Development of Low Density, Flexible Carbon Phenolic Ablators

Mairead Stackpoole, Jeremy Thornton, Wendy Fan and Alan Covington
ERC Inc., NASA Ames Research Center, Moffett Field, CA 94035

Evan Doxtad, NASA Education Associates Program,
NASA Ames Research Center, Moffett Field, CA 94035

Robin Beck, Matt Gasch, and Jim Arnold
NASA Ames Research Center, Moffett Field, CA 94035

36th Annual Conference on Composites, Materials and Structures, Jan 23-26 2012, Cocoa Beach, FL
Outline

Background

Motivation

Applications

Testing

Summary
State-of-the-Art (SoA) Low Density Carbon Phenolic Ablators

- Phenolic Impregnated Carbon Ablator (PICA), an enabling TPS material for the Stardust mission used as a single piece heatshield

- PICA is low-density (~0.27g/cm³) and efficient at high heat fluxes

- PICA is the primary heat shield material for Mars Science Lab (MSL) and the Space-X Dragon as a tiled configuration
Challenges with PICA

- Low strain to failure
- May require use of strain isolation pad
- Relatively large part count in tiled configuration
- Brittle char
- Needs a compatible gap filler
Outline

Background

Motivation

Applications

Testing

Summary
Advantages of Flexible Ablators

Flexible Ablator Advantages Compared to Rigid TPS

• Less complex design
• More straightforward system integration
• Easier to manufacture
• Requires fewer segments (larger tiles can be made)
• Easier to assemble
• Enables larger diameter aeroshells
• Reduces gap and seam issues

Orion Heat Shield
(5 m diameter)

MSL Heat Shield
(4.5 m diameter)
Making PICA Flexible

- PICA is a low density carbon phenolic thermal protection material
- Composition works well up to 1000 W/cm²
- Goal = retain the composition but change the architecture

Substrate
- Carbon Fiberform
- Carbon Felt

Matrix
- Phenolic Resin
- Modified Resins

PICA

PICA FLEX
Making PICA Flexible

Flexible PICA from a Felt Substrate

• Comparable in composition to PICA
• Remains flexible after charring
• Can be processed as large pieces
• Parameters such as thickness, density, etc can be tailored

virgin state

charred state
Outline

Background

Motivation

Applications

Testing

Summary
Potential Conformable Applications

Lunar Return Missions

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Location</th>
<th>q (W/cm²)</th>
<th>Margin q?</th>
<th>Pressure (kPa)</th>
<th>Shear (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orion, LEO</td>
<td>Shoulder max. heating</td>
<td>65</td>
<td>no</td>
<td>101</td>
<td>88</td>
</tr>
<tr>
<td>Orion, Lunar</td>
<td>Shoulder max. heating</td>
<td>433</td>
<td>no</td>
<td>101</td>
<td>46</td>
</tr>
</tbody>
</table>

Flexible ablators can mitigate PICA integration issues

Mars Missions

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Location</th>
<th>q (W/cm²)</th>
<th>Margin q?</th>
<th>Pressure (kPa)</th>
<th>Shear (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL</td>
<td>Lee shoulder, max</td>
<td>203</td>
<td>YES</td>
<td>19.7</td>
<td>490</td>
</tr>
<tr>
<td>Mars 2018</td>
<td>Shoulder</td>
<td>98</td>
<td>no</td>
<td>19</td>
<td>137</td>
</tr>
<tr>
<td>Mars 2018</td>
<td>Dish</td>
<td>69</td>
<td>no</td>
<td>24</td>
<td>43</td>
</tr>
</tbody>
</table>

Flexible ablators are an attractive alternative to rigid PICA for future MSL class rigid aeroshells
### Potential Flexible Applications

