Simulation to Support Local Search in Trajectory
Optimization Planning

Robert A. Morris

NASA Ames Research Center, CA (USA)

robert.a.morris@nasa.gov

K. Brent Venable
University of Padova, Italy
kvenable@math.unipd.it

James Lindsey
Monterey Technologies, CA)
NASA Ames Research Center(USA)
james.e.lindsey@nasa.gov

Abstract—NASA and the international community are investing
in the development of a commercial transportation infrastruc-
ture that includes the increased use of rotorcraft, specifically
helicopters and civil tilt rotors. However, there is significant con-
cern over the impact of noise on the communities surrounding
the transportation facilities. One way to address the rotorcraft
noise problem is by exploiting powerful search techniques com-
ing from artificial intelligence coupled with simulation and field
tests to design low-noise flight profiles which can be tested in
simulation or through field tests. This paper investigates the use
of simulation based on predictive physical models to facilitate
the search for low-noise trajectories using a class of automated
search algorithms called local search. A novel feature of this
approach is the ability to incorporate constraints directly into
the problem formulation that addresses passenger safety and
comfort.

TABLE OF CONTENTS

—_

INTRODUCTION ..viiueeeeneesnsesnscansscsnscsnsanns
BACKGROUND t.0vtieteeensesosesosessssossscsssannas

THE TRAJECTORY NOISE OPTIMIZATION PROB-
LEM (TNOP) ciuiiiiiiiiiiiatiteecencencancanans

LOCAL SEARCH FOR THE TNOPcccvvvnen.n.
EXPERIMENTS . i0vcteeeeeetesasesoscssssossscassannas
SUMMARY AND FUTURE WORKcovvveiennnncnns

REFERENCES ..0vtiieetenetesasesscasnscasscannes

—_

N 90N A

INTRODUCTION

The problem motivating this work is the design of low-noise
approach trajectories for rotorcraft in order to reduce sur-
rounding community noise. This is an important component
in developing a transportation infrastructure that is based on
an increased use of rotorcraft, specifically helicopters and
aircraft such as a 40-passenger civil tilt rotor. Rotorcraft have
a number of advantages over fixed wing aircraft, primarily
in not requiring direct access to the primary fixed wing
runways. As such they can operate at an airport without
directly interfering with major air carrier and commuter air-
craft operations. There is significant concern over the impact
of noise on the communities surrounding the transportation
facilities. One way to address the rotorcraft noise problem is
to automatically design flight profiles which can be evaluated
with respect to noise in simulation or through field tests.

The problem of designing low noise flight profiles can be
viewed as a trajectory optimization problem [LaValle, 2006].
The search space for such a problem is the space of all
possible trajectories, which is typically characterized by a

high dimensional model describing constraints on the posi-
tion, dynamics, and kinematics of the rotorcraft. Approximate
approaches such as local search have been shown to be partic-
ularly effective in finding solutions of good quality fast and in
high-dimensional spaces. Given a combinatorial optimization
problem, the basic idea underlying local search [Hoos and
Stutzle, 2004] is to start from an initial search position in the
space of all possible assignments, and to improve iteratively
this assignment by means of minor modifications. Solutions
are compared through an evaluation function, which typically
maps the current candidate solution to a real number. In this
paper the evaluation function is based on the aggregation of
information obtained by running a simulator of ground noise.

This paper reports on experimental results using this ap-
proach. The goals of these experiments include assessing the
performance and effectiveness of local search using different
aggregate evaluation functions. We are aided here by the
fact that the simulator has a tunable parameter that allows
predictions to range from ’coarse’ to ’fing-grained’, with
exponential reductions in the speed of the simulation between
high- and low-resolution simulation. We leverage this feature
by tuning it dynamically during search, thus allowing, in
effect, to sharpen or coarsen our optimization results on the
fly.

The remainder of this paper is organized as follows. In the
background section we give preliminary notions on trajectory
optimization, noise simulation and local search. We then
move to the definition of our setting describing the configu-
ration space, the flyability constraints and the cost functions.
Next, we describe the local search approach and the definition
of the neighborhood function. We conclude by discussing our
experimental setting and results.

BACKGROUND

This section provides the necessary technical background that
will be used to formulate the approach presented in this paper.

