Predicted shock-layer emission signatures of the Japanese Hayabusa capsule during its reentry are presented for comparison with flight measurements made during an airborne observation mission using NASA’s DC-8 Airborne Laboratory. For each altitude, lines of sight were extracted from flow field solutions computed using an in-house high-fidelity CFD code, DPLR, at 11 points along the flight trajectory of the capsule. These lines of sight were used as inputs for the line-by-line radiation code NEQAIR, and emission spectra of the air plasma were computed in the wavelength range from 300 nm to 1600 nm, a range which covers all of the different experiments onboard the DC-8. In addition, the computed flow field solutions were post-processed with the material thermal response code FIAT, and the resulting surface temperatures of the heat shield were used to generate thermal emission spectra based on Planck radiation. Both spectra were summed and integrated over the flow field. The resulting emission at each trajectory point was propagated to the DC-8 position and transformed into incident irradiance. Comparisons with experimental data are shown.

I. Introduction

On June 13, 2010 the Japanese Hayabusa Sample Return Capsule (SRC) entered Earth’s atmosphere at a speed of 11.7 km/s, after a seven year journey to the asteroid Itokawa and was successfully recovered in the Woomera test range in Australia. Data on heat shield ablation and plasma characterization for this mission are very valuable for future sample return missions, e.g., from Mars, which will have similar hyperbolic entry speeds. There was, however, no instrumentation installed in the Hayabusa capsule to gather such data during reentry. Therefore, the reentry was studied by numerous imaging and spectroscopic instruments onboard NASA’s DC-8 Airborne Laboratory in order to measure surface and plasma radiation generated by the Hayabusa. The observatory flew above the clouds at an altitude of 12.5 km; absorption in the IR is already rather low at these altitudes. However, the ozone layer at altitudes between 25 km and 50 km prevented detection of radiation in the UV (i.e., below a wavelength of 300 nm) due to absorption. A total of 19 experiments covered a wavelength range from 300 to 1600 nm in resolutions from 0.1 nm to 10 nm as shown in Fig. 1. In addition to the airborne experiments, ground-based observations from several sites were performed to obtain data for trajectory reconstruction.
The theoretical prediction of spectral radiation has to cover these different spectral ranges and resolutions and for a comparison with experimental data. The solutions have to be tailored to the specific wavelength ranges and resolutions. Due to the large distance between the DC-8 and the Haybusa re-entry capsule (400 km to 100 km within the considered altitude range), none of the experiments could provide spatial resolution of the capsule or the plasma layer; instead, Hayabusa appeared as a point source. Consequently, a simulation of the radiation has to provide the integral over the whole flow field and the entire heat shield. In addition to the airborne experiments, ground-based observations from several sites were performed to obtain data for trajectory reconstruction through triangulation.

Before flight, computations of the flow field around the forebody were performed using the in-house code DPLR\(^1\) assuming an 11-species (N\(_2\), O\(_2\), NO, NO\(_2\), N\(_2\)\(^+\), O\(_2\)\(^+\), N, O, N\(_2\)\(^+\), O\(_2\)\(^+\), and e\(^-\)) gas model in thermo-chemical nonequilibrium at peak heating. The results were used as input for the material response code FIAT\(^3\) to calculate surface temperatures of the heat shield. Due to a lack of further specifications, standard carbon phenolic was used as heat shield material. Finally, the thermal radiation of the glowing heat shield was computed based on these temperatures and propagated to the predicted observation position taking into account the influence of the observation angle and of atmospheric extinction yielding estimates of thermal radiation to be measured by the observing instruments during reentry. These estimates were used to provide calibration sources of appropriate brightness.

Post-flight, the flow solutions were recomputed to include the whole flow field around the capsule at 10 points along the best-estimated trajectory. Again, material response was taken into account to obtain most reliable surface temperature information. These data were used to compute thermal radiation of the glowing heat shield and plasma radiation by the shock/post-shock layer system to support analysis of the experimental observation data. For this purpose, lines of sight data were extracted from the flow field volume grids and plasma radiation was computed using the Nonequilibrium Air Radiation code NEQAIR\(^4\) which is a line-by-line spectroscopic code with one-dimensional transport of radiation. The procedure outlined here broadly followed an approach which had already been applied successfully to the analysis of the observation of the Stardust reentry.\(^5\) However, the codes have since been significantly enhanced and most of the data handling procedures changed and streamlined. Although the recent NEQAIR version (NEQAIR-2009 V7C) provides an option for calculating surface radiation, discretization errors of the emitting surface area were encountered due to the practical limitation of lines of sight originating from the surface. Therefore thermal radiation was computed separately on the CFD grid. However, NEQAIR computations were used to determine the absorption of surface radiation in the post shock layer system to be applied as correction to the separately computed thermal radiation. Formerly reported doubts about the results for bound-free continuum radiation in the NEQAIR computations\(^7\) turned out to be relevant only if Boltzmann excitation was used for computing electronic state populations. If the quasi-steady state (QSS) assumption is used, the bound free continuum agrees reasonably with more sophisticated models,\(^8\) so the NEQAIR model was used.