#### Entry Systems and Technology Division

#### Mars Vehicle Concepts

<table>
<thead>
<tr>
<th>Entry Vehicle Concept</th>
<th>Location</th>
<th>q (W/cm²) A/E</th>
<th>Margin q?</th>
<th>Pressure (kPa) A/E</th>
<th>Shear (Pa) A/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDL SA (23 m)</td>
<td>Peak Forebody</td>
<td>106 / 32</td>
<td>YES</td>
<td>11 / 8</td>
<td>42 / 25</td>
</tr>
<tr>
<td>EDL SA (23 m)</td>
<td>Peak Forebody</td>
<td>67 / 21</td>
<td>no</td>
<td>9 / 6</td>
<td>27 / 16</td>
</tr>
</tbody>
</table>

A/E = Aerocapture/Entry

#### Venus / Saturn Vehicle Concepts

<table>
<thead>
<tr>
<th>Entry Vehicle Concept</th>
<th>Location</th>
<th>q (W/cm²)</th>
<th>Margin q?</th>
<th>Pressure (kPa)</th>
<th>Shear (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEPT, Venus</td>
<td>Peak Forebody</td>
<td>230</td>
<td>no</td>
<td>7</td>
<td>210</td>
</tr>
<tr>
<td>ADEPT, Saturn</td>
<td>Peak Forebody</td>
<td>295</td>
<td>no</td>
<td>11</td>
<td>245</td>
</tr>
</tbody>
</table>

#### Notes

1. Hypersonic Inflatable Aerodynamic Decelerator
2. Adaptive Deployable Entry-system Project

#### Images

- HIAD¹ Concept (23 m diameter)
- ADEPT² Concept (23 m diameter)
- ADEPT Concept (2.13 m diameter)
Outline

Background

Motivation

Applications

Testing

Summary
4 candidate PICA FLEX systems evaluated

Preliminary Results:
- Tensile tests
- Thermal Conductivity
- Microstructure
- LHMEI Testing
- Arc Jet testing
• Samples were tested to evaluate strength and strain to failure. (8” x 1”)

• PICA flex failed gracefully and showed necking behavior

• PICA flex could withstand approx. 8%-12% strain before onset of necking
- PICA thermal conductivity values taken from Orion Database
- Laser flash method used for PICA FLEX
- Data is an average of 3 samples
- PICA and PICA flex samples have comparable densities, however, the thermal conductivity of PICA flex is approximately one-third of rigid PICA
Microstructure

- Microstructure influences properties
- PICA flex microstructure resembles PICA in many aspects; distributed phenolic phase in a carbon matrix

PICA flex microstructure

PICA microstructure
LHMELE* Screening Tests

- Exposure 450 W/cm² for 25 seconds
- Comparable areal mass for all materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Max. Backface Temperature (°C)</th>
<th>Time to Reach Max. Backface Temperature (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICA</td>
<td>240</td>
<td>93</td>
</tr>
<tr>
<td>PICA Flex Variant 1</td>
<td>118</td>
<td>213</td>
</tr>
<tr>
<td>PICA Flex Variant 2</td>
<td>75.5</td>
<td>246</td>
</tr>
<tr>
<td>PICA Flex Variant 3</td>
<td>133</td>
<td>143</td>
</tr>
</tbody>
</table>

*LHMELE - Laser Hardened Materials Evaluation Laboratory, Air Force Research Laboratory, Wright-Patterson AFB, OH

Pre test

Post test

Courtesy S. White NASA ARC
Arc-Jet Screening Tests

- Initial testing completed at Johnson Space Center
- Samples were:
  - 3.5” diameter by ~ 1” thick
  - bonded to an LI 2200 tile holder with collar
  - instrumented with a backface thermocouple
- 2 conditions evaluated
  - Heat Flux: 250 W/cm², Pressure: 0.2 atm and Duration: 30 seconds
  - Heat Flux: 540 W/cm², Pressure: 0.3 atm and Duration: 20 seconds
- PICA flex performed well up 540 W/cm²
- Performance limits for flexible ablators TBD
Pre- and Post-Test Comparisons