Trajectory Optimization

The field of trajectory optimization has a long history, with
many applications in aerospace and robotics. Informally, a
trajectory optimization problem consists of a set of states,
a vector of control decisions, a start and goal state, a cost
function, and a set of constraints. A state represents locations
(i.e. points in a 3D space), velocity and heading. A control
decision is a vector representing change in velocity, altitude,
heading, and in turn radius. The problem, which we adapt
here, is thus stated informally as follows: given a set of states
and control actions, find a sequence of actions (trajectory)

that minimizes a cost function subject to a set of dynamic
constraints, and constraints on start- or end-states.

In addition to noise, trajectories have been optimized with
respect to time, fuel, path length and obstacle avoidance.
Methods of solving trajectory optimization problems range
from numerical methods [Betts, 1998] to non-linear pro-
gramming problems [Goplan et al., 2003] or dynamic pro-
gramming [Hagelauer and Mora-Camino, 1998]. In addition,
path planning methods from robot motion planning has been
used [P. Cheng and LaValle, 2001]. Randomized optimization
methods such as simulated annealing and genetic algorithms
have also been applied in the work by Xue and Atkins [Xue
and Atkins, 2006].

In particular, the aforementioned work is the most closely
related to the work presented here, since it applies a local
search technique for noise minimization. There are, however,
several relevant differences. In [Xue and Atkins, 2006], the
search space in modeled with a k-ary tree approach where
each branch represents a change in the value of a parameter
(e.g. path angle and acceleration) and the branching factor
is restricted to at most k. We, instead, consider box-shaped
trajectories, inspired by standard flying practices, which have
a more restricted shape but yet cannot be modeled in the
framework used in [Xue and Atkins, 2006]. Moreover, the
noise produced by a trajectory is evaluated in [Xue and
Atkins, 2006] using a verified noise database, whereas we
use a more sophisticated simulation tool (RNM). Also the
local search techniques employed are different, as we use
a standard hill-climbing procedure and they use simulated
annealing where, each step, the current solution is replaced
by a random solution with a probability depending both on
the difference between the corresponding function values and
also on a global parameter T (temperature), that is gradually
decreased during the process.

Noise and how it is measured

Noise is unwanted sound. Sound is variation in air pressure
detectable by the human ear in the form of vibration of the
ear drum. The decibel is a ratio that compares the sound
pressure of the sound source of interest (e.g., the rotorcraft
overflight) to a reference pressure (the quietest sound we can
hear). Humans can detect sound pressure over a wide range,
107 to 103 pounds per square inch (psi). Because the range
of sound pressures is very large, we use logarithms to simplify
the expression to a smaller range, and express the resulting
value in decibels (dB).

Sound can be broken down into frequencies (low, medium,
high). The ear is more sensitive to mid- and high frequency
sounds, so we find noise in these ranges more annoying. The
so-called A-weighting [Conner et al., 2006] approximates the
sensitivity of the human ear and helps to assess the relative
loudness of various sounds.

Sound levels vary with time, which is important if we are
interested in the noise associated with a certain event of
interest (e.g. an approaching rotorcraft). The simplest way to
describe a discrete noise event is with its maximum sound
level, or Lmax [Conner et al., 2006]. Lmax only accounts
for noise amplitude, and does not discriminate between noise
exposures of short duration or long duration. To take exposure
duration into account, the most common measure is the Sound
Exposure Level (SEL). SEL ’summarizes’ the variable energy
level of an event with arbitrary duration by mapping it to an
event of one second duration with the same overall energy and
a constant energy level. SEL provides a comprehensive way

to describe noise events for use in modeling and comparing
noise environments. Computer noise models base their com-
putations on SEL values.

The US Federal Aviation Administration (FAA) considers a
1.5 dB the minimum significant change where cumulative ex-
posure is above 65 Day-Night Average Sound Level (DNL).
Any abatement strategy that promises over 5 dB change in
noise level is considered definitely beneficial. As we show
later, we will use this value in assessing and comparing noise
cost functions for trajectories.

Helicopter noise sources include the main rotor, the tail rotor,
the engine(s), and the drive systems. The most noticeable
acoustical property of helicopters is the modulation of sound
by the relatively slow-turning main rotor. The resulting sound
can become impulsive in character and is referred to as
BVI (Blade Vortex Interaction Noise). Impulsive noise occurs
during high-speed forward flight as a result of blade thickness
and compressible flow on the advancing blade. This causes
the blades airloads to fluctuate rapidly. These fluctuations
result in impulsive noise with shock waves that can propagate
forward. At lower airspeeds, and typically during a descent,
rotor impulsive noise can occur when a blade intersects its
own vortex system or that of another blade. This type of
noise is BVI noise. When this happens, the blade experiences
locally high velocities and rapid angle-of-attack changes.
This tends to produce a sound that is loud and very annoying
in character [Cox et al., 2009], [Greenwood and Schmitz,
2010].