Figure 1. Experiments, spectral ranges and wavelength resolutions used for the airborne Hayabusa observation campaign.
The process for predicting incident irradiance for instruments on board the flying observatory consisted of the following steps:

- Selection of suitable trajectory points and extraction of input data for DLPR
- Numerical simulation of the flow field data and radiation equilibrium surface temperatures with DPLR
- Post-processing of the DPLR data with the material response code FIAT
- Writing back the FIAT surface temperatures to the DPLR solution and re-converge the computation with a pointwise temperature distribution.
- Computation of Planck radiation emitted by the heat shield surface using the FIAT surface temperatures and effective radiating surface areas under the angle of view from the DC-8 position
- Extraction of lines of sight through the flow field
- Computation of plasma emission and radiative transport along these lines of sight with NEQAIR
- Propagation of the sum of thermal and plasma radiation to the DC-8 position using Hayabusa trajectory information and GPS data, and transformation into incident irradiance

The individual steps are described in the following sections and the resulting data are compared to experimental data that are currently available. Since analysis of most experimental data sets is not yet complete, these comparisons are considered preliminary at the time of writing.

II. Selection of Trajectory Points

Post-flight, the trajectory data were updated using the last known entry state vector as input to the trajectory code Traj. From these data, first estimates of stagnation point heat flux and velocity profiles were extracted to construct the heat pulse and then select appropriate time points on the pulse for "high-fidelity" computational fluid dynamics (CFD) simulations. In addition to three CFD solutions at radiative, convective, and total peak heating, four points on each side of total peak heating were selected to cover the range where experimental data were available.

Figure 2. Stagnation point convective, radiative, and total heat flux (left) and Hayabusa velocities (right) determined from trajectory data with engineering methods. The symbols mark the trajectory points selected for high fidelity CFD predictions (peak radiative, convective, and total heating are highlighted). The regimes where experimental data were gathered are shown.

Figure 2 shows the different heat flux values at the stagnation point predicted by Traj, the regions with measured data during reentry, and the points selected for high fidelity flow field simulations with DPLR, as well as the corresponding velocities vs. Hayabusa altitude. From trajectory and GPS data, the distances between Hayabusa and the DC-8 and the corresponding observation angles were obtained as shown in Fig. 3 together with the Hayabusa and DC-8 ground tracks on the map of the Woomera test range. For the observation, only the azimuth has to be taken into account since the elevation angle only tilts the plane in which rotational symmetry can be assumed for ballistic entries. The characteristic data for the different trajectory points are summarized in Table 1.
Figure 3. Hayabusa (at 65km altitude) and DC-8 ground tracks shown on a map of the Woomera test range, and distance between Hayabusa and DC-8 vs. Hayabusa altitude.

Table 1. Characteristic data for the selected trajectory points.

<table>
<thead>
<tr>
<th>Simulation Point</th>
<th>UTC</th>
<th>Altitude km</th>
<th>view angle deg</th>
<th>Range km</th>
<th>$T_{surfstag}(Traj^{12})$ K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13:52:03.8</td>
<td>85</td>
<td>17.5</td>
<td>398.9</td>
<td>1050</td>
</tr>
<tr>
<td>2</td>
<td>13:52:09.6</td>
<td>74</td>
<td>20.6</td>
<td>334.8</td>
<td>1816</td>
</tr>
<tr>
<td>3</td>
<td>13:52:12.9</td>
<td>68</td>
<td>22.9</td>
<td>299.3</td>
<td>2419</td>
</tr>
<tr>
<td>4</td>
<td>13:52:15.4</td>
<td>63.5</td>
<td>25.2</td>
<td>272.5</td>
<td>2839</td>
</tr>
<tr>
<td>5</td>
<td>13:52:18.7</td>
<td>58</td>
<td>28.6</td>
<td>239.9</td>
<td>3143</td>
</tr>
<tr>
<td>6</td>
<td>13:52:19.4</td>
<td>56.9</td>
<td>29.4</td>
<td>233.3</td>
<td>3167</td>
</tr>
<tr>
<td>7</td>
<td>13:52:20.7</td>
<td>54.9</td>
<td>31.0</td>
<td>221.5</td>
<td>3206</td>
</tr>
<tr>
<td>8</td>
<td>13:52:22.0</td>
<td>53</td>
<td>32.7</td>
<td>210.6</td>
<td>3199</td>
</tr>
<tr>
<td>9</td>
<td>13:52:23.4</td>
<td>51</td>
<td>34.7</td>
<td>199.1</td>
<td>3190</td>
</tr>
<tr>
<td>10</td>
<td>13:52:28.4</td>
<td>45</td>
<td>42.6</td>
<td>166.1</td>
<td>2961</td>
</tr>
<tr>
<td>11</td>
<td>13:52:37.6</td>
<td>38</td>
<td>56.2</td>
<td>133.1</td>
<td>1991</td>
</tr>
</tbody>
</table>
III. Flow Field Simulation with DPLR

