injected into the dynamic menu design; for example, a
menu item may be enabled only for users in the group lead
role. The menu facility can operate on individual menu
items, submenus, or entire menus.

Using Aggregation Ensures Scalability—The Observer
pattern defines a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically. As described in the
overview, MCT implements object sharing by invoking a
refresh on displays whose components have been identified
as dirty and needing refresh. This uses the basic Observer
pattern. Observer is also used by OSGi Services for service
discovery and resolution [9]. In this design, the client
registers its need for services into the framework, and the
available services monitor the framework for all clients
interested in that service. In the context of MCT,
components register themselves as listeners with the OSGi
framework, and other services discover these requests. The
benefit of this software design is extensibility: MCT
components can communicate, while they are loosely
coupled.

However, since Observer defines a one-to-many
dependency between objects whereby dependents are
notified and updated automatically, it is not used for MCT’s
data feed displays (feed views). If MCT’s feed updates were
implemented using Observer, MCT would not scale because
feed states change constantly and the number of MCT feed
views is unlimited. In other words, Observer is an anti-
pattern for MCT feed updates. Instead, MCT uses a feed
aggregator service to provide data to MCT views. In our
implementation shown in Figure 5, MCT implements a
single class FeedAggregatorService which services a set of
FeedProvider clients. FeedAggregatorService also prepares
aggregated data suitable for painting to MCT visual
components. A SwingWorker thread gets the data from
FeedAggregatorService and dispatches the data to each
view. Because it can federate feed providers,
FeedAggregatorService supports regulated painting
performance; MCT’s GUI components can incrementally
slow the paint calls or speed them up to adjust for loads.

 5

Figure 5 – Feed Aggregator Ensures Scalability

FeedAggregatorService employs Chain of Responsibility
pattern to determine which feed provider can handle a
request for data. Each FeedProvider registers itself with a
service level indicating its speed of retrieval, for example
whether the speed is fast (real time) or slow (indicating the
data is archival) and FeedAggregatorService examines the
service level request and compares it to its current list of
FeedProvider handlers. If the service level request can be
satisfied, this provider is used. Otherwise
FeedAggregatorService inspects the service levels of other
providers to determine if they can be used. A chained
pattern simplifies the overall design, because a provider
doesn’t have to keep provider references and only needs to
be aware of its own data service capability. Another benefit
of chained responsibility is that data services can be added
or removed dynamically simply by adding or removing feed
providers; the order of chaining can also be altered to affect
the aggregated data service.

User-Centric Patterns and Processes
The mission control workplace has dozens of people
processes or workflows. Capturing these processes into
software adds value. In fact, the process of formally
defining and capturing the process for the first time adds
value. Invariably, capturing a people process into software
means that the software is enforcing site workflow steps,
ensuring higher quality and consistent workflows with more
predicable results.

As the MCT team worked with our customers, we
implemented site workflows into the software in several
areas. Some work practices we captured include introducing
a full symbol taxonomy, loading viewable symbol metadata,
tagging metadata to mission control activities, and certifying
components. This paper describes one of these processes,
certification, in detail.

The mission control’s Certification Workflow is needed to
verify that displays and their data can support mission
critical needs. Typically a new display is introduced by a
lead flight controller, then another lead flight controller
certifies the display by a number of workflow steps such as
using it in a flight simulation.

The goal of certification involves verifying that the right
labels are applied, that data formatting is correct, and that
visual composition and layout meet the needs of the flight
activity. For example, a verifier checks that a Battery Power
group contains relevant battery symbols with valid unit
definitions. The verifier ensures that data values are
displayed in an intuitive layout, with data formatting
appropriate to the data type (for example, a date or real
number with a precision of 3). The verifier also ensures that
data elements are labeled in a human-interpretable way.

In a basic mission control IT infrastructure, display layouts
and data formats are defined using text files. Each
application has its own display-formatting language. The
lead flight controller designs these displays and layouts by
editing text files, and copying the file into place. The
displays are sometimes customized for a particular vehicle
or flight, so the text files may be renamed and tweaked. The
result is a proliferation of displays, each of which needs to
be certified. Once a display is verified, it enters the control
center’s Certification Workflow for peer review and
approval.