Rotorcraft Noise Model Simulation Tool

The Rotorcraft Noise Model (RNM)[Conner et al., 2006] is a
simulation program that predicts how the sound of a rotorcraft
will propagate through the atmosphere and accumulate at
observer (receiver) locations. RNM is capable of calculating
cumulative noise exposures such as A-weighted SEL. The
input to RNM consists of

« a set of computational parameters, including identity of
rotorcraft, and the dimensions and resolution of a grid that
will display output noise (discussed further below);

« a specification of points of interest; and

« a specification of the flight trajectory, including position,
velocity and orientation.

RNM contains a model of how sound propagates through
the atmosphere. In general, the noise that propagates from a
source to a receiver at a given distance from the source can be
expressed as a sum of the following factors:

« the sound level at the source;

« the geometrical spherical spreading loss (since energy is a
conserved quantity, the energy per unit area (intensity) of an
expanding spherical pressure wave decreases as 1/r2. This is
called spherical spreading loss.)

« loss due to atmospheric absorption effects, based on theo-
retical predictions and experimental data;

« ground reflection and attenuation (including the effects of
terrain); and

« effects due to wind.

RNM allows for there to be multiple sources of noise from
the same rotorcraft.

Noise data either experimentally or analytically generated
from models is stored in the form of a sound sphere. Points
on the sphere are described in terms of a radius from the

source and two spherical angles. A sphere is associated with
one noise source and one flight condition (flight path angle,
nacelle angle (for tilt-rotors) and airspeed). There may be
more than one sphere for the same flight condition; for exam-
ple, spheres for different locations on the rotorcraft. Figure 1
shows an example sound hemisphere.

MD-900 Hemisphere 28

Figure 1. Example of sound hemisphere of an MD-900
helicopter.

There are three main computational components of the RNM
simulation:

» Input Module: Linear interpolation over the input trajec-
tory as a pre-processing step. Input data are interpolated (if
required) to a default of 2 second spacing.

» Source Database Lookup and Selection: Selecting and
interpolating over the sound spheres to determine the best
representative of the noise generating for a given location and
flight condition in the input trajectory; and

» Source to receiver propagation: Accumulating and storing
the sound for a given receiver.

The second and third components are executed for each
trajectory point, sound source, flight operation and receiver
location.

RNM simulation produces predictive noise data in various
formats. Of interest to our work, is the generation of ground
noise contour plots: a set of values representing ground noise
exposure using A-weighted SEL or other metric over a
designated grid of x-y points around the evaluated trajectory.
Figure 2 shows an example of such a plot, where each color
corresponds to a dB level (redder and lighter colors noisier).
These plots provide the data used to compute the aggregate
cost functions used during local search, as discussed below.

Local Search

Local search [Hoos and Stutzle, 2004], [Aarts and Lenstra,
1997] is one of the fundamental paradigms for solving com-
putationally hard combinatorial problems. Given a problem
instance, the basic idea underlying local search is to start
from an initial search position in the space of all possible
assignments (typically a randomly or heuristically generated
assignment, which may be infeasible, sub-optimal or incom-
plete), and to improve iteratively this assignment by means of
minor modifications. At each search step we move to a new
assignment selected from a local neighborhood, chosen via
a heuristic evaluation function. The evaluation function typi-
cally maps the current candidate solution to a real number and
it is such that its global minima correspond to solutions of the
given problem instance. The algorithm moves to the neigh-
bor with the smallest value of the evaluation function. This
process is iterated until a termination criterion is satisfied.
The termination criterion is usually the fact that a solution

4000

2000

Y-Ft
o

-2000

-4000

Figure 2. A Noise Contour Plot.

is found or that a predetermined number of steps is reached,
although other variants may stop the search after a predefined
amount of time. Different local search methods vary in the
definition of the neighborhood and of the evaluation function,
as well as in the way in which situations are handled when no
improvement is possible. To ensure that the search process
does not stagnate, most local search methods make use of
random moves: at every step, with a certain probability a
random move is performed rather than the usual move to the
best neighbor.