Environment Prediction Methodology

Because the vehicle trajectory was ballistic, axisymmetric calculations of the flow environment could be used. The aeroheating environment predictions were computed using DPLR2D, the two-dimensional/axisymmetric version of the DPLR\(^1\) v4.02.1 computational fluid dynamics (CFD) code. DPLR has emerged as one of NASA’s workhorse flow solvers for aerothermal calculations, and it has been extensively validated with flight and tunnel data.\(^{14-19}\) DPLR is a structured, finite-volume code that solves the reacting Navier-Stokes equations and models finite-rate chemistry and thermal nonequilibrium. Inviscid fluxes were computed using a modified Steger-Warming flux splitting\(^{20}\) that achieves third-order accuracy using MUSCL extrapolation (monotone upstream-centered scheme for conservation laws) with a minmod flux limiter.\(^{21}\) Viscous fluxes were computed with second-order accurate central differencing. Yos’s mixing rule\(^{22}\) was used to calculate viscous transport properties. Diffusion coefficients were calculated using the self-consistent effective binary diffusion (SCEBD) model.\(^{23}\) The atmosphere was modeled using the 1990 version of Park’s 11-species (\(N_2\), \(N_2^+\), \(O_2\), \(O_2^+\), NO, NO\(^+\), N, N\(^+\), O, O\(^+\), e-) 19-reaction model.\(^{24}\) Equilibrium constants were calculated using Gordon-McBride curve fits.\(^{25}\) The flow was assumed to be in thermal nonequilibrium using Park’s two-temperature (\(T-T_v\)) model.\(^{24}\) A fully catalytic, radiative equilibrium boundary condition with \(\varepsilon = 0.85\) as surface emissivity was applied at the vehicle surface.

Roughness-induced transition to turbulence was assessed with a correlation for \(Re_{kh}\), the Reynolds number evaluated at the roughness height \(k\). Figure 4 shows \(Re_{kh}\) along the axial length of the vehicle for all trajectory points selected for analysis. \(Re_{kh}\) is seen to increase as the vehicle travels deeper into the atmosphere. Since no roughness data for the Hayabusa heat shield was available, the post-flight estimate of maximum surface recession of 0.3mm\(^{27}\) was used as an upper estimate of surface roughness. A critical value of 250 for \(Re_{kh}\) is assumed based on free flight experiments carried out in the NASA Ames Ballistic Range Facility.\(^{26}\) The critical value was never reached for the trajectory points considered. Therefore, all cases were modeled as fully laminar.

![Figure 4. \(Re_{kh}\) along heat shield centerline](image)

Roughly 0.2 km downrange, the flow was shock-damped, and the \(Re_{kh}\) was reduced to base laminar (Fig. 4). Since the \(Re_{kh}\) was never in the turbulent range, all cases were modeled as fully laminar. The grid was generated using Gridgen.\(^{28}\) The curve defining the axisymmetric shape of the vehicle was extracted from a computer aided design file. The curve was discretized to capture regions of high surface curvature where large gradients in the flow were expected. The two-dimensional volume grid was then hyperbolically grown from the surface curve. The resulting grid (Fig. 5a), which was separated into forebody and aftbody blocks, contained 25,000 points with 121 points in the normal direction. This initial grid served as the basis grid for all CFD cases.

![Figure 5a. Initial grid](image)

The large outer boundary would contain the bow shock and subsonic wake for all free stream conditions, but accurate aeroheating calculations require the outer boundary to be aligned with the bow shock and sufficient grid resolution at the wall to resolve the boundary layer. The DPLR flow solver provides such grid tailoring functionality. As part of the flow solution process, the basis grid is adjusted by aligning each grid outer boundary with the bow shock and changing the wall spacing \(\Delta n\) to maintain a cell Reynolds number of 2. The cell Reynolds number is defined as

\[
Re_{cell} = \frac{\rho_u a_u \mu_w}{\Delta n}
\]

where all quantities are taken at the wall. An example of a final tailored grid is shown in Fig. 5b.
Eleven points along the trajectory were initially chosen for CFD computations in order to span the heat pulse. Convergence proved difficult for the first point chosen at an altitude of 85 km and a velocity of 11.7 km/s. Upon further investigation, the freestream Knudsen number, defined as the ratio of the mean free path to a reference length (in this case the vehicle diameter) at this condition was found to be 0.044. Continuum flow solvers such as DPLR are only applicable for flows with Knudsen number less than 0.01. Therefore the case at 74 km and 11.7 km/s velocity became the first point. The Knudsen number for this case was 0.0081. For the remaining ten cases, the free stream conditions were initially provided as velocity-altitude pairs from the best estimate trajectory. In a first approach, the free stream values needed for CFD calculations, atmospheric temperature and density, were defined by the U.S. Standard Atmosphere 1976. However, the more sophisticated Global Reference Atmosphere Model (GRAM) predicted atmosphere densities higher by about 10% for the given latitude of the re-entry. Therefore, the final computations were done using the GRAM 99 atmosphere model.

Sample CFD Solution

A representative laminar flowfield solution (peak total heating at 56.9 km) is presented in Fig. 6. The temperature contours show that the grid outer boundary alignment allows for the capture of the sharp bow shock. The temperatures behind the shock are around 10000 K and the temperatures in the wake are around 5500 K.

As previously stated, DPLR is capable of modeling thermal nonequilibrium through a two temperature model. The post-shock translational (T_T) and vibrational (T_v) temperatures and the species number densities along the stagnation line for selected trajectory points are shown in Fig. 7. In the shock itself and in the region immediately behind the shock the plasma is in thermal nonequilibrium. The translational temperature in this region overshoots to values up to 20000 K. Most of the post-shock region, however, is in equilibrium.