With MCT, the layouts are done within the application
using graphical drag-and drop-and in-place edits. The data
types are defined along with the telemetry, reducing errors
in data formatting, and the labels are stored with each piece
of telemetry. MCT’s labeling algorithm improves safety,
because it guarantees that all the pieces of the telemetry's
official name are visible somewhere near that telemetry’s
value—adjacent to the value, or as part of it in a column or
row header or panel or window title. The legacy
applications rely on users to manually type labels that meet
that criterion. Nevertheless, NASA missions require
certification of all displays, therefore we captured the
control center’s certification workflow and implemented it
with MCT components.

MCT’s Certification Workflow provides tools that use MCT
“dropbox” and “tagging” features to implement certification
workflow. A dropbox is a collection component that is
shared. When a component is dropped into it, the dropped
component becomes visible to users with privileges to see
inside that dropbox. The MCT tagging feature (tagging can
be a GUI gesture or programmatic) attaches properties to
MCT components. When a flight controller creates a display
in anticipation of a new mission and needs to have it
certified, he drops it into a collection named “Ready for
Peer Review.” The action of dropping that component tags
the component with the property “Ready for Peer Review,”
and makes that object read-only. When a peer user decides
that object is verified, he tags it as “Ready for Approval.”
This GUI gesture automatically removes that object from
the “Ready for Peer Review” collection, and adds it to the
“Ready for Approval” collection. The workflow continues
until the object is in a “Certified” collection.

With MCT, a piece of telemetry can be viewed as an object,
and a display can be viewed as a collection of references to
those objects. Because the same telemetry object can be

 6

referenced in many display collections, a change in one
telemetry object is reflected in all display collections
referencing that object. MCT’s component model supports
this inherently; therefore when a component is certified
once, in one place, it is certified throughout. This not only
speeds up the process of certification, but also provides
additional safety as the mapping is only required in a single
place rather than for each display.

Because tags are persisted with the component, MCT now
can differentiate between certified and uncertified
components. Uncertified components might be accessible in
a training activity or a simulation, but mission-critical
activities will accept only certified displays. The software
enforces this in a way that was not possible with the legacy
applications. The architectural elements of tagging and
object sharing are integrated into the MCT platform, and are
implemented with persistence and concurrency protection
such as locks when an object is edited by one user. Objects
are shared across the cluster of MCT instances, so a change
to a component in one MCT instance will be available to
update that component in all MCT instances.

4. DESIGNING FOR STANDARDIZATION
An important goal of MCT is to standardize both the user
experience and the underlying code. The following sections
describe standardization of MCT's visual displays,
component design, and computations.

Standardization of Visual Components
Flight controllers monitor thousands of signals, and are
trained in pattern recognition to differentiate between
normal data and data that contain aberrations. Without
standardized displays, their ability to see patterns is reduced.
Flight controllers arrange data tables and plots into logical
groupings to aid in visual monitoring. Consistency across
views ensures that alert icons are the same across
components, and that menu item locations are consistent.

Mission control center activities change often, with new
flights and equipment, training and simulation activities,
and flight following test runs. To support this, existing
displays need to be modified and new displays need to be
introduced. Thus the IT infrastructure needs to support
display composition and reconfiguration, such that the
resulting displays are consistent, easy to read, and have a
comfortable, pleasant look and feel.

Applications developed with MCT platform can provide
rapid user composition of displays that are unified and
consistent. User composition empowers flight controllers to
make rapid changes to visualizations, within the constraints
of organizational specified polices, without the need for
code changes.

We ensure consistency between MCT visual components in
a number of ways. Each component has consistent default
views; for example, an Alpha View is the same across

diverse components. Component-specific menu items are
added using MCT’s dynamic menu feature, and access to
components is enforced using our policy manager.