Entry Systems and Technology Division

Heat Flux: 250 W/cm²
Pressure: 0.2 atm
Duration: 30 sec

<table>
<thead>
<tr>
<th>Description</th>
<th>Peak Surface Temperature °C</th>
<th>Backface Temperature Delta °C</th>
<th>Recession cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICA</td>
<td>2041</td>
<td>195</td>
<td>0.6</td>
</tr>
<tr>
<td>PICA FLEX M1</td>
<td>2027</td>
<td>52</td>
<td>0.6</td>
</tr>
<tr>
<td>PICA FLEX M2</td>
<td>1967</td>
<td>74</td>
<td>1.0</td>
</tr>
<tr>
<td>PICA FLEX M3</td>
<td>1996</td>
<td>53</td>
<td>0.8</td>
</tr>
<tr>
<td>PICA FLEX M4</td>
<td>2023</td>
<td>74</td>
<td>1.0</td>
</tr>
</tbody>
</table>
# Pre- and Post-Test Comparisons

**Entry Systems and Technology Division**

### Models and Descriptions

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Peak Surface Temperature °C</th>
<th>Backface Temperature Delta °C</th>
<th>Recession cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3261</td>
<td>PICA</td>
<td>2421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3240</td>
<td>PICA FLEX M1</td>
<td>2376</td>
<td>141</td>
<td>0.5</td>
</tr>
<tr>
<td>3241</td>
<td>PICA FLEX M1</td>
<td>2331</td>
<td>56</td>
<td>0.7</td>
</tr>
<tr>
<td>3243</td>
<td>PICA FLEX M2</td>
<td>2331</td>
<td>49</td>
<td>0.8</td>
</tr>
<tr>
<td>3244</td>
<td>PICA FLEX M2</td>
<td>2283</td>
<td>41</td>
<td>1.3</td>
</tr>
<tr>
<td>3245</td>
<td>PICA FLEX M3</td>
<td>2529</td>
<td>41</td>
<td>1.5</td>
</tr>
<tr>
<td>3247</td>
<td>PICA FLEX M4</td>
<td>2474</td>
<td>83</td>
<td>0.8</td>
</tr>
</tbody>
</table>

### Conditions

- **Heat Flux:** 540 W/cm²
- **Pressure:** 0.3 atm
- **Duration:** 20 sec
Outline

Background
Motivation
Applications
Testing
Summary
Summary

Currently evaluating alternative architectures for flexible and more conformal carbon phenolic materials with comparable performance to PICA

Flexible TPS concepts address some of the design issues faced in the use of a tiled PICA heat shield

Initial testing of flexible PICA concepts has shown:
• Substantially higher strain to failure than PICA
• Lower thermal conductivity than PICA
• Survived a 540 W/cm², arc jet exposure

Flexible ablator technology is applicable for upcoming NASA missions needing either rigid or flexible TPS, e.g., HIAD and ADEPT deployable decelerators

PICA FLEX evaluation ongoing under OCT funded CFA TPS program
## Families of Ablators Under Development at NASA ARC

<table>
<thead>
<tr>
<th>Rigid Ablators</th>
<th>Conformable Ablators</th>
<th>Flexible Ablators</th>
<th>Woven TPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced PICA -like ablators</td>
<td>Conformable PICA</td>
<td>Flexible PICA</td>
<td>Mid density TPS</td>
</tr>
<tr>
<td>Graded Ablators</td>
<td></td>
<td>Flexible SIRCA</td>
<td>Carbon phenolic replacement</td>
</tr>
</tbody>
</table>
Acknowledgement

• Work was funded by:
  – Hypersonics element of the Fundamental Aeronautics Program at NASA’s ARMD
  – Entry, Descent, and Landing Technology Development Project

The authors would also like to acknowledge Kristina Skokova, Susan White, Parul Agrawal and Jose Chavez-Garcia for their contributions to this effort.