The species present in the freestream, molecular Nitrogen and Oxygen, mostly dissociate in the high temperature region behind the shock. Of the eleven constituent species present in the gas model, the species with the highest number densities in the post shock region are atomic Nitrogen and Oxygen, ions of Nitrogen and Oxygen, and electrons.
Figure 7. Translational and vibrational temperatures and species number densities along the stagnation line at altitudes of 74km (start of the computational regime), 58km (peak radiative heating), 54.9km (peak convective heating), and 51km.
IV. Extraction of Lines of Sight Through the Flow Field

The procedure for extracting lines of sight through the flow field under a certain view angle was developed for the analysis of the Stardust Reentry Observation Campaign. For a ballistic entry, rotational symmetry can be assumed for this computation and only a half body has to be computed, the symmetry plane being defined by the capsule axis and the view angle vector. First, the rotationally symmetric 2D flow field solution obtained by DPLR was transformed to a 3D grid by rotating the 2D data. Then, a uniform 2D orthogonal grid perpendicular to the view angle vector was created behind the flow field. From each element of this grid a line of sight was generated parallel to the view angle vector and tracked through the flow field. The “inner” lines intersect the Hayabusa body at two points. The rear parts of these lines are shadowed by the capsule and were omitted from further computation. The parts in front of the capsule do contribute to the visible emission and are transferred as lines of sight to be used as input for the spectral computation. The “outer” lines do not intersect the capsule surface and are entirely visible. Moreover, due to low temperatures and densities, the wake behind the capsule does not contribute significantly to the radiation. To ensure a sufficient spatial resolution of the “hot” regions with high gradients, a cut-off plane is placed behind the capsule to define a common starting position for all outer lines. For the current computations, this plane was placed 0.1 capsule lengths behind the rear surface. To determine the sensitivity, a test computation was performed with the cut-off plane placed one capsule length behind the rear surface. To ensure a sufficient spatial resolution of the “hot” regions with high gradients, a cut-off plane is placed behind the capsule to define a common starting position for all outer lines. For the current computations, this plane was placed 0.1 capsule lengths behind the rear surface. To determine the sensitivity, a test computation was performed with the cut-off plane placed one capsule length behind the rear surface with no significant change of the resulting spectra. Since only a half body was computed, the sum of all lines yields half the emitted radiation. Figure 8 illustrates the process of extracting the lines of sight and shows selected lines of sight obtained with this process for altitudes of 74 km and 53 km at view angles of 20.6 deg and 32.7 deg, respectively.

![Figure 8. Illustration of the extraction process for the lines of sight and examples for Hayabusa altitudes of 53km and 74km. Lines which show an intersection with the capsule (inner lines) are marked red, lines that solely pass through the plasma region (outer lines) are black.](image)

The number of lines is controlled by the spacing of the uniform orthogonal grid. A sensitivity study has been performed at an altitude of 58 km with 49, 99, 149, and 199 grid elements in each direction. The integrated emission showed significant dependence up to 149\(^2\) elements, though increasing to 199\(^2\) elements altered emission by less than 1%. Therefore, all computations were performed on the grid with 149\(^2\) elements yielding between 443 and 620 inner and between 662 and 850 outer lines in the altitude range from 45km to 74km. Each line covered a spatial cross section between 1.16 and 1.04 cm\(^2\) in the same altitude range.

V. Computation of Plasma Radiation

The Nonequilibrium Air Radiation (NEQAIR) code\(^4\) is a line-by-line radiation code that computes the emission and absorption spectra (along a line-of-sight) for atomic and molecular species, including both electronic and vibrational (infrared) band systems. Individual electronic transitions are evaluated for atomic and molecular species. The code can model the bound-free and free-free continuum radiation caused by interactions of electrons with neutral and ionized atomic species. Line broadenings due to Doppler, Stark, resonance, and...
Van der Waals broadening as well as the natural line width are included in the code through Voigt broadening. Additional broadening (e.g., instrument broadening) can be included in a post-processing scan function, usually in the form of a Voigt line shape. Planck radiation from a glowing surface can be computed as grey body radiation with a given emissivity.

The radiative emission is computed along each line-of-sight. The line-of-sight is divided into a series of one-dimensional cells, and the radiative emission, absorption, and specific intensity are computed at every line-of-sight cell. The radiative heat flux on a surface can be determined using either a tangent slab or spherical cap assumption. NEQAIR is capable of simulating the emission of a variety of species such as atoms (N, O, H, C, He) and molecules (N$_2$, N$_2^+$, NO, O$_2$, H$_2$, CO, C$_2$, CN). However, for the present Hayabusa analysis only O, N, N$_2$, N$_2^+$, and O$_2$ were used due to the limitations of the accessible wavelength range towards the UV and the fact that ablation products in the flow field are not modeled yet by DPLR.

Test computations with one line of sight were conducted to determine the necessary wavelength resolution of the initial spectra. The results were found to be insensitive to a further reduction of a wavelength spacing of 0.01Å. These initial spectra were integrated during the computation process yielding the total radiation of the flow field. In addition, low resolution spectra were generated and stored for each line of sight using the internal scanning procedure of NEQAIR and integrated after the set of computations was finished. A comparison of a scan over the integrated high resolution spectrum for each altitude to the same wavelength increments and line broadening parameter showed no differences thus validating the standalone version of the scanning procedure. Thus, the integrated high resolution spectra can be broadened to values individually tailored to the different experimental resolutions without repeating the time consuming individual NEQAIR runs.

