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Abstract—Flight controllers in NASA’s mission control centers 
work day and night to ensure that missions succeed and crews 
are safe. The IT goals of NASA mission control centers are 
similar to those of most businesses: to evolve IT infrastructure 
from basic to dynamic. This paper describes Mission Control 
Technologies (MCT), an application platform that is powering 
mission control today and is designed to meet the needs of 
future NASA control centers. MCT is an extensible platform 
that provides GUI components and a runtime environment. 
The platform enables NASA’s IT goals through its use of 
lightweight interfaces and configurable components, which 
promote standardization and incorporate useful solution 
patterns. The MCT architecture positions mission control 
centers to reach the goal of dynamic IT, leading to lower cost 
of ownership, and treating software as a strategic investment. 
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1. INTRODUCTION 

NASA’s Mission Control Center (MCC) at Johnson Space 
Center in Houston is operated day and night, ensuring that 
scientists and specialists aboard the International Space 
Station (ISS) remain safe. ISS flight controllers currently 
rely on over a thousand separate software applications 
developed over the years to perform specific monitoring and 
control functions. At other mission control centers at 
NASA’s Ames Research Center and the Jet Propulsion 
Laboratory in California, flight controllers are similarly 
controlling small satellites and autonomous rovers. 

Mission Control Technologies (MCT) is software designed 
to power mission control centers in NASA today and into 
the future. MCT must support high system availability, 
composition, and certification of flight controller designed 
components; and rapid reconfigurability of equipment in the 
control center. The MCT platform architecture enables these 
goals through its use of lightweight interfaces and loosely 
coupled components. 

Our customers’ goals are similar to those of most 
businesses: to evolve their infrastructure from basic to 
dynamic. Dynamic infrastructure is a goal of a mature IT 
organization model put forth by Microsoft and others [1]. In 
the context of space operations, a dynamic infrastructure can 
support missions and simulations concurrently, will 
accommodate data migrations such as changes to telemetry 
streams, and can readily support the next generation of 
vehicles. Applications written via the MCT platform help 
move the MCC toward this goal by providing software 
standardization, software reconfigurability, rapid 
certification, and by capturing operation patterns (best 
practices, business processes). Reaching the goal of 
dynamic infrastructure means lower cost of ownership, and 
software as a strategic investment. 

While these are the MCT platform’s goals, it also has 
clearly defined “non-goals.” MCT is designed to be an 
extensible application platform, but not to provide IT 
infrastructure services such as identity management, data 
protection and data recoverability. 

2. ARCHITECTURE OVERVIEW 
MCT [5, 6, 7] is organized around “user objects” that are 
designed to mirror the data and behavior of their real-world 
counterparts. An MCT user object is referred to as an “MCT 
component.” Some examples of components are telemetry 
elements, procedures, commands, physical parts such as 
pumps or batteries, and collections of other MCT 
components. An MCT collection component contains other 
MCT components; MCT displays are compositions of views 
of these components. 

An MCT component is implemented as an OSGi (Open 
Service Gateway Initiative) [4] bundle. OSGi provides Java 
classpath isolation, version support, and a service model. 
Additionally, the OSGi service programming model isolates 
faults in specific code bundles that can be handled 
generically in the platform. Finally, OSGi provides the 
ability to dynamically deploy software bundles, allowing a 
patch to be applied to a running system. 

The MCT platform uses several persistent stores, as shown 
in Figure 1. A MySQL relational database serves as the 
internal storage mechanism. The database stores the 
component models and the relationships between 
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components, as well as the persistent view information. 
Database replication provides read availability during 
failure of the master (write) instance. The database contains 
information about the user objects but not telemetry values. 
Real-time telemetry values are buffered in a local embedded 
Oracle Sleepycat Berkeley database and are used to 
populate short-term historical values on plots. MCT serves 
to combine multiple disparate data sources. For example, 
during spacecraft operations MCT combines telemetry 
metadata, real-time data and archive data stores for the 
telemetry values. 

 

Figure 1 – MCT Application Platform 
 

MCT provides a metadata service. Metadata is information 
about the data symbols, such as units and calibration. 
Metadata data stores can be quite large. Furthermore, 
metadata may be frequently managed and revised; for 
example, when a new instrument is added to a vehicle, a 
new set of sensors may be added. Telemetry components 
can be written for future telemetry types that allow defining 
and creating data components and their metadata. 

