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The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled
using a nonlinear difference equation description. Static and dynamic tests are used to
select a suitable model structure and basis function. Bifurcation criteria such as the Hopf
condition and vibration amplitude variation with airspeed were used to ensure the model
was representative of experimentally measured stall flutter phenomena. Dynamic test data
were used to estimate model parameters and estimate an approximate basis function.

I. Introduction

The existence of nonlinearities in aeroelastic systems is known to significantly affect their dynamic be-
havior, often inducing oscillations that cannot be predicted by linear theory." One such type of oscillation
is known as stall flutter.” Traditionally, aeroelastic phenomena are considered to be dynamic responses
resulting from interaction of structural, inertial and aerodynamic forces. Such interactions can lead to the
well-known classical linear flutter, a catastrophic self-excited oscillation.” However, several other incidents
can arise from low speed aeroelastic interactions, such as stall flutter and galloping,” which are due to the
presence of an underlying nonlinearity in the aerodynamic forces. These events frequently lead to Limit
Cycle Oscillations (LCO). LCOs also result from other sources, such as structural or material nonlinearities.

Stall flutter is a phenomenon that occurs when flow separates from and reattaches to the surface of a
wing in a cyclic manner. The separation can be partial or complete over the entire wing’s surface. This
alternation between stalled and attached flow is known as dynamic stall, a phenomenon that has been the
subject of numerous experimental and theoretical investigations (see for example McCroskey et al,” Ericsson
and Reding” and Spentzos et al”). Stall flutter is the result of coupling of the vibration characteristics of a
flexible structure with dynamic stall.

Historically, several simple models of stall flutter have been developed, such as those by Ericsson.
However, practically such models are quasi-steady, i.e. they are derived from steady lift and pitching moment
curves of a wing. In the present work, a straightforward mathematical model of stall flutter is developed from
measurement, of dynamic responses. Abdul Razak et al’>'" conducted a set of experiments on a rectangular
wing in a low speed wind tunnel that underwent stall flutter in pitch. These experiments are used to identify
a nonlinear discrete-time model of stall flutter response of a wing and estimate the fundamental parameters
of its dynamics and static function.

The model was estimated using a cross-validation approach.' »'© Model development via cross-validation
is concerned with assessing whether a given nominal model can reproduce data from a plant, collected after
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some initial experiments to obtain estimation data.'” The model validation problem is really one of model
invalidation since a given model can only be said to be not invalidated with the current evidence. Future
evidence may invalidate the model.

The motivation for this study is to investigate whether an approximate basis function can be parame-
terized and estimated using the /5 estimator, thus, avoiding a nonlinear least-squares estimation and search
paradigm. While this work provides an ad-hoc approach to basis function parameterization it is not a re-
placement for the traditional nonlinear least-squares approach. This work offers a coarse estimation, which
may be adequate in most applications or provide a possible seeding for nonlinear search techniques such as
the well-known Levenberg-Marquardt algorithm.* % '°

II. Experiment Description

Below we provide details of the experimental testbed and procedures used for data collection and analysis
to obtain a basis function class.

A. Support System

The experiments”’>'” were conducted in the Multi-Disciplinary Low Speed Wind Tunnel of the University of
Liege. The wind tunnel features two working sections, one for aeronautical and automotive applications and
one for wind engineering applications. Experiments were carried out in the aeronautical working section,
which has dimensions of 2m x 1.5m x 5m (width x height x length) and is capable of achieving airspeeds
of up to 60 m/s in the tunnel’s closed loop configuration. The turbulence level was 0.15% on average at
lower speed ranges. For stall flutter experiments a special support framework was assembled, which was
used to fix extension springs. Ends of the springs were fixed to arms that acted as adaptors to the wing
spar. The spar was connected to the center of the arm. Free-play was avoided by securely attaching the spar
to the adaptor arms. The suspension springs allowed movement in all directions. The support mechanism
described was designed to allow frictionless wing vibrations with known structural stiffness values. Eight to
sixteen springs can be installed to suspend a wing and keep it in tension. Even numbers of springs were used
to ensure symmetry in stiffness. The complete support system is shown in Fig. 1.