The reasons for preferring local search include:

1. Anytime performance: On average, local search behaves
well in practice, yielding low-order polynomial running times
[Aarts and Lenstra, 1997]. Since the trajectory space is large,
it is difficult a priori to characterize globally preferred solu-
tions. Consequently, we are interested in a system that can
examine large parts of the search space quickly.

2. Flexibility and ease of implementation: deployment-
related deadlines suggest the use of techniques which are easy
to implement.

3. Simulator Compatibility: running RNM is heavy from a
computational point of view. This means that the repetitive
evaluation of partial trajectories, required by complete in-
cremental solving paradigms (e.g. Branch and Bound), may
be unacceptably time consuming. Local search, on the other
hand, only requires the evaluation of complete solutions.

In hill-climbing search [Selman and Gomes, 2006], we se-
lect any local change that improves the current value of
the objective function. Greedy local search is a form of
hill-climbing search where we select the local move that
leads to the largest improvement of the objective function.
Traditionally, one would terminate hill-climbing and greedy
search methods when no local move could further improve
the objective function. Upon termination, the search would
have reached a local, but not necessarily global, optimum
of the objective function. In recent years, it has been found,
perhaps somewhat surprisingly, that simply allowing the local
search to continue, by accepting ‘sideway’ or even ‘downhill’
moves, i.e. local moves to states with, respectively, the same
or worse objective values, one can often eventually still reach
a global optimum.

THE TRAJECTORY NOISE OPTIMIZATION
PROBLEM (TNOP)

The formulation of the trajectory optimization problem used
here is based on techniques developed for motion planning
in continuous state spaces. These techniques include defin-
ing geometric models for representing location; defining a
configuration space of possible transformations of the "agent’
in motion; and methods for discretizing the state space by
partitioning the space into regions to enable solutions using
graphical methods. The following sections summarize the
components used in the problem formulation.

Configuration Space Definition

We focus on approach trajectories (and the nearly identical
problem of take-off) because that is where all the community
noise problems arise. We will focus on A-weighted SEL as
our noise exposure metric. RNM simulation provides a black
box scoring function for candidate trajectories. Specifically,
RNM produces an output file that assigns predicted noise for
a set of ground points arranged in a two-dimensional grid on
the X-Y plane. The grid size is defined in terms of the values
of the corner nodes and the distance between nodes.

Upon this grid our model superimposes an organization of
nodes associated with the state of the aircraft and the control
decisions being made by the pilot. We introduce state vari-
ables X, Y, Z, V. H and associated domains for, respectively,
location (X, Y), altitude (Z), airspeed (V'), and heading (H).
We use normal conventions for heading, whereby 0 is north,
90 is east, 180, south, and 270 west. Given a state variable
Q) we write g, to refer to domain elements of the variable. A
state of the system is a 5-tuple s = (z,y, z, v, h).

Similarly, we introduce decision variables AV, AZ, AH, AR
for change in velocity, change in altitude, change in heading,
and change in turn radius, also with associated domains, and
we write Av to denote a value in the domain of AV, etc.
Change in heading involves addition modulo 360. Change in
radius involves one action to initiate the change (e.g. AR =
180 to start a 180 degree radius turn) and a complementary
action to come out of the turn (e.g. AR = —180 to restore
straight flight). A decision vector (or simply decision) is a
tuple d of values for each decision variable.

A node is a pair (s, d) of a state and decision, representing
the state of the rotorcraft when the pilot or automated system
begins to apply decision d. Given node N; = (s;,d;), we
will denote with (x;,y;, 25, v;, h;) and (Av;, Azy, Ahy, Ary)
its components.

A path (trajectory) is a sequence of k nodes. Between two
adjacent nodes IN;, N, ; there is an edge (NN}, dist;, N;i1)
labeled with the distance flown dist; (in feet), between the
locations corresponding to the nodes. For a turn, it measures
the portion of the circumference of the circle flown. A consis-
tent path is one in which, forall j = 1...k—1, node N;, is
the result of applying d; at s; for the entire length dist;. We
express this as a transition function 7' : N — N, where N is
the set of nodes.