The MCT platform provides a policy system that allows 
control over the CRUD (create, read, update, and delete) 
aspects of the site policy. The policy system controls which 
views are available on which component types, view 
ordering, and composition (the embedding of components 
into other components). 

The DataProvider service gets streams of data (“data feeds”) 
identified by feed IDs. Typically, feeds are streams relayed 
from a monitored vehicle. However, MCT’s component 
architecture can support various feed types, such as for 
scaling to large amount of data or to accommodate for new 
data formats and heterogeneous types, by plugging in a new 
DataProvider component. Components have been written to 
support both near-real-time data and archived data 
(preserved from previous missions), simulation, and 
predictive data. Predictive data is typically generated using 
archived samples and scientific models and serves to 
anticipate a flight failure event. 

DataProvider interfaces handle data asynchronously and use 
a standard interprocess communication mechanism such as 
TCP Sockets or RESTful Web Services. Each data provider 
component is identified by a “feed ID,” and an MCT core 
service aggregates the feeds for display in MCT 
components. Thus in the preceding discussion, feed 
provider components can simultaneously provide near-real-
time, simulated, archived, and predictive data. 

The MCT object sharing mechanism allows a component to 
be shared with any other MCT user. Direct sharing involves 
dragging a set of components into a drop box. The drop 
gesture makes the component available to the user (or set of 
users, depending on the drop target) for viewing or 
modifying based on policy, and also changes the object’s 
state “shared.” Once a component becomes shared, 
modifications to the state of the component (including the 
persistent state of its views) require coordination to prevent 
issues such as lost updates. MCT currently supports the 
ability to unlock an object for exclusive writing (pessimistic 
locking) wherein the object is unavailable for editing until 
the lock is released. The common work practice is to do 
most development in a user’s private sandbox prior to 
sharing objects (specifically for building displays that are 
destined for certification for shared use). The object sharing 
mechanism is implemented by polling the database for 
updates, maintaining “dirty” markers, sending component 
updates over the network, and remotely invoking a refresh 
on the GUI element for that component. 

MCT also offers tagging and labeling. The tagging 
mechanism allows attaching attributes to components. This 
is employed in control center workflows such as a 
certification workflow. 

The labeling mechanism allows flight controllers to 
abbreviate and shorten labels while ensuring consistency in 
the computation of the abbreviation. MCT has a user-
customizable labeling algorithm for plot legends and tabular 
alpha display views. MCT’s labeling is automated, 
eliminating manual verification of each label resulting in 
predictable abbreviations. 

3. DESIGNING FOR FLEXIBILITY 
The pioneers of patterns in software development defined 
patterns for user interfaces such as patterns Window per 
Task and Standard Panes [2].  The software community 
adopted these patterns as best practices because they 
promoted consistent user navigation experience.  As the set 
of patterns grew, they were classified and defined in ways to 
make it easy for software developers to find and use. 
 
On such classification is where they are used. Patterns may 
be used in the application domain—in our case, flight 
operations—or in the solution domain. When we look at the 
domain of the solution we are looking at the internal 
structure of the software, and are reflecting primarily 
software-centric concerns. Patterns in the solution domain 
include idioms that are related to specific programming 
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languages, architectural designs, and design patterns (these 
are smaller in scope than architectural designs) [2].  In our 
world, the application domain is that of the flight controller. 
Their daily processes include user-centric patterns that can 
be captured, implemented and enforced via the application 
platform. For example, a flight controller who needs to 
certify a display uses peer reviews and group lead 
verifications, and passes along the display to users in "drop 
boxes".  This workflow and its drop boxes were captured in 
our software. 

Software-centric Patterns 
MCT is no different than other product development efforts, 
in that software patterns are adapted based on what is 
appropriate for the product. In order to achieve flexibility, 
design pattern definitions usually introduce additional levels 
of indirection, which in many cases complicate the resulting 
design pattern. In real-world applications, using all elements 
of a pattern can unnecessarily complicate an implementation 
and hurt performance. Invariably MCT’s implementations 
of design patterns are modified so they are the simplest, 
most testable solutions. 