Supports

(a) Drawing (b) Photograph in wind tunnel

Figure 1. Wing and support design and construction

B. Wing

A rigid straight rectangular wing was constructed from aluminum and balsa wood. The wing chord was
36.0 cm long and span 100 c¢m, resulting in an aspect ratio of 2.78. The skin consisted of a 0.5 mm thick
aluminum sheet that was wrapped around balsa ribs. There were six ribs inside the wing, positioned 18.0
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cm apart. The 2.0 cm thick ribs were held together by an aluminum rod acting as a main spar, located at
37% of the chord. The airfoil selected for this study was the NACA 0018. This thickness ratio was chosen
for two reasons. Firstly, it was high enough to allow the installation of instrumentation inside the wing.
Secondly, it was thicker than the NACA 0012 airfoil investigated by Dimitriadis and Li.'" It was hoped
that the increased thickness would give rise to different stall phenomena. This design allowed ballast to be
attached internally. Mass of the wing including main spar, adaptor arms and instrumentation was 6.47 kg
and its spring stiffness was 755 N/m.

To measure the unsteady pressure distribution, 16 pressure tappings were drilled on the wing surface, at
the mid-span point. These tappings were connected to 16 piezoresistive pressure transducers'® by means of
plastic tubes."” They were positioned symmetrically on the wing’s upper and lower surfaces, as shown in
Fig. 2. The phase lags associated with the tubes were discussed in.
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Figure 2. Position of pressure sensors, spar and center of gravity relative to the wing section

Wing motion was measured using four accelerometers attached on the spring adaptor arms. Their
frequency measurement range was between 0-300 Hz with accuracy of £5% and their measurement range is
450 g. The pressure sensors and accelerometers were sampled at 1.0 kHz using a National Instruments PXI
1010 data acquisition module managed by Labview 9 software. From these measurements, pitch and plunge
displacements of the wing were reconstructed by numerically integrating acceleration values twice. There
were no end-plates attached to the wingtips to allow good quality flow visualization could be obtained. As
a result, flow over the wing was three-dimensional.

C. Procedure

Two parameters varied during these experiments are as follows:

e Wind tunnel airspeed, V' (from 0 m/s to a maximum of 26 m/s)
¢ Wind-off static pitch angle, oy (from 11° to 16°)

Experimental procedure consisted of setting the wind-off static pitch angle then gradually increasing
airspeed. At each new airspeed, when wing response was stabilised, 4 seconds of acceleration and pressure
response data was recorded. No external excitation was applied besides the natural turbulence of the wind
tunnel.

Before starting the wind-on tests, wind-off instrumented hammer tests were performed in order to de-
termine the natural frequencies of the degrees of freedom of the wing. The frequency values for the plunge,
pitch and roll degrees of freedom are tabulated in Table 1. The yaw, lateral translation and longitudinal
degrees of freedom have higher natural frequencies.

D. Data Analysis

Accelerometer data were first analysed to obtain pitch, plunge and roll accelerations. These responses were
band-pass filtered between 2Hz and 80Hz, using a rectangular frequency domain filter. They were then
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Mode  Frequency Damping ratio

Plunge 4.57Hz 0.0033
Pitch 5.95Hz 0.0087
Roll 13.10Hz 0.0418

Table 1. Natural frequencies and dampings at U =0 m/s

integrated in time twice to estimate the pitch, plunge and roll velocities and displacements. Integration was
carried out in the time domain using a central difference scheme.

Pressure data were integrated around the wing’s central section to obtain sectional aerodynamic lift
and moment coefficients. These signals were band-pass filtered between 2Hz and 80Hz. Note that lift and
moment coefficients are sectional and, therefore, do not represent the total lift and moment acting on the
wing. In this work, the sectional moment coefficient is used to choose a basis function for identification of
the wing’s response. This choice is based on variation of sectional lift and moment coefficient values with
pitch displacement and velocity responses.

Moment coefficient around flexural axis
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Figure 3. Static pitching moment variation with angle of attack at two different Reynolds numbers.

ITI. Results

Only a subset of the experimental results is presented in this work. For a more complete description see
Abdul Razak et al."” Static aerodynamic pitching moment results are presented first, followed by dynamic
responses.

A. Static Results

Figure 3 shows the total static aerodynamic pitching moment coefficient variation around the pitching axis
with pitch angle. The data shown in the figure were obtained using a force and moment balance setup. The
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wing was placed at different pitch angles and its total lift and drag were measured using six force gauges;
aerodynamic moment around the pitching axis was measured using a single torque gauge. Static experiments
were repeated at two Reynolds numbers representative of subsequent dynamic experiments. The pitching

moment coefficient is defined as m

m = 1/2pV2S¢ (1)

where m is the pitching moment, p is the air density, V' is the wind tunnel airspeed, S the wing surface area
and ¢ is the chord of the wing.