In our setting we are given two nodes designated as start and
finish, with fixed state and control vectors, and a solution is
any congsistent flyable trajectory between them. To control
the size of this space we initially start by limiting the paths
to those that would be considered ’standard’ by pilots (see
Figure 3). One example of a standard approach is a box
pattern, as the one shown in Figure 4. Such a pattern can

E

“ Earth.Flund
Coordinae Bysiem

.J‘ -“
%

C

& iris
g, Fum P
O A s
\- Tum Sagme’
x { ¥

———

Egh 127"
ey

l e’{u:ulﬂ’w

- 9
G#Umlnﬁﬁ‘

Figure 3. A standard ascent trajectory.

be represented by a sequence of 6 nodes Ny ... N5, where
two 90° turns start, respectively, at No and N3. Given a box
pattern, say (No,...,N5), our goal is to find an assignment
say (so,- .-, 85,do, . .., ds) to the state and control vectors of
the nodes not fixed by initial and final conditions, such that
the noise simulated by RNM on the corresponding trajectory
is minimal.

10 O O O O O

@)
O
@)
@)

© O O O Ok«

Figure 4. A “box”-like approach pattern.

Flyability Constraints

As mentioned above, we will be searching for flyable box
trajectories that minimize noise. Flyable trajectories are ones
that maintain aircraft safety and comfort of the passengers.
Although these criteria (especially comfort) are somewhat
subjective, we have taken advantage of the pilot expertise of
one the authors to define the appropriate constraints.

Conditions that make a trajectory suitable to fly are usu-
ally expressed in terms of constraints over the glide slope
angle and deceleration. In particular, any part of a tra-
jectory should be characterized by an angle of descent
v € [0°,12°] and a deceleration a € [0g,0.1g] (or
a € [40ft/sec?,201 ft/sec?]). Such restrictions induce con-
straints on the change of velocity and altitude as follows.
Given a pair of nodes IV;, N; and a path between them of
distance dist;; we have:

« the deceleration constraint (dec): Av; € {&,||Fa € [0,0.1],

8y = \/vf + 2a x dist;; — v; }, where a is expressed in gs.

« the angle-of-decent constraint (acc): Az; € {d,]|Fy €
s

[007 120]7 tCLTL(’)/) = m .

In addition, there is a minimal velocity and altitude
(vmant, zming) that a rotorcraft must maintain during de-
scent; these are a function of the distance of the craft from
the landing site. A trajectory is said to be flyable if it satisfies
all the deceleration and angle-of-decent constraints along its
path, and does not violate the bounds defined by vmin: and
zmini.

Formally then, a Trajectory Noise Optimization Problem
(TNOP) is a tuple (S,D, sy, s¢,acc, dec, vmini, zmini),
where S is a set of states, D s set of decisions, sg, sy are
initial and final states, acc, dec are deceleration and descent
angle constraints, and vmini and zmini are as just defined.
A feasible solution to a TNOP is a path P = Ny, Ny, ..., Ng
where Ny = (so,do), Nk = (sy,04), where Oq represents
the decision of leaving everything unchanged, and for all
j = 2...k, N; = T(N;_1), and where P satisfies the
flyability constraints.

Cost Functions

To use RNM noise contour plot data to evaluate the predicted
ground noise of candidate trajectories, we introduce two
natural ways of ’aggregating’ the data into scalar valued
functions. One cost function identifies ranges of values that
correspond to various levels ’high’, 'medium’ and ’low’
noise, and creates ’bins’ that store the number of grid noise
data points in that range. Each bin is assigned a weight
indicating its importance in determining solution quality, and
the trajectory is evaluated as the weighted sum of the bin
values.

Formally, we define a Binning Heuristic function (Bin) as
follows. Given in input a solution ¢, RNM computes the
A-weighted SEL value for each of the grid points. Let us
denote with SEL(¢t,x,y) such a value for the grid point
(z,y) given trajectory t. We define a sequence of decreasing
ranges, (ri,72,...,7r,) partitioning the SEL values of the
grid points. Given a trajectory ¢ let us denote by S;(t) =
{(z,y)|SEL(t,z,y) € r;}. We define the following vector
b(t) = (b1(t), b2(t), - .., bn(t)) where b;(t) = [S;(t)|- The
bin-score of solution ¢ is

Bin(t) = Si—1..nw;b;(t)

where w; is the weight associated to the i-th bin, w; > w41
and »;_, _,w; = 1. The intuition behind this function is
that of evaluating a solution by how it partitions the grid
points into regions of different levels of noise. Thus a solution
that assigns lower levels of noise to larger regions of the grid
is to be preferred. Weights are used to model this and to
further penalize the presence of, even small, extremely noisy
regions. Given this heuristic function the goal is to minimize
its value.

