COMPOSITION AND PETROLOGY OF HED POLYMICT BRECCIAS: THE REGOLITH OF (4) VESTA.
D. W. Mittlefehldt1, J. A. Cartwright2, J. S. Herrin3, S. A. Mertzman4, K. R. Mertzman4, Z. X. Peng5 and J. E. Quinn5.
1NASA/Johnson Space Center, Houston, TX, USA. E-mail: david.w.mittlefehldt@nasa.gov. 2Max-Planck-Institut für Chemie, Mainz, Germany. 3Engineering and Science Contract Group, Houston, TX, USA. 4Franklin & Marshall College, Lancaster, PA, USA. 5Currently: 1Nanyang Technological University, Singapore. 4PANalytical, Inc., Westborough, MA, USA.

The polymict breccias of the howardite, eucrite and diogenite (HED) clan of meteorites preserve records of regolith processes that occur on Vesta, their putative home world. These breccias – howardites, polymict eucrites and polymict diogenites – are impact-engendered mixtures of diogenites and eucrites. The compositions of polymict breccias can be used to constrain the lithologic diversity of the vestan crust and the excavation depths of these materials [e.g. 1]. We have done petrological and compositional studies of multiple samples of 5 polymict eucrites and 28 howardites to investigate these issues. Older analyses were done on samples of ~0.5 gram mass by INAA; newer analyses on samples of ~5 gram mass by XRF and ICP-MS.

We estimate the percentage of eucritic material (POEM) [2] of polymict breccias by comparing their Al and/or Ca contents to those of average basaltic eucrite and diogenite. Our samples have POEM ranging from 28 to 98; adding two polymict diogenites from [3] extends the range to POEM 10. One hypothesis is that ancient, well-mixed vestan regolith has POEM ~67 and has a higher content of admixed impactor material [1]. Several of our howardites have POEM of 59-74 (Al and/or Ca contents ±10% of POEM 67); about a third have Ni contents >300 µg/g suggesting they contain >2% chondritic material (CM and/or CR; [4]). These may be regolithic howardites [1]. Only one (LEW 85313) contains Ne dominated by a solar wind (SW) component [5]. PCA 02066 is dominated by impact-melt material of polymict parentage and petrologically appears to be a mature regolith breccia, yet it does not contain SW-Ne [5]. GRO 95602 falls within the POEM window, contains SW-Ne [6], yet has a Ni content of 193 µg/g. Its petrologic characteristics suggest it was formed from immature regolith (no polymict breccia clasts; no glass).

Trace element characteristics of the polymict breccias demonstrate the dominance of main-group eucrites as the basaltic component. Mixing diagrams of Zr, Nb, Ba, Hf and Ta with Al show no evidence for a significant contribution from Stannern-trend eucrites. An exception is polymict eucrite LEW 86001 (POEM 92), which is dominated by Stannern-trend basaltic debris. Howardite LAP 04838 (POEM 84) has higher incompatible trace concentrations than other polymict breccias (excluding LEW 86001), and either contains a Stannern-trend basaltic component, or has a significant contributions from evolved eucrites like Nuevo Laredo.