Figure 3 illustrates that the moment curve is linear up to a pitch angle of approximately 14°. Nose up
pitching moments are defined as positive and, hence, the effect of the pitching moment is destabilising. At
pitch angles higher than the linear limit the pitching moment becomes less destabilising.

The static pitching moment coefficient data can be curve-fitted using a function of the form

¢m = hiaexp (—hga”?) (2)

where ¢, is the non-dimensional aerodynamic pitching moment coefficient and « is the pitch angle. Note
that Fig. 3 plots a curve-fit based on Eqn. 2, where hy = 0.4011, ho = 707.5641, h3 = 6 and « is in rad. The
curve-fit provides a good approximation up to pitch angles of 24°.

Since pitch responses were obtained from integrating acceleration signals, the mean values of these re-
sponses were lost. However, mean data can be reconstructed using the results in Fig. 3. It is assumed that
the mean value of pitch response is equal to the static deformation of the wing’s pitch angle at the same
airspeed. This deformation is given by the static equilibrium equation

1
ka(ae - aO) = QPVQSC Cmstatic (ae) (3)

where k,, is wing stiffness in the pitch degree of freedom, . is mean pitch angle at airspeed V and «y is
wind-off pitch angle. This equation is nonlinear but can be solved iteratively or graphically.

B. Dynamic Results

Dynamic tests were performed after the static tests, replacing the force balance setup with the spring
assembly shown in Fig. 1. For all selected wind-off static pitch angles, at low airspeeds the response was
noisy and of low amplitude. For a static pitch angle of 11°, significant high amplitude vibrations occurred
at airspeeds higher than 25 m/s. This is a classical flutter phenomenon. The highest airspeed tested was
limited to 25.5 m/s for safety reasons.

For the other static pitch angles, lower amplitude vibrations were encountered at lower airspeeds. Vi-
brations occurred primarily in pitch degree of freedom, with very little motion in other degrees of freedom.
The amplitude of these vibrations increased gradually with airspeed, particularly for the highest static pitch
angles of 14° — 16°. Figure 4 shows variation of pitch angle response amplitude with airspeed for all tested
angles of attack.

IV. Discrete-Time Nonlinear Model Representation

In this work, the construction of identified models describing the stall flutter response of a wing is
considered. Therefore, low amplitude responses to turbulence at low airspeeds and the classical flutter
phenomenon at ag = 11° is ignored. As mentioned previously, stall flutter responses predominantly involve
pitch degree of freedom. Therefore, the phenomenon can be modelled as a single degree of freedom vibration.
The equation of motion for the wing can be written as

.. . 1 . ..

1,6(t) + cace(t) + kaa(t) = épVQSc em(a(ty), a(tr), a&(ty)) (4)
where 7 is time, « is pitch angle, I, is wing’s moment of inertia around the pitch axis, ¢, is wing structural
damping in the pitch degree of freedom, p is air density and ¢ is wing chord length. In Eqn. 4, the pitching
moment coefficient is expressed as a nonlinear function of the current and past values of system states. The
motion started at time ¢ = 0, and ¢; takes values from 0 to 7. Dependence on past values of system states

reflects the well-known property of infinite dimensionality of unsteady aerodynamics.
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Figure 4. Pitch response amplitudes at all angles of attack and airspeeds

Equation 4 can be simplified if it is assumed that the added mass effect is small compared to the moment
of inertia of the wing’s structure, even when flow is stalled. In this case, Eqn. 4 becomes

1,6(t) + caci(t) + kpa(t) = %p\/QSc e (a(ty), &(ty)) (5)

To reflect experimental conditions in the wind tunnel, an additional excitation force term can be added
to model the effect of free stream turbulence. If it is assumed that this effect is much smaller than the
self-excited stall flutter oscillations, the equation of motion can be written as

1
In6(t) + cad(t) + kaci(t) = 5pVQSc em((ty), &u(ty)) + f(t) (6)
where f(t) is a random excitation force of small amplitude.

A. Nonlinear Structure of Moment Coeflicient

Using the present approach, the moment coefficient is an unknown nonlinear function of pitch displacement
and velocity at all times since the onset of motion. To choose an approximate basis and model form for this
nonlinear system, sectional pitching moment coefficient signals measured using the pressure tappings were
utilized. These signals do not represent a complete 3D aerodynamic pitching moment acting on the wing.
However, it is assumed that the sectional moment coefficient has the same nonlinear form as the 3D moment
coefficient and, therefore, can be used to provide a good approximation.