The other cost function is based on ordering two candidate
solutions based on a notion of “significant difference’ in their
predicted noise values. One noise data point is significantly
different from another if the human ear can detect a change in
the noise. Counting the number of significantly different pair
of noise values for the same point between two solutions, we
can generate a partial ordering of the candidates.

Formally, we define a Significant Improvement Heuristic

Sunction (Dif f) as follows. Let s denote a reference solutiof
and ¢ another solution. Then the significant improvement
score of t w.r.t. s is

Diff(s,t) =
(@) ISEL(t,7,y) — SEL(s,2,y) > 1.5dB)].

In other words, this heuristic function considers a reference
solution (that, in our case will be seed solution of the local
search), and then scores all other solutions counting the
number of grid points where they produce a noise that is at
least 1.5dB lower than the one produced by s at the same
point. As noted earlier, the 1.5dB threshold has been chosen
since it is the smallest improvement that can be perceived by
a human. The intuition behind this heuristic function is that of
promoting solutions that improve significantly in the largest
number of grid points. Given this heuristic function the goal
is to maximize its value.

LOCAL SEARCH FOR THE TNOP

The technique we propose here to solve the optimization
problem described in the previous section is a hill-climbing
local search approach.

Figure 5 describes the pseudocode of our algorithm, which
we call Box-TNOP-HC.

Box-TNOP-HC(Trajectory oseed, function score, integer threshold)
Ocur = Oseed // current trajectory
Obest = Oseed // best incumbent trajectory
step = 1
do
00 = neighbor(ocur)
neighborhood(ocur) = neighborhood(ocur) \ {00}
while neighborhood(ocur) # 0 and score(oo) < score(ocur)
00 = neighbor (o cyr)
neighborhood(ccyr) = neighborhood(ocur) \ {00}
Tcur = 00
if flyable(ocur) and score(ocur) > score(opest)
Obest = Ocur
step + +
while step < threshold

return Opest

Neighbor(Trajectory o)

1n = random (o) // randomly pick a node

2 p = partner(n) // choose adjacent node, either forward or backward
3 select ¢ € {Av, Az} // change rate of deceleration or descent

4 v. = val(c, p,n) // find a an allowable value to transfer

50, = transfer(n,p,ve, o) // add the value to p and subtract from n
6 (n, p, ¢) = used // mark triple as used

return o, // return the neighbor

Figure 5. Algorithm Box-TNOP-HC.

The inputs to the algorithm are

o a seed solution o geed;

« a scoring function score;

«» a positive integer threshold, representing the number of
search steps after which the execution must terminate.

We note that the box trajectory is implicitly represented in
Oseed- Moreover, since in our case there is no way to test if
an optimal solution as been found, the algorithm will always
run for threshold number of steps.

The output of Box-TNOP-HC is a solution denoted by opes¢-

During the execution we keep track of the current solution,
the neighborhood of which we are exploring, denoted by
O cur, and the best flyable solution found so far, denoted with
Opest- Both such solutions are initially assigned the seed so-
Iution. Then, the algorithm starts exploring the neighborhood
of g.yur. As soon as it finds a solution that is better than the
current one, it checks if it is flyable and if so it saves as the
best incumbent. Box-TNOP-HC then updates o, and starts
scanning its neighborhood. Whenever no better solution is
found, a random move in the neighborhood is taken.

Neighborhood Function

The neighbor of a trajectory s is the result of applying one
of two operators that alter the change of speed or altitude
at two adjacent nodes of s. Figure 6 illustrates the general
case where a node has two adjacent nodes with which to swap
values.

To perform the operation that generates a neighbor, a node
N; is chosen at random to be the recipient of the transferred
value. A partner N; (i.e., N;_; or N;;1) and a control
variable, AV or AZ, is chosen (deterministically in a pre-
assigned order) from where to transfer value to N;,. An
amount 0 < 9z, < Axy is then computed and transferred
to IV;; that is, dz. is added to the appropriate control variable
in V; and subtracted from the value of V;’s control variable.
Note that given a trajectory with L nodes, Ny,... Ny, no

a. OXc,
() +

- disti.q U dist; @
D i1 = (AVia, Aziq) = (AVi, AZ) D 41 = (AVie1, AZirq)
S i1 = (Xiet,¥i-1,V,2i1) = (X0YiViZ) S is1 = (Xie1,Yie1,Vie1,2141)

b.