In general, non-equilibrium radiation is expected from the region immediately behind the shock when the thermodynamic state is in the process of adapting to the instantaneous increase in temperature and pressure in the shock. Within the stationary plateau behind the shock, Boltzmann distributions should dominate the electronic excitation as soon as the pressure and ionization fraction are high enough to provide a sufficient number of electron collisions for the equilibration of the excited states. The non-equilibrium regions of the flow will show significant deviations from a Boltzmann distribution of the electronically excited states. These regions are covered by a quasi-steady state (QSS) assumption in the radiation computation which is implemented in NEQAIR. In the current version, the QSS solution converges with sufficient accuracy to the Boltzmann solution when equilibrium conditions are reached. Therefore, the whole flow field is computed with the QSS assumption.

During initial computations, significant differences between the Boltzmann and QSS computations were seen in the level of continuum radiation. With Boltzmann, bound-free continuum values on the order of the molecular bands were found. For the present computations, however, only QSS modeling was used. With QSS, the bound free values agree reasonably with more sophisticated model employed in a new radiation code HyperRad currently under development at NASA Ames. Therefore, NEQAIR was used without further modifications.

Figure 9. Integrated plasma spectra under the assumption of QSS populations of the electronically excited states.

For the plasma radiation, a quantification of uncertainties is rather complicated. One major driver for plasma radiation uncertainties might certainly be given by the two temperature models used in the CFD simulation and their application to electronically excited states, in particular in the non-equilibrium portion of the flow field. Other uncertainties come from the chemical models used in the simulation. Recent studies for high speed re-entries found uncertainties in radiative heating to the surface to be about ±30% for lunar return and about +80% and -50% for Mars return missions. However, it remains unclear how these values translate into uncertainties of, for example, a particular emission line.
VI. Propagation of Emitted Radiation to the DC-8 Position

The final step to be able to compare the simulated spectra with experimental data is the propagation of the emitted radiation to the observer’s position (i.e. the DC-8 position). Both plasma and surface radiation are computed in spectral radiance values, i.e. power per emitting surface area, wavelength interval and solid angle in the units W m$^{-2}$ nm$^{-1}$ sr$^{-1}$. Along the trajectory, the effective emitting surface changes due to the changing view angle and the solid angle will vary with the distance to the observer. Therefore, a calibration of the instruments to spectral radiance cannot be performed in a straightforward way and the emitted radiance has to be converted to spectral irradiance (received spectral power per receiving surface area in the units W m$^{-2}$ nm$^{-1}$). For this purpose, all computed spectral radiance values were converted to a spectral radiant power in W/nm by multiplying with the emitting surface and the solid angle in which radiation is emitted (compare Fig. 10) and then divided by the receiving surface given by the smallest aperture in the detection set-up. (The aperture diameter finally cancels out since it is used both for the solid angle and the receiving surface.)

The needed quantities are: the Hayabusa-DC-8 distance, the view angle from the observer to Hayabusa, and the emitting surface area. The first two quantities are obtained from trajectory data, while the third is either the grid cell for the plasma or the projected area of the Hayabusa surface element for thermal radiation. A similar procedure was applied for the calibration sources.

The detected radiation was partly absorbed by the atmosphere. During pre-flight analysis the atmospheric extinction was computed with Modtran31 for different Hayabusa altitudes as shown in Fig. 11. The main influence of air absorption takes place at wavelengths below 700 nm and at the absorption bands of water and oxygen around 628 nm, 687 nm, 760 nm, 935 nm, 1130 nm and in the mid infrared. The changes in transmission with altitude were moderate in the visible and mid-infrared and stronger in the ultraviolet region.

So far, no Modtran simulations with updated trajectory data have been performed yet and the present analysis was done with interpolations of the pre-flight data. Within the range of interest, the observation distance “as flown” was lower by an average of about 5%. However, since the change in atmospheric transmission with Hayabusa altitude (and therefore with observation distance) is generally weak, this difference does not cause significant changes in transmission.

Figure 10. Illustration of the solid angle for propagation of Hayabusa radiation to the DC-8.

Figure 11. Atmospheric transmission vs. wavelength for different Hayabusa altitudes (pre-flight) computed with Modtran.31
VII. Material Response Computation with FIAT

FIAT is an implicit ablation and thermal response program for simulation of one-dimensional transient thermal energy transport in a multilayer stack of isotropic materials and structure which can ablate from a front surface and decompose in-depth. The governing energy balance is basically a transient thermal conduction equation with additional pyrolysis terms. A three-component internal decomposition model is used. FIAT is now the standard TPS sizing tool in the aerospace community. Figure 12 illustrates inputs and outputs to and from FIAT.

For the current analysis, heat flux values and radiation equilibrium temperatures from the DPLR computations as well as radiative heat flux values derived from NEQAIR computations at 20 points distributed along the arc length of the Hayabusa front surface were used as input for the FIAT runs. FIAT accounts for catalytic effects through a blowing reduction factor. Therefore, the DPLR solution is computed with a fully catalytic assumption and it is not necessary to account separately for catalytic effects.

Figure 12. FIAT working principle.

Around peak heating, the material response results yield a surface temperature decrease due to ablation by about 500-600 K compared to the radiation equilibrium solution with a maximum values at the stagnation point of 3380 K as shown in Fig. 13.