Figure 5(a) shows the time response of o, & and ¢, for a9 = 14° and V = 11.5 m/s. The oscillation
amplitudes are very small (less than 1° in pitch displacement) and the signals feature significant randomness.
Figure 5(a) depicts a typical response to the wind tunnel’s free stream turbulence, in the absence of any self-
excited phenomena. Figure 5(b) displays ¢, on the z-axis against o and & on the z and y axes, respectively.
This plot is very messy and without any clear structure.

By contrast, Fig. 6 shows the time response and phase plane plots at the same wind-off pitch angle
but a higher airspeed, V' = 20.1 m/s. In this case, the signals are significantly more ordered and have
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Figure 5. Time responses and phase plane plots of «, & and c¢,, at low airspeed

a single principal frequency component. Nevertheless, the moment coefficient varies more stochastically
than pitch displacement and velocity responses. This phenomenon is due to the fact that the separation
and reattachment of the boundary layer are quasi-repeatable processes. During each cycle, separation and
reattachment occur at slightly different phase values. As a consequence, the phase plot of Fig. 6(b) is noisy
but has a clear structure. Furthermore, it is repeatable within some confidence bounds.
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(a) Time responses (b) Phase plane
Figure 6. Time responses and phase plane plots of «, & and ¢;, at high airspeed

The objective of this section is to develop a discrete-time model representation for ¢,,, which is capable of
representing phase-plane plots such as Fig. 6(b). If no nonlinearity exists or the system is perturbed around
a sufficiently small operating point, an ARMA (Auto-Regressive Moving Average) model structure would
suffice and is represented as,

em(n) = yoo(n) + yie(n — 1) + yea(n —2) + ... +e(n) + d1e(n — 1) + dae(n — 2) ... (7)

where n is a discrete-time instance, e(n) is a noise sequence and ~;, 0; are coefficients to be estimated.
However, such a model cannot represent the correct geometric shape of the manifold in Fig. 6(b) and will
result in a linear model for the entire wing that is incapable of predicting LCOs. Therefore, a nonlinear
model must be formulated.

To choose an appropriate nonlinear model structure for the manifold of Fig. 6(b), it is observed that the
plot is a 3D curve. However, if the manifold is rotated appropriately, it can be seen that it lies on a curved
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Figure 7. Figure 6(b) plotted at different azimuth and elevation angles

2D plane . Figure 7 shows the same manifold at two different sets of azimuth and elevation angles. This
illustrates that for two combinations of azimuth and elevation, the manifold is an approximately 2D curve.
This phenomenon is common to all measured LCOs, although rotation angles differ for each case. Notice
that the plot in Fig. 7(a) resembles the static pitching moment curve in Fig. 3 at pitch angles between 10°
and 20°. Therefore, to obtain an estimate of ¢,,, the cycle &(a) can be mapped onto a curved plane, as
shown in Fig. 8. The shape of the plane is inspired by the function used to curve fit the static pitching
moment coefficient data, as shown in Eqn. 2. The coordinates of that plane are given by

afw,
x =RR, &/ w, +bv (8)
—exp (—at fwy) s

wherex = [z y 2|7 are coordinates of the mapping plane in a-é-c,,, space, w;, wy and w, are normalisation

coeflicients, b is a displacement coeflicient and v is a unit vector perpendicular to the direction of the curvature
of the plane, given by
v =[cosp sing 0]7 9)

where ¢ is the azimuth angle that collapses the ¢,,, manifold into a 2D curve, in this case —40° as in Fig. 7(a).
R is the azimuthal rotation matrix given by

cos¢p —sing 0
R.=| sing cos¢ 0 (10)
0 0 1

and R rotates the mapping plane around an axis aligned with v by an angle equal to the elevation angle
required to collapse the ¢, manifold to two dimensions, in this case —4°. R is given by

cost) + cos? ¢?(1 — costp)  cos¢sing(l —cosep)  sinpsin
R = cos ¢ sin ¢(1 — cos ) cos ) + sin? ¢(1 — cosy)  cos¢sin (11)
—sin¢siny cos ¢sin cos ¢
From Eqn. 8, it is clear that a good approximation of the geometric plane on which ¢, lies has been
obtained by means of a simple nonlinear function. Note that in the case of Eqn. 8 the exponent of « inside

the exponential is 4 as opposed to 6 in the static pitching moment case. In the sequel, a generalized form of
this basis function is used to develop a robust model description.
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Figure 8. Moment coefficient manifold and mapping plane