Dynamic Capabilities Ensure Extensibility—MCT employs 
a modified form of the Extension Interface pattern to define 
capabilities for a component type. The focus of Extension 
Interface [3] is to engineer a class that supports additional 
methods or services. Clients query the object first to 
determine if it supports an extension before attempting to 
use that extension. Normally, a class is extended by 
subclassing and adding methods to the derived class. 
Extension Interface provides extensibility without compile-
time subclassing. It allows multiple interfaces to be 
implemented by a component, while preventing bloating of 
interfaces and breaking of client code when developers 
extend or modify the functionality of the component. 

A full implementation of the Extension Interface pattern 
would have added unnecessary levels of indirection, and 
unneeded objects. Thus MCT’s Capability implementation 
uses a simple Capability extended interface that gets the job 
done. Figure 2 shows an MCT Component with its 
Capability API. The client may query the component before 
using an extended interface. 

 

Figure 2 – Dynamic Capabilities 
 

MCT Capabilities are not always known at compile time, 
either because they are dynamic, or because the component 
has not yet been defined. For example, an MCT component 
has an Initializer capability at the beginning of its lifecycle 
and then no longer. Also an MCT component may be up-
datable—or not—at various times during its lifecycle. The 
MCT Capability interface has the getCapability() method 
that takes a generalized capability object as input and 
returns a specific capability class. Referring to the above 
example, if a component is presently updatable, it will 
return the Updatable class. 

MCT provides an extensible component architecture, 
therefore the APIs and capabilities of a component will be 
defined both in the platform and also as part of the 
unanticipated consequences of extending the platform. 
Requiring the component implementation class to 
implement a specific interface results in component code 
that contains multiple concerns and quickly becomes 
difficult to maintain. Instead, the MCT component API 
defines a getCapability() API where components can return 
instances of interface implementations if the capability is 
supported. This allows component authors to cleanly 
separate concerns. 

Context-aware Objects Implement Flexible Policies and 
Menus—To ensure that MCT meets the security 
requirements of all our customers, we built an extensible 
context-aware policy management system to control access 
for user actions—in particular, the user actions that are 
access-controlled include object inspection, modification, 
and creation. We have implemented policy injection points 
before execution of these user actions. The policy 
management system maintains a map of policies. A policy 
must implement our policy interface, which requires a 
policy to take a context and then returns a Boolean. A 
context is an object that contains information for executing 
the policy. Such information includes items such as the 
objects to be changed and the purpose for the change. A 
policy is stateless and must be reusable in a different 
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context. On top of the policies, the policy manager 
maintains a list of policy categories. A policy category 
corresponds to a user action, and it contains a list of policies 
to execute for this user action. The execution is 
implemented using a variant of the Chain of Responsibility 
pattern [10]. For a given context, a user action is granted 
when all policies return true. Figure 3 illustrates the policy 
execution flow. Each circle represents a policy, and the 
policy manager executes a list of policies registered for a 
policy category. A solid green circle means the execution of 
that policy returns true; red means otherwise. The gray 
circle illustrates a policy that was not executed. The first 
scenario illustrates a failed case, while the second illustrates 
a successful case. Policy execution fails when the first 
policy returns fails. The implementation of a policy must be 
context-free and must not depend on the execution results 
and sequence of other policies. 

 

Figure 3 – Policy Execution Flow 
 

 

Figure 4 – Context-Aware Policy 
 

Figure 4 shows a PolicyManager providing the execute() 
API. The execute() call returns false unless the policy 
decision is supported by all the context elements, including 
the action, the target, and the policy context. For example, a 
flight controller may want to edit the display name of a 
symbol, and site policy dictates that only group lead 
controllers have edit capabilities. The policy context defines 
the role of the flight controller, the type of component to be 
edited (this is the target), and the action which in this case is 
to lock the component. If the policy returns true, the lead 
controller locks the component, makes the edit and then 
unlocks the component. Note that in the locked state, we 
make an editable clone of the component, and upon 
completion we merge the changes back to the component. 

We use context-aware objects in a similar manner to 
implement dynamic menus. Each MCT menu item is 
defined with its action list. Whether a menu item is enabled 
and displayed depends on the action and the menu context. 
For example, if a component is displayed in a directory tree, 
its “delete” menu item is disabled, whereas if the same 
component is displayed in a composition canvas, the delete 
menu item and its action are enabled. Policy decisions can 
be injected into the dynamic menu design; for example, a 
menu item may be enabled only for users in the group lead 
role. The menu facility can operate on individual menu 
items, submenus, or entire menus. 