VIII. Computation of Thermal Radiation of the Heat Shield

As seen during the Stardust observation, a major part of the emitted radiation is thermal emission from the glowing heat shield. This radiation is computed as Planck radiation:

\[L_\lambda (T) = \varepsilon \frac{2 \pi c^2}{\lambda^5} \frac{1}{\exp \left(\frac{hc}{\lambda k T} \right) - 1} \]

An emissivity value of 0.9 (charred carbon phenolic) was used. The spectral radiance has to be integrated over the surface area to obtain the total radiation observed. Since the capsule approaches the observer, the view angle to the surface changes continuously as already shown in Fig.3. For the surface radiation, only the projected area can be used due to Lambert’s Law. For a computation of the projected area, a Fortran code developed for the Stardust observation was applied to the Hayabusa forebody.

Figure 13. Hayabusa surface temperatures from DPLR (radiation equilibrium) and after material response computation with FIAT.

Figure 14. Hayabusa forebody projected areas vs. view angle.
The back shell was assumed to emit only negligible contributions to the total radiation. Figure 14 shows the total visible surface area as a function of the view angle. Due to the capsule shape, the front surface is visible to an angle of about 130 deg until the back shell completely blocks the forebody.

If the capsule were to have a constant surface temperature, this total projected area could be used for the computation of thermal radiation. If temperature gradients occur, this basically means that the total thermal radiation is a superposition of a number of different Planck functions multiplied with the corresponding radiating area. In the simulation, this was realized by computing the projected areas on the CFD surface grid resolution for each circular ring of cells (which, due to rotational symmetry, is defined to be at one temperature).

This computation of surface radiation as described above, however, does not include absorption of the thermal radiation in the post-shock plasma. Although NEQAIR has the capability of computing surface radiation, for the given number of lines of sight, the emitting surface area in the NEQAIR computations was over-predicted by about 10%, therefore over-predicting the total radiation from the surface. Increasing the number of lines of sight until the surface area was reached with sufficient accuracy would have caused a significant increase in computational effort while not significantly changing the plasma emission (compare section IV). Therefore, NEQAIR was used for computing the absorption of surface radiation in the shock layer system as a correction to the above described procedure for computing the surface radiation. Computations with and without surface radiation were conducted for optically thin and absorbing cases. From these computations, the absorption of surface radiation in the post-shock plasma was determined as shown in Fig. 16. The maximum spectral absorption is on the order of 6% and occurs at the spectral positions of atom line emission. Therefore, in the resulting spectra the absorption of thermal radiation appears as a reduction of the atom line emission. The total surface radiation between 300 nm and 1.6 μm changes through absorption by no more than 0.05% in maximum.

Figure 15. Hayabusa forebody projected areas for finite rings (shown in red for one exemplary axial position) vs. view angle.

Figures 15 and 16. Spectral absorption of surface radiation in the Hayabusa flow field vs wavelength, and maximum total absorption of thermal radiation between 300nm and 1.6μm vs Hayabusa altitude.
IX. Incident Spectra at the DC-8 Position and Comparison with Preliminary Experimental Data

In Fig. 17, the thermal radiation emitted by the Hayabusa heat shield is plotted vs. wavelength as incident irradiance at the DC-8 position but not yet corrected for atmospheric transmission. Although the temperatures at peak heating are higher than after (compare Fig. 13), the observed thermal radiation peaks at 51 km Hayabusa altitude due to the decreased distance to the capsule and increased emitting solid angles.

Thermal radiation between 58 km and 45 km varies but it is all at about the same order of magnitude. Between 45 km and 38 km, a steep decrease of thermal radiation is seen. Recent NASA studies32,33 made attempts to quantify the uncertainty of the numerical simulation, e.g., for the studies performed in the frame of the CEV (now MPCV) vehicle. For these conditions, uncertainties in computed heat fluxes on the order of ±25% were found which translate to a surface temperature uncertainty of about ±6%. If the same values are applied to the Hayabusa re-entry, modeling uncertainties of about +33-43% and -27-34% are obtained for the thermal radiation.

However, if experimental spectra are analyzed independently from the theoretical analysis, often a constant surface temperature of the heat shield is assumed since none of the experiments can provide measurements in spatial resolution. To support these interpretations, an attempt at defining an effective surface temperature was made to find a single temperature which would represent the incident thermal radiation at the DC-8 position.

In a first approach, the temperature which produces the same amount of thermal radiation in the total wavelength range under investigation from 300 nm to 1600 nm as the DPLR temperature distribution for a given geometric situation (i.e. view angle, effective surface area, distance between Hayabusa and DC-8, and atmospheric transmission) was determined. Indeed, such temperatures T_{eff} which reasonably rebuild the Planck radiation using the FIAT temperature distribution could be found for altitudes of 58 km and below. Above 58 km, the spectral shape of the solutions with only one effective temperature did not adequately reproduce the curves shown in Fig. 17.

These results seem reasonable since the gradient of surface temperature decreases with sinking altitude as depicted in Fig. 13. However, most experiments cover only a limited wavelength range. Therefore, an additional effective temperature $T_{\text{eff},548\text{nm}}$ was determined for which the thermal radiation at 548 nm (peak of the Johnson V band34 at the center of the visual range) agrees with the predicted irradiance. $T_{\text{eff},548\text{nm}}$ is typically higher than T_{eff} although the difference decreases with sinking altitude. Both effective temperatures and their difference are depicted in Fig. 18 vs Hayabusa altitude.