MCT employs the Composite design pattern [8], which
allows building structures of objects in the form of trees that
contain both compositions of objects and individual objects
as nodes. Using Composite, the same operations can be
applied over both collections and individual objects. In other
words, in most cases we can ignore the differences between
compositions-of-objects and individual objects; the MCT
designers say that in MCT “a thing is a thing.”

Standardization of Component Development
When a need is not met by the core components shipped
with MCT, an MCT developer designs and writes a new
component. MCT employs the well-known Model View
Controller (MVC) pattern within each component, thus our
component design can be considered an MVC micro-
architecture. Because MCT component developers are
familiar with the pattern, they have a shorter learning curve.

To create a new component, an MCT component developer
may choose to modify an existing MCT component. When
this approach is used, the developer may need to redefine
only the model part—the part that is unique to his
application needs. The developer may redefine the default
views for an existing component, or write a new view and
attach it to an existing MCT component. An MCT
component developer defines a new component type by
implementing the ComponentProvider interface.
ComponentProvider allows a component type to be defined
and a new component instance to be registered in an
application instance. The MCT platform ships with other
visual controls in addition to default component views, such
as status indicators and menus. When an MCT developer
defines a new component type, he also defines its menu
items and the actions associated with each menu item. The
new menu items and their actions automatically are added to
MCT’s menu definitions.

Importantly, the component developer can use MCT
policies to provide access control to the new component.
For example, site policy may dictate that view edits can only
be performed by a lead flight controller. Thus if the current
user is not in the lead flight controller role, the policy is
enforced by disabling and graying out the menu item. The
policy manager, described elsewhere in this document, is
capable of controlling many platform concerns, not just
menus. Examples include definitions of workflows and
support of “locked down” mode.

As mentioned in the introduction, an MCT component is
packaged as an OSGi bundle. An OSGi bundle may
implement a set of services, consume services, or do both.
The OSGi Service architecture prescribes using OSGi
Services as the preferred method to communicate between
bundles. Accordingly, MCT uses OSGi services extensively
to communicate between MCT components. This facilitates

 7

loose coupling, as MCT components do not hold a hard
reference to other MCT components; rather, they hold a
service reference. OSGi Services are used to export
functionality from one MCT Component to another MCT
component, and to import functionality from other
components. MCT’s core set of components communicate
using dozens of services; some of these are DataProvider,
EventProvider, FeedAggregator, and Evaluator (described
later in this paper).

A component packaged as an OSGi bundle enjoys all the
benefits of OSGi deployment. Classpath isolation is the
ability to have a unique classpath for each bundle to prevent
conflicting class versions. Classpath isolation is particularly
useful in solving the “transient dependency” problem.
Suppose your application depends on dozens of libraries,
which in turn depend on dozens of other libraries. The
secondary dependencies, called transient dependencies, may
include different versions of the same library. Without
OSGi and therefore with a single class loader, a single
version of the other may be loaded for the entire application,
creating a situation in which some primary dependencies
resolve with the correct transient dependency but others
resolve with the incorrect version. Typically this version
incompatibility manifests in runtime problems (which can
be tough to debug!). With OSGi, MCT component
developers are free to introduce their own bundles
independent of other MCT bundles.

Standardization of Data Computations
Mission-critical calls are made with computed signals,
called computationals. An original vehicle signal may be
computed into a new signal, or signals may be interpreted
for display on the control monitor. Because mission-critical
calls are based on computationals, it is critical to control
how they are defined. However, control centers may not
always do an optimal job at standardizing computationals,
since these computations have disparate origins and
implementations.

At the vehicle or equipment manufacturer, the hardware
back-plane originates the signal. These definitions are
shipped to NASA and are version controlled in a database.
These signal definitions may be associated with equipment-
originated “enumerations” that translate a signal value into a
semantic meaning; for example, a particular symbol’s value
of 7 may be associated with the string “STANDBY
VALID.” Another type of ground computation is
mathematical, whereby one or more signal values are put
through a function. Additionally, some calculations require
multiple signal inputs; for example, two discrete signals
could be used in combination to determine the output
enumeration such as “ON” or “OFF.” With MCT we created
a singled component type, EvaluatorComponent, to handle
all these computational types.