Using Aggregation Ensures Scalability—The Observer 
pattern defines a one-to-many dependency between objects 
so that when one object changes state, all its dependents are 
notified and updated automatically. As described in the 
overview, MCT implements object sharing by invoking a 
refresh on displays whose components have been identified 
as dirty and needing refresh. This uses the basic Observer 
pattern. Observer is also used by OSGi Services for service 
discovery and resolution [9]. In this design, the client 
registers its need for services into the framework, and the 
available services monitor the framework for all clients 
interested in that service. In the context of MCT, 
components register themselves as listeners with the OSGi 
framework, and other services discover these requests. The 
benefit of this software design is extensibility: MCT 
components can communicate, while they are loosely 
coupled. 

However, since Observer defines a one-to-many 
dependency between objects whereby dependents are 
notified and updated automatically, it is not used for MCT’s 
data feed displays (feed views). If MCT’s feed updates were 
implemented using Observer, MCT would not scale because 
feed states change constantly and the number of MCT feed 
views is unlimited. In other words, Observer is an anti-
pattern for MCT feed updates. Instead, MCT uses a feed 
aggregator service to provide data to MCT views. In our 
implementation shown in Figure 5, MCT implements a 
single class FeedAggregatorService which services a set of 
FeedProvider clients. FeedAggregatorService also prepares 
aggregated data suitable for painting to MCT visual 
components. A SwingWorker thread gets the data from 
FeedAggregatorService and dispatches the data to each 
view. Because it can federate feed providers, 
FeedAggregatorService supports regulated painting 
performance; MCT’s GUI components can incrementally 
slow the paint calls or speed them up to adjust for loads. 
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Figure 5 – Feed Aggregator Ensures Scalability 
 

FeedAggregatorService employs Chain of Responsibility 
pattern to determine which feed provider can handle a 
request for data. Each FeedProvider registers itself with a 
service level indicating its speed of retrieval, for example 
whether the speed is fast (real time) or slow (indicating the 
data is archival) and FeedAggregatorService examines the 
service level request and compares it to its current list of 
FeedProvider handlers. If the service level request can be 
satisfied, this provider is used. Otherwise 
FeedAggregatorService inspects the service levels of other 
providers to determine if they can be used. A chained 
pattern simplifies the overall design, because a provider 
doesn’t have to keep provider references and only needs to 
be aware of its own data service capability. Another benefit 
of chained responsibility is that data services can be added 
or removed dynamically simply by adding or removing feed 
providers; the order of chaining can also be altered to affect 
the aggregated data service. 

User-Centric Patterns and Processes 
The mission control workplace has dozens of people 
processes or workflows. Capturing these processes into 
software adds value. In fact, the process of formally 
defining and capturing the process for the first time adds 
value. Invariably, capturing a people process into software 
means that the software is enforcing site workflow steps, 
ensuring higher quality and consistent workflows with more 
predicable results. 

As the MCT team worked with our customers, we 
implemented site workflows into the software in several 
areas. Some work practices we captured include introducing 
a full symbol taxonomy, loading viewable symbol metadata, 
tagging metadata to mission control activities, and certifying 
components. This paper describes one of these processes, 
certification, in detail. 

The mission control’s Certification Workflow is needed to 
verify that displays and their data can support mission 
critical needs. Typically a new display is introduced by a 
lead flight controller, then another lead flight controller 
certifies the display by a number of workflow steps such as 
using it in a flight simulation. 

The goal of certification involves verifying that the right 
labels are applied, that data formatting is correct, and that 
visual composition and layout meet the needs of the flight 
activity. For example, a verifier checks that a Battery Power 
group contains relevant battery symbols with valid unit 
definitions. The verifier ensures that data values are 
displayed in an intuitive layout, with data formatting 
appropriate to the data type (for example, a date or real 
number with a precision of 3). The verifier also ensures that 
data elements are labeled in a human-interpretable way. 