The final comparison with experimental data has to be done with the superposition of thermal and plasma radiation multiplied with the atmospheric transmission. The results are shown in Fig. 19. For a comparison with
experiments without spectral resolution such as regular cameras (or tracking cameras), the spectral irradiance has to be integrated over wavelength. For the data shown in Fig. 20, this was done in the wavelength range between 300 nm and 1600 nm. To compare to a given instrument, however, this calculation would need to incorporate the spectral response function of that instrument.

Figure 19. Combined computed incident spectra at the DC-8 position on linear (top) and log (bottom) scales.

Figure 20. Irradiance integrated between 300 nm and 1600 nm for comparison with experiments without spectral resolution (e.g., tracking cameras or 0 order of transmission grating set-ups).
Comparison with Experimental Data:

At the time of writing, preliminary calibrated data were available from the Australian Ultraviolet Spectrometer AUS in the UV shortly after peak heating, from the NIRSPEC experiments, operated by Utah State members, before and around peak heating, and from the cameras HDVIS1 (High Dispersion Visible Spectrograph No. 1), HDVIS2 (High Dispersion Visible Spectrograph No. 2), and IRIS (Intermediate Resolution Infrared Spectrograph), (data available throughout the whole observation period), operated by Clay Center Observatory team members.

AUS measured spectrally resolved data ($\Delta \lambda = 0.187$ nm, FWHM ~0.75 nm) between 300 nm and 470 nm. The main radiator in this wavelength region is CN which, due to the limitation in the simulation tools, unfortunately could not be simulated in the CFD analysis. Therefore, the main molecular bands could not be included in the simulated spectra. Weaker radiators are N_2 and N_2^+ emission as well as a clearly recognizable continuum. Data were available at 13:52:22.40 UTC which is in between the simulated altitudes at 51 km and 53 km after peak heating.

The continuum portions of the experimental spectra are in excellent agreement with the prediction as shown in Fig. 21 and clearly lower than the former predictions of turbulent flow. This confirms the initial assumption of a laminar flow throughout the whole trajectory. The agreement with the emission of the N_2/N_2^+ system is good. Further experimental data at altitudes closer to peak heating would be needed for more detailed statements.

Figure 21. Comparison with preliminary experimental data in the UV measured with the AUS instrument at altitudes after convective peak heating.

NIRSPEC measured spectrally resolved data ($\Delta \lambda = 0.286$ nm, FWHM 1.4 nm) between 960 nm and 1080 nm. The strong lines seen in this spectrum are nitrogen multiplets. Data between 13:52:11.1 UTC and 13:52:19.9 UTC corresponding an altitude range from 72 km to 56 km Hayabusa altitude were available, the latter being shortly after peak heating at 56.9 km.

The best agreement, both in terms of spectral features and intensity, can be seen between the simulation at 68 km altitude and the measured spectrum at 13:52:15.4 UTC. This, however, would correspond in a time shift of 2.5 s between simulation and experiment which is well outside the time uncertainties of both simulation and experiment. At corresponding times, the simulation is always higher than the experiment. Close to peak heating, and over-prediction of about 30% can be seen in both continuum and atom lines.
Figure 22. Comparison with experimental data measured with the NIRSPEC instrument compared to DPLR/FIAT/NEQAIR simulation at altitudes between 74 km and 56.9 km.38
The combination of HDVS1, HDVS2, and IRIS provided spectra from 400nm up to 1300nm with spectral resolutions between 0.5nm and 1.2nm at the focused points. In Fig. 23, overview spectra around the simulation altitudes of 68 km, 58 km, and 51 km are presented.

![Spectra around simulation altitudes](image)

Figure 23. Comparison with experimental data from 400nm to 1300nm measured with the HDVS1, HDVS2, and IRIS instruments at altitudes of 68km, 58km, and 51km.

At high altitudes, the simulation is always higher than the experimental data unless a time shift of about 2.5 seconds towards lower altitudes is assumed. However, both the uncertainty estimates of the trajectory simulation and the time synchronization during the experiments are on the order of the camera frame rate and thus significantly lower than this delay.

At altitudes of 58 km and below, the experimental spectra are only slightly over-predicted by the simulation below 670 nm. At higher wavelengths, however, the measured values never reach the simulated thermal radiation and the theoretical solution exceeds the measured values by about 30%.

At the altitudes of 51km and 45km, the simulated continuum radiation is lower than the experimental values at low wavelengths but the over-prediction at high wavelengths remains. At present, the reasons for this disagreement are not yet clear.
To investigate the plasma radiation, line spectra were isolated from the experimental spectra by subtracting a continuum radiation so that the signal around isolated lines would go to zero, and were compared to the NEQAIR simulation of the flow field before superposing the thermal radiation. Figure 24 shows an example of experimental and simulated spectra in the NIR around radiative peak heating at 58 km Hayabusa altitude. The spectra show fair agreement although the measured line intensities are in general lower than the simulation.