At our customer’s site, computationals were handled with
various legacy software implementations, at various layers
in the infrastructure. Although the equipment-originated

enumerations were stored in a database, they were not rolled
out into the mission control center. Also, since each user
application provides its own implementation of
enumerations, enumeration definitions are stored in local
files. Furthermore, execution of mathematical calculations is
done by user applications (rather than a centralized server),
and these applications are maintained independently by
various flight control disciplines. As the IT infrastructure
matures, it is desirable to move computation execution to a
centralized server, to roll equipment-originated
enumerations into the control center, and to define
evaluations in a central database. The MCT framework is
not being used to implement a centralized computational
server, instead our customer plans to add a computational
server with their next network upgrade. MCT is being used
to roll out equipment-originated enumerations and to
consolidate evaluation definitions for all components.

The EvaluatorComponent is able to implement equipment-
originated computations and to replace legacy display
computations. An evaluator component provides persistent
storage and a flexible creation wizard to allow incorporation
of arbitrary execution engines. The evaluator component
provides a common interface for integration, and provides a
Service Provider Interface (SPI) for execution engine
developers to add language bindings and even enhanced
editors. This is conceptually similar to the mechanism used
to support dynamic execution languages in Java SE.

EvaluatorComponent is an MCT component that has an
Evaluator capability (see Figure 6). An Evaluator has an
Executor object associated with it. Executor requires the
evaluate() API which takes a set of input signals from data
feeds. Executor also defines an API to accommodate
computations that require multiple signal inputs. MCT
evaluators use language contexts. Employing elements of
the Interpreter Pattern [10], the evaluators interpret context-
sensitive language elements into code solutions. Languages
are defined for each type of enumeration, such as an
equipment-originated enumeration or a user-defined
enumeration.

 8

Figure 6 – Evaluator parameterizes execution

The executor interface is implemented by classes that can
execute evaluations, so any class that wishes to assume the
role of an executor can implement this interface. This design
employs an element of the Command Pattern [4], in that we
are encapsulating a request as an object, thereby letting us
parameterize clients with different requests. In other words,
we are allowing MCT Components with an executor role to
assume responsibility for certain executions. Similarly
because MCT defines an evaluator interface, a customer can
“swap in” a new evaluator by writing an MCT component
that implements the interface, and associating this new
component with certain telemetry components. The end
result of this flexible design is lower cost of introducing
new evaluative elements into the control center. And with
OSGi these elements can be introduced simply by adding a
.jar file.

5. SUMMARY
Beginning in 2010, MCT is running in on our customer's
control center at JSC. Flight controllers are using MCT in
simulations and flight following. The time to create large
displays (“mega-displays”) is significantly lower, and
because labels are standardized, display certification costs
are lower. At other customer sites, the MCT developer
platform is being used to create operational software for
small satellite operations.

Optimized applications become strategic investments. In
mission operations where space vehicles and their hardware
get central focus, an IT infrastructure may be considered an
afterthought. However, a rational approach considers IT
infrastructure and software applications to be strategic
enablers to the business of space ops, and integral with
business productivity investments. At their fullest, mission
operation centers with a dynamic infrastructure are fully
aware of the strategic value their infrastructure provides in
helping them run the business efficiently and staying ahead
of competitors. Costs are controlled because the inventory
of applications is decreased—instead of hundreds of
applications in a flight control center, the replacement is a
small inventory of applications that are managed with
mature policies. The center purchases only the software and
licenses that support this inventory.

When processes are fully automated, operational costs can
be reduced because error-prone manual processes are
captured in the software. Results can be audited and version
controlled. Similarly, when software changes are needed to
accommodate mission control reconfigurations, costs of
software ownership can be controlled because fewer manual
steps are involved. Also, the benefits of implementing new
features needed to take on new business opportunities begin
to outweigh the incremental costs of making those software
changes.