In a basic mission control IT infrastructure, display layouts 
and data formats are defined using text files. Each 
application has its own display-formatting language. The 
lead flight controller designs these displays and layouts by 
editing text files, and copying the file into place. The 
displays are sometimes customized for a particular vehicle 
or flight, so the text files may be renamed and tweaked. The 
result is a proliferation of displays, each of which needs to 
be certified. Once a display is verified, it enters the control 
center’s Certification Workflow for peer review and 
approval. 

With MCT, the layouts are done within the application 
using graphical drag-and drop-and in-place edits. The data 
types are defined along with the telemetry, reducing errors 
in data formatting, and the labels are stored with each piece 
of telemetry. MCT’s labeling algorithm improves safety, 
because it guarantees that all the pieces of the telemetry's 
official name are visible somewhere near that telemetry’s 
value—adjacent to the value, or as part of it in a column or 
row header or panel or window title. The legacy 
applications rely on users to manually type labels that meet 
that criterion. Nevertheless, NASA missions require 
certification of all displays, therefore we captured the 
control center’s certification workflow and implemented it 
with MCT components. 

MCT’s Certification Workflow provides tools that use MCT 
“dropbox” and “tagging” features to implement certification 
workflow. A dropbox is a collection component that is 
shared. When a component is dropped into it, the dropped 
component becomes visible to users with privileges to see 
inside that dropbox. The MCT tagging feature (tagging can 
be a GUI gesture or programmatic) attaches properties to 
MCT components. When a flight controller creates a display 
in anticipation of a new mission and needs to have it 
certified, he drops it into a collection named “Ready for 
Peer Review.” The action of dropping that component tags 
the component with the property “Ready for Peer Review,” 
and makes that object read-only. When a peer user decides 
that object is verified, he tags it as “Ready for Approval.” 
This GUI gesture automatically removes that object from 
the “Ready for Peer Review” collection, and adds it to the 
“Ready for Approval” collection. The workflow continues 
until the object is in a “Certified” collection. 

With MCT, a piece of telemetry can be viewed as an object, 
and a display can be viewed as a collection of references to 
those objects. Because the same telemetry object can be 
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referenced in many display collections, a change in one 
telemetry object is reflected in all display collections 
referencing that object. MCT’s component model supports 
this inherently; therefore when a component is certified 
once, in one place, it is certified throughout. This not only 
speeds up the process of certification, but also provides 
additional safety as the mapping is only required in a single 
place rather than for each display. 

Because tags are persisted with the component, MCT now 
can differentiate between certified and uncertified 
components. Uncertified components might be accessible in 
a training activity or a simulation, but mission-critical 
activities will accept only certified displays. The software 
enforces this in a way that was not possible with the legacy 
applications. The architectural elements of tagging and 
object sharing are integrated into the MCT platform, and are 
implemented with persistence and concurrency protection 
such as locks when an object is edited by one user. Objects 
are shared across the cluster of MCT instances, so a change 
to a component in one MCT instance will be available to 
update that component in all MCT instances. 
 

4. DESIGNING FOR STANDARDIZATION  
An important goal of MCT is to standardize both the user 
experience and the underlying code. The following sections 
describe standardization of MCT's visual displays, 
component design, and computations. 

Standardization of Visual Components 
Flight controllers monitor thousands of signals, and are 
trained in pattern recognition to differentiate between 
normal data and data that contain aberrations. Without 
standardized displays, their ability to see patterns is reduced. 
Flight controllers arrange data tables and plots into logical 
groupings to aid in visual monitoring. Consistency across 
views ensures that alert icons are the same across 
components, and that menu item locations are consistent. 

Mission control center activities change often, with new 
flights and equipment, training and simulation activities, 
and flight following test runs. To support this, existing 
displays need to be modified and new displays need to be 
introduced. Thus the IT infrastructure needs to support 
display composition and reconfiguration, such that the 
resulting displays are consistent, easy to read, and have a 
comfortable, pleasant look and feel. 

Applications developed with MCT platform can provide 
rapid user composition of displays that are unified and 
consistent. User composition empowers flight controllers to 
make rapid changes to visualizations, within the constraints 
of organizational specified polices, without the need for 
code changes.  

We ensure consistency between MCT visual components in 
a number of ways. Each component has consistent default 
views; for example, an Alpha View is the same across 

diverse components. Component-specific menu items are 
added using MCT’s dynamic menu feature, and access to 
components is enforced using our policy manager. 