For a more detailed comparison, the line intensities of selected oxygen and nitrogen lines were integrated over the line width to compensate for possible discrepancies in simulated and experimental line width and shape. In Fig. 25, the resulting line integrals for strong oxygen lines at 777 nm and 845 nm, and nitrogen lines around 745 nm, 1013 nm, and 1250 nm are plotted vs observation time. The general trend of the time variation is matched by the simulation but in the experiment, the atom lines disappear earlier than predicted, which can also be seen in the overview spectra at 51 km in Fig. 23. In early re-entry, the oxygen lines almost reach the predicted values but the simulated nitrogen lines are in general almost twice as strong as the measured ones. Further interpretation will have to wait for a consolidation of the different experimental data sets.

Figure 24. Comparison of atom lines in the VIS toIR measured with the HDVS1, HDVS2, and IRIS instruments at 58km.

Figure 25. Measured (IRIS data) and simulated line integrals for selected O and N lines vs. observation time. The dashed lines represent the trend of the experimental data for the strongest lines.
X. Conclusion and Summary

Using established practices for numerical simulation of flow and radiation fields, a baseline solution for the entry radiation signature of Hayabusa has been computed. A radiation prediction for the airborne observation of the Hayabusa reentry was performed on the basis of trajectory data and high fidelity CFD computations. Material response was taken into account to determine realistic surface temperatures of the capsule’s heat shield to yield a prediction of the thermal radiation during reentry. The plasma radiation was computed with line by line methods. To enable a comparison of the predicted radiation with experimental data, the radiation had to be propagated from the Hayabusa position during reentry to the observer’s position onboard the NASA DC-8.

A first comparison with preliminary experimental data is encouraging and indicates that a first benchmark solution for the radiation prediction could be obtained with the present results. Emission spectra in the NIR with the NIRSPEC experiment show a good qualitative agreement but the prediction is clearly higher than the experimental data in that range. The comparison with UV spectra measured with the Australian AUS experiment show excellent agreement with the thermal continuum portion of the simulated spectra. However, CN as the major radiator in that wavelength region is not yet included in the CFD solution. The agreement of the experimental data with the current solution for laminar flow seems to confirm the assumption that no transition to turbulent flow occurred, as indicated by estimating a critical roughness Reynolds number from recession measurements and flow field data. A comparison with a larger data set provided by the Clay Center Observatory showed fair agreement of thermal radiation at lower wavelengths but a clear over-prediction of thermal radiation by the NIR. This disagreement might be an indicator for an unidentified wavelength dependent attenuation. A spectral change in surface emissivity with lower values than assumed at wavelengths above 700nm would bring the simulation closer to the experiment. However, it is questionable whether the required decrease to values around 0.7 could be justified. Oxygen atom line integrals were in fair agreement over a large part of the trajectory but all investigated nitrogen lines showed an over-prediction by a factor of two in the simulation. Independent of a possible unidentified attenuation, it can be seen that the atom lines fade out much earlier in the experimental data set than predicted by the simulation. Before further conclusions are possible, a combined data set from different instruments is needed, if possible independently calibrated, since some data sets still show unexplained differences. Evidently, the experimental data has to be presented with a solid examination of experimental uncertainties as part of the consolidated data set.

Given the high uncertainties related to the numerical simulation if current margin policies are used, an interpretation of the differences between simulation and experiments are considered premature. In fact, the purpose of these observation campaigns is to provide an experimental basis to determine these uncertainties from a comparison with simulation. As soon as the above mentioned consolidated set of experimental data with internal consistency and reliable uncertainties is available, the fidelity of models used in the predictions will be improved through sensitivity studies.

The procedure outlined here contains some differences from earlier approaches applied to the analysis of the observation of the Stardust reentry, in particular in handling thermal radiation. It appears highly desirable to revisit the Stardust radiation predictions and repeat both methodologies to quantify the differences. To further improve the predictions, an implementation of a blowing surface with ablation and pyrolysis products would be valuable, as these data sets will give a unique opportunity to test such models versus a real flight situation. For future investigations, additional on board measurements with flight experiments at dedicated vehicle positions would strengthen the outcome substantially.

Acknowledgments

The observation campaign was funded and managed by the Orion Thermal Protection System Advanced Development Project and the NASA Engineering and Safety Center. The present work was supported by NASA Contract NAS2-03/44 to UARC, UC Santa Cruz, and by NASA Contract NNA10DE12C to ERC, Incorporated. The authors would like to thank Dr. George Raiche (Chief, Thermophysics Facilities Branch, NASA ARC) and Dr. Aga Goodsell (Chief, Aerothermodynamics Branch, NASA ARC) for support of modeling and simulation aspects of the present work. Furthermore, the authors wish to acknowledge the support of Jay Grinstead, NASA Ames, Alan Cassell, ERC, Inc., and Jim Albers, for mission planning and for providing trajectory information, and Nicholas Clinton and Jeffrey Myers, UARC, for compiling MODTRAN computations for atmospheric extinction as well as Jonathan Snively (Embry-Riddle Aeronautical University), Mike Taylor (Utah State University), David Buttsworth, Richard Morgan (University of Southern Queensland), Ronald Dantowitz, and Marek Kozubal (Clay Center Observatory) for providing experimental data for a comparison with the predictions, Dinesh Prabhu, ERC, Inc., for numerous discussions about all mission and simulation aspects, Mike Olsen, NASA Ames, for his help during the spectral computations, and Mike Wilder, NASA Ames, and Brett Cruden, ERC, Inc. for valuable comments during the review process.
References