REFERENCES
[1] D. Barney. “Infrastructure Optimization for IT.”

Redmondmag.com, January 2008.
http://redmondmag.com/features/article.asp?editorialsid=
2394.

[2] F. Buschmann et al. Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. Wiley &
Sons, 1996.

[3] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, Volume 2:
Patterns for Concurrent and Networked Objects. Wiley &
Sons, 2000.

[4] E. Freeman, E. Robson, B. Bates, and K. Sierra (2004).
Head First Design Patterns. O’Reilly Media, 2004.

[5] J. Trimble and J. Walton. “Mission Control Technologies:
A New Way of Designing and Evolving Mission
Systems.” In SpaceOps 2006 Conference. AIAA 2006.

[6] J. Trimble and A. Crocker. “A Flexible Evolvable
Architecture for Constellation Mission Systems User
Applications.” In SpaceOps 2008 Conference. AIAA
2008.

[7] J. Trimble and A. Crocker. “Reinventing User
Applications for Mission Control.” In SpaceOps 2010
Conference. AIAA 2010.

[8] C. Lasater. Design Patterns. Wordware Publishing, 2006.

[9] Knopflerfish OSGi Tutorials.
http://www.knopflerfish.org/tutorials.html

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, 1995.

 9

BIOGRAPHIES
Irene Skupniewicz Smith’s role on
the NASA MCT project includes
integration with telemetry, the
mission control data service, and
deployment related aspects of
object sharing and database.
When she first came to NASA she
added an SSL security layer to the
Mars Exploration Rover
situational awareness product.

Before NASA she was at Hewlett-Packard as a software
engineer, where she coded on teams for a just-in-time
inventory management database system, a financial
security policy management product, and HP’s Java Lab.
Prior to HP, Irene worked for Westinghouse in factory
automation, programming automation tools. She has a
masters in EE from Carnegie Mellon University.

Nija Shi has been a software
developer in the Mission Control
Technologies project at NASA’s
Ames Research Center since 2008.
Her primary focus is on policy
management and the architecture
of MCT. Before joining NASA, she
was a principal member of
technical staff at the Server

Technologies division of Oracle. While at Oracle she
worked on JDeveloper 11g, a free integrated development
environment that simplifies the development of Java-
based SOA applications and user interfaces with support
for the full development life cycle. Prior to Oracle, she
interned at the Lawrence Livermore National Lab during
2004-2005, where she participated in the development of
Babel, a tool for mixing C, C++, Fortran77, Fortran90,
Python, and Java in a single application, and CALE, a
2D ALE hydrodynamics computer simulation program.
She received her Ph.D. in Computer Science from the
University of California, Davis in 2007. Her dissertation
was on the reverse engineering of design patterns from
Java source code.

Christopher Webster is a
Computer Scientist working for
the Mission Control Technologies
project at NASA’s Ames Research
Center. He focuses on MCT
architecture, performance, and
developer APIs. Prior to NASA,
Chris was a senior staff engineer
at Sun Microsystems serving as

lead engineer for Project zembly, the code in the cloud
development and transparently scalable deployment
environment (for web-based widgets including Facebook
applications). He has also been the technical lead for the
NetBeans XML tools project, a core member of the SOA
development team, and was fundamental in getting Java
EE support into NetBeans. Chris is an author of the
NetBeans Field Guide and Assemble the Social Web With
Zembly. Chris also worked as a computer scientist for the
Lawrence Livermore National Laboratory, leading an
effort to bring atmospheric dispersion modeling and
visualization outside the data center as part of the
National Atmospheric Release Advisory Center. He is a
founder of jexamples.com, a search site dedicated to
semantically correct searching for Java code examples
mined from open source projects.

Chris currently holds three patents and has more than
seven patents pending. He has been a speaker at Java
One, Community One, Sun Tech Days, and the Server
Side Symposium. He has a Master’s degree in Computer
Science from Baylor University and a Bachelors of
Science in Computer Science from the University of
Hawaii, Hilo.