MCT employs the Composite design pattern [8], which 
allows building structures of objects in the form of trees that 
contain both compositions of objects and individual objects 
as nodes. Using Composite, the same operations can be 
applied over both collections and individual objects. In other 
words, in most cases we can ignore the differences between 
compositions-of-objects and individual objects; the MCT 
designers say that in MCT “a thing is a thing.” 

Standardization of Component Development 
When a need is not met by the core components shipped 
with MCT, an MCT developer designs and writes a new 
component. MCT employs the well-known Model View 
Controller (MVC) pattern within each component, thus our 
component design can be considered an MVC micro-
architecture. Because MCT component developers are 
familiar with the pattern, they have a shorter learning curve. 

To create a new component, an MCT component developer 
may choose to modify an existing MCT component. When 
this approach is used, the developer may need to redefine 
only the model part—the part that is unique to his 
application needs. The developer may redefine the default 
views for an existing component, or write a new view and 
attach it to an existing MCT component. An MCT 
component developer defines a new component type by 
implementing the ComponentProvider interface. 
ComponentProvider allows a component type to be defined 
and a new component instance to be registered in an 
application instance. The MCT platform ships with other 
visual controls in addition to default component views, such 
as status indicators and menus. When an MCT developer 
defines a new component type, he also defines its menu 
items and the actions associated with each menu item. The 
new menu items and their actions automatically are added to 
MCT’s menu definitions. 

Importantly, the component developer can use MCT 
policies to provide access control to the new component. 
For example, site policy may dictate that view edits can only 
be performed by a lead flight controller. Thus if the current 
user is not in the lead flight controller role, the policy is 
enforced by disabling and graying out the menu item. The 
policy manager, described elsewhere in this document, is 
capable of controlling many platform concerns, not just 
menus. Examples include definitions of workflows and 
support of “locked down” mode. 

As mentioned in the introduction, an MCT component is 
packaged as an OSGi bundle. An OSGi bundle may 
implement a set of services, consume services, or do both. 
The OSGi Service architecture prescribes using OSGi 
Services as the preferred method to communicate between 
bundles. Accordingly, MCT uses OSGi services extensively 
to communicate between MCT components. This facilitates 
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loose coupling, as MCT components do not hold a hard 
reference to other MCT components; rather, they hold a 
service reference. OSGi Services are used to export 
functionality from one MCT Component to another MCT 
component, and to import functionality from other 
components. MCT’s core set of components communicate 
using dozens of services; some of these are DataProvider, 
EventProvider, FeedAggregator, and Evaluator (described 
later in this paper).  

A component packaged as an OSGi bundle enjoys all the 
benefits of OSGi deployment. Classpath isolation is the 
ability to have a unique classpath for each bundle to prevent 
conflicting class versions. Classpath isolation is particularly 
useful in solving the “transient dependency” problem. 
Suppose your application depends on dozens of libraries, 
which in turn depend on dozens of other libraries. The 
secondary dependencies, called transient dependencies, may 
include different versions of the same library. Without 
OSGi and therefore with a single class loader, a single 
version of the other may be loaded for the entire application, 
creating a situation in which some primary dependencies 
resolve with the correct transient dependency but others 
resolve with the incorrect version. Typically this version 
incompatibility manifests in runtime problems (which can 
be tough to debug!). With OSGi, MCT component 
developers are free to introduce their own bundles 
independent of other MCT bundles. 

Standardization of Data Computations 
Mission-critical calls are made with computed signals, 
called computationals. An original vehicle signal may be 
computed into a new signal, or signals may be interpreted 
for display on the control monitor. Because mission-critical 
calls are based on computationals, it is critical to control 
how they are defined. However, control centers may not 
always do an optimal job at standardizing computationals, 
since these computations have disparate origins and 
implementations. 

At the vehicle or equipment manufacturer, the hardware 
back-plane originates the signal. These definitions are 
shipped to NASA and are version controlled in a database. 
These signal definitions may be associated with equipment-
originated “enumerations” that translate a signal value into a 
semantic meaning; for example, a particular symbol’s value 
of 7 may be associated with the string “STANDBY 
VALID.” Another type of ground computation is 
mathematical, whereby one or more signal values are put 
through a function. Additionally, some calculations require 
multiple signal inputs; for example, two discrete signals 
could be used in combination to determine the output 
enumeration such as “ON” or “OFF.” With MCT we created 
a singled component type, EvaluatorComponent, to handle 
all these computational types. 