> disti4 U dist; @
D i1 = (Avia, AZiq) = (AVi, AZi) D 11 = (AVp1, AZp)
St = (Xi1,Yi1,V,Zi1) = (X0YiViZ) S a1 = (Xie1,Yi+1,Vie1,Z141)

Figure 6. Transferring values between adjacent nodes.

transference is possible for the final node, Ny. The first and
L — 1st nodes have only one partner; the rest of the L — 3
nodes have two partners.

The value v, to transfer between a node and its partner must
be chosen in a way to preserve the feasibility of the new
trajectory. Intuitively, there are two considerations: first, if too
much value is transferred to a node, the trajectory will force
the pilot to ether descend or decelerate too quickly during the
segment beginning at N, violating the limit constraints on
these values. This test must be applied whether the partner
in the transfer is the forward or backward neighbor of N;.
Second, if too much control is passed backward from N, to
N, then more deceleration is applied sooner, and if too much
is transferred carlier the helicopter might end up flying too
low or too slow at N; ;. This test involves the lower bound
values vmini and zmini defined earlier for the state at the

partner node.

Finally, the effects of the transference of control is propagated
to the states of the relevant nodes. Specifically, if control is
transferred forward to IV;, then the state of V; is changed; if
control is transferred backward to IV;, then the state of V41
changes.

EXPERIMENTS

The goals of the experiments we have performed are:

« to assess the runtime behavior of cost functions Bin and
Dif f;

« to determine whether the two apparently incomparable
noise cost functions can be combined to produce solutions
that were better than solutions obtained from each applied
alone;

« to find ways to exploit the ability to tune the data resolution
in the simulator to converge on good solutions faster.

Specifically, we compared 6 different local search variants:

1. Bin: local search using Bin cost function with 7 bins cor-
responding to the following SEL ranges ({125, —|, [115, 124],
[105,114],[95,104], [85,94], [75,84], [0, 74]) with weights
respectively of (0.2,0.2,0.2,0.1,0.1,0.1,0.1).

2. Diff: local search using Diff cost function.

3. DiffBin: two- phase local search: first, running Diff, then
running Bin starting from the best solution found in the first
phase;

4. BinDiff: same as previous, but using scoring functions in
reversed order;

5. HBin: two-phase variable resolution search: first, running
Bin with coarse resolution, meaning a larger grid distance
between nodes and then running BIN with finer resolution.
6. HDIiff: same as the previous, but with Diff.

Results

We conducted a number of experiments using the 6 different
approaches defined above. Each of these variants was run 5
times, starting with the same initial seed. The threshold value
was set to 100 for Bin and Diff, 25 and 50 for each phase
of HBin and HDiff and 50 for each phase of BinDiff and
DiffBin. We tested two different thresholds for the algorithms
using two different resolutions in order to take into consider-
ation also the additional time required for each iteration at
high resolution. The default resolution we used is 500ft of
grid distance between nodes yielding a grid of size 261. In
the approaches using two resolutions the lowest one was set
to 1000 ft and the grid was 75.

For each run we have recorded:

« the best solution found and its score;
« the best incumbent score at each iteration step;
« the total amount of time taken to complete all iterations.

Table 1 shows some results of our experiments. In particular,
the first column contains the average over the 5 runs of the
scores of the best solution. We recall that, given the way the
cost functions are defined, lower is always better and that
for Dif f the final score will be < 0 while for Bin it will
be a positive integer. The second column shows the absolute
best score found in the 5 runs and the last column shows the
average required time.

First, let us compare Bin, DiffBin, and HBin, the three vari-
ants to using Bin. The results, although preliminary, indicate
that the quality of the solution is not improved when Bin is
used with more than one resolution. However, the combina-
tion with Diff does produce a good quality result in less than
half the time of just running Bin.

In the case of comparing the Diff-based searches (Diff, Bin-
DIft, HDiff), a similar trend can be observed, where the gap
between the quality produced by Diff alone and its hybrids is
markedly better.

Table 1. Quality Comparison of 6 Approaches to Local
Search Optimization.

Average(5) | Best | Time(sec)

Bin 21.67 21.21 2014

Diff -128 -196 2012
BinDiff 450.2 930 2998
DiffBin 125.8 110.6 5777
HBin?® 22.28 21.39 1704
HDiff?° -59 -126 1786
HBin"° 21.6 20.8 5322
HDiff?° 641.2 1373 5317
HDiff>Y -53 =77 5999

In Figures 7 and 8 we show the runtime behavior for the
single-phase variants Bin and Diff. As it can be seen, Bin
converges fast but it is much less discriminating. We speculate
that this can be caused by the limited number of bins used
and the flattening effect of the weighted sum. Diff, instead,
converges slower but discriminates more among solutions.
The results of this variant are very encouraging since, as
shown in Table 1, the best solutions found are significantly
more quiet than the seed solution on almost half of the grid.