At our customer’s site, computationals were handled with 
various legacy software implementations, at various layers 
in the infrastructure. Although the equipment-originated 

enumerations were stored in a database, they were not rolled 
out into the mission control center. Also, since each user 
application provides its own implementation of 
enumerations, enumeration definitions are stored in local 
files. Furthermore, execution of mathematical calculations is 
done by user applications (rather than a centralized server), 
and these applications are maintained independently by 
various flight control disciplines. As the IT infrastructure 
matures, it is desirable to move computation execution to a 
centralized server, to roll equipment-originated 
enumerations into the control center, and to define 
evaluations in a central database. The MCT framework is 
not being used to implement a centralized computational 
server, instead our customer plans to add a computational 
server with their next network upgrade. MCT is being used 
to roll out equipment-originated enumerations and to 
consolidate evaluation definitions for all components. 

The EvaluatorComponent is able to implement equipment-
originated computations and to replace legacy display 
computations. An evaluator component provides persistent 
storage and a flexible creation wizard to allow incorporation 
of arbitrary execution engines. The evaluator component 
provides a common interface for integration, and provides a 
Service Provider Interface (SPI) for execution engine 
developers to add language bindings and even enhanced 
editors. This is conceptually similar to the mechanism used 
to support dynamic execution languages in Java SE. 

EvaluatorComponent is an MCT component that has an 
Evaluator capability (see Figure 6). An Evaluator has an 
Executor object associated with it. Executor requires the 
evaluate() API which takes a set of input signals from data 
feeds. Executor also defines an API to accommodate 
computations that require multiple signal inputs. MCT 
evaluators use language contexts. Employing elements of 
the Interpreter Pattern [10], the evaluators interpret context-
sensitive language elements into code solutions. Languages 
are defined for each type of enumeration, such as an 
equipment-originated enumeration or a user-defined 
enumeration. 
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Figure 6 – Evaluator parameterizes execution 
 

The executor interface is implemented by classes that can 
execute evaluations, so any class that wishes to assume the 
role of an executor can implement this interface. This design 
employs an element of the Command Pattern [4], in that we 
are encapsulating a request as an object, thereby letting us 
parameterize clients with different requests. In other words, 
we are allowing MCT Components with an executor role to 
assume responsibility for certain executions. Similarly 
because MCT defines an evaluator interface, a customer can 
“swap in” a new evaluator by writing an MCT component 
that implements the interface, and associating this new 
component with certain telemetry components. The end 
result of this flexible design is lower cost of introducing 
new evaluative elements into the control center. And with 
OSGi these elements can be introduced simply by adding a 
.jar file. 

 

5. SUMMARY 
Beginning in 2010, MCT is running in on our customer's 
control center at JSC. Flight controllers are using MCT in 
simulations and flight following.  The time to create large 
displays (“mega-displays”) is significantly lower, and 
because labels are standardized, display certification costs 
are lower. At other customer sites, the MCT developer 
platform is being used to create operational software for 
small satellite operations. 

Optimized applications become strategic investments. In 
mission operations where space vehicles and their hardware 
get central focus, an IT infrastructure may be considered an 
afterthought. However, a rational approach considers IT 
infrastructure and software applications to be strategic 
enablers to the business of space ops, and integral with 
business productivity investments. At their fullest, mission 
operation centers with a dynamic infrastructure are fully 
aware of the strategic value their infrastructure provides in 
helping them run the business efficiently and staying ahead 
of competitors. Costs are controlled because the inventory 
of applications is decreased—instead of hundreds of 
applications in a flight control center, the replacement is a 
small inventory of applications that are managed with 
mature policies. The center purchases only the software and 
licenses that support this inventory.  

When processes are fully automated, operational costs can 
be reduced because error-prone manual processes are 
captured in the software.  Results can be audited and version 
controlled. Similarly, when software changes are needed to 
accommodate mission control reconfigurations, costs of 
software ownership can be controlled because fewer manual 
steps are involved. Also, the benefits of implementing new 
features needed to take on new business opportunities begin 
to outweigh the incremental costs of making those software 
changes. 
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