Bin

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Step

Figure 7. Runtime behavior of Bin

SUMMARY AND FUTURE WORK

This paper has explored the idea of plan optimization through
robust simulation. The effective use of simulation in many
cases assumes the ability to ’tune’ the resolution of the
simulation to provide enough advice without hindering the
ability to conduct search. We illustrated these ideas on the
problem of minimizing rotorcraft noise during approach and
landing. We also explored the design of cost functions from

Diff

9 17 25 33 41 49 57 65 73 81 89 97

-10 BN

-15
Diff

Score

-20

-25

-30

-35
Step

Figure 8. Runtime behavior of Diff.

data acquired through simulation. The experimental results
have identified the advantages of employing a heuristic cost
function based on identifying regions of significant improve-
ment. Moreover, the results suggest that it is not obvious
that the creative use of multiple cost functions and varying
data resolution can yield improvements in the performance of
local search solvers. Further testing, however, is required to
confirm these preliminary results.

Although the data collected from the experiments support the
approach of interleaving optimization planning with simula-
tion, the results are somewhat limited, due primarily to the
rigid framing of the problem, in particular, in not allowing the
decision space to include changes along the position x, y state
elements. Consequently, we’re in the process of expanding
the model to allow changes in position. This change will
enable modeling of decisions affecting turns, i.e., turn angle
and radius. These changes will increase the dimensionality of
the search space, and we anticipate the need for using more
sophisticated path planning algorithms, such as those based
on probabilistic methods, to explore the trajectory space.

REFERENCES

[Aarts and Lenstra, 1997] Aarts, E. and Lenstra, J. K.
(1997). Local Search in Combinatorial Optimization.
Princeton University Press.

[Betts, 1998] Betts, J. T. (1998). Survey of numerical meth-
ods for trajectory optimization. Journal of Guidance,
Control and Dynamics, 21(2):193-207.

[Conner et al., 2006] Conner, D. A., Burley, C. L., and
Smith, C. D. (2006). Flight acoustic testing and data
acquisition for the rotor noise model (rnm). In Proceedings
of the 62nd Annual Forum of the American Helicopter
Society, pages 1-17.

[Cox et al., 2009] Cox, C., Schaaf, P., Syms, R. A., Tramon-
tana, P., Orozco, J., Bennet, R., Brieger, J., and Jacobs, E.
(2009). Fly neighborly guide. Technical report, Helicopter
Association International.

[Goplan et al., 2003] Goplan, G., Xue, M., Atkins, E., and
Schmitz, F. H. (2003). Longitudinal-plane simultaneous
non-interfering approach trajectory design for noise min-
imization. In Proceedings of the 59th AHS International
Forum and Technology Display, pages 1-18.

[Greenwood and Schmitz, 2010] Greenwood, E. and

Schmitz, F. (May 11-13, 2010). A parameter identification
method for helicopter noise source identification and
physics-based semi-empirical modeling. In American
Helicopter Society 66th Annual Forum, Phoenix, AZ.

[Hagelauer and Mora-Camino, 1998] Hagelauer, P. and
Mora-Camino, F. (1998). A soft dynamic programming
approach for on-line aircraft 4d-trajectory optimization.
European Journal of Operational Research, 107:87-95.

[Hoos and Stutzle, 2004] Hoos, H. H. and Stutzle, T. (2004).
Stochastic Local Search: Foundations and Applications.
Elsevier - Morgan Kaufmann.

[LaValle, 2006] LaValle, S. (2006). Planning Algorithms.
Cambridge University Press.

[P. Cheng and LaValle, 2001] P. Cheng, S. Z. and LaValle,
S. M. (2001). rrt-based trajectory design for autonomous

automobiles and spacecraft. Archives of Control Sciences,
11(3-4):167-194.
[Selman and Gomes, 2006] Selman, B. and Gomes, C.

(2006). Hill-climbing search. In Encyclopedia of Cog-
nitive Science. John Wiley & Sons.

[Xue and Atkins, 2006] Xue, M. and Atkins, E. M. (2006).
Terminal area trajectory optimization using simulated an-
nealing. In 44th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada. AIAA.