B. Constraints

The nonlinear function ¢, must satisfy some known constraints. First, the system undergoes a Hopf Bi-
furcation at a critical airspeed, V,, such that a periodic solution branch appears in the system’s bifurcation
diagram at that airspeed. For a single degree of freedom system of the form of Eqn. 5 or 6, the Hopf bi-
furcation can be described by considering stability of the equilibrium solution o = «,. The stability of this
solution is identical to the stability of the linear system
a) (12)
e,V

For a Hopf bifurcation to occur, total damping of the linear system above must be equal to zero. This yields
a bifurcation condition for the form

T (t) + cad(t) + koo(t) = %pV2Sc (%

o
oV I51eY

dem,  2cq
dd |, v - pV2Se

Second, the nonlinearity must satisfy the limit cycle amplitude and fundamental frequency. At airspeeds
higher than the bifurcation airspeed the system undergoes LCOs whose amplitude and frequency have been
measured. Therefore, the nonlinearity must be capable of matching these measured values. To describe this
condition, a first order Harmonic Balance expansion is applied to the equation of motion. It is assumed that
the LCO response of the nonlinear equation of motion can be written as

(13)

a(t) = Asinwt (14)
where A is LCO amplitude and w is frequency. Substituting this solution into the equation of motion yields
1
— Aw?T, sinwt + Awey, coswt + Ak sinwt = épVQSc (ap + a1 coswt + by sinwt) (15)
where ag, a; and b; are coefficients of a Fourier series given by
w 27 fw
ay = —/ em (Asinwt, A coswt) dt
T Jo
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w 27 fw

ap = —/ em (Asinwt, A coswt) cos widt
T Jo
w 27 fw

by = —/ em (Asinwt, A coswt) sinwtdt.
T Jo

Substituting into Eqn. 15 and carrying out harmonic balancing yields

27 fw )
/0 em (Asinwt, Acoswt)dt = p‘;;%
27 fw oA
/0 em (Asinwt, Acoswt) sinwtdt = p\/;rm (—w?Is + ko) (16)
27 fw oA
/ em (Asinwt, A coswt) coswtdt = 7T—ca
0 pV2Scw

Conditions 13 and 16 can be used in order to select a suitable set of basis functions for the nonlinear term

Cm-

C. Choice of Nonlinear Function

Satisfying the constraints above yields a suitable form of nonlinear function ¢,, represented as

&
Cm :plaexp(—pgap3)+p4v. (17)

The linear term in ¢ is necessary to satisfy condition 13. Nevertheless, this model is restrictive because the
exponent p3 must be an even integer, if the function is to remain real and finite at negative values of a. A
generalization of the model, that allows odd and non-integer exponents can be written as

o
Cm :p1anp(—p2|Oép3|)+P4V (18)

where | | denotes the absolute value.

D. Full Model
Using the formulation of Eqn. 18, the equation of motion of the wing in pitch becomes

.. . 1 1 &
1a6i(t) + cad(t) + ha(a(t) — a0) = 5pV2Se praexp (—pz o)) + 5pV2Sc pis (19)
where the centering of the pitch spring around the wind-off pitch angle is taken into account.
Equation 19 can be posed in discrete-time form using a central difference approximation, centered around
time index n — 1. The pitch acceleration and velocity terms are written as

a(n) —2a(n — 1)+ a(n —2)
Ae?
a(n) —a(n — 2)
2A¢

where the notation «(n) denotes a(nAt) and At is the time step between two successive experimental
measurements, in this case equal to 0.001s. The discrete-time form of the equation of motion is then

( 1, i Co — 1/2PVSC p4> a(n) = koo + (% _ ka> a(n — 1)

At2 2At At2

N I, co — 1/2pV Sc py
At? 2AL

)al =2+ 5oV?Se malo ~ Dexp(—palafn =17 (20
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Wind-off dynamic tests provide values of several coefficients in this formulation, namely, I, ¢, and k.
Furthermore, p4 is known from Eqn. 13, i.e.

2¢,,

=——. 21
pV.Sc (21)

P4

The exponent ps is not known a priori. Unfortunately, integrals in the first and second conditions of Eqn. 16
cannot be evaluated analytically. However, they can be evaluated numerically such that

27 fwAt 9
T
nz:% pra(n)exp (=pzfa(r) )AL = —e
27 fwAt
Ps|)sin (wnANAL = —22 Lotk 22
Z pra(n)exp (—p2 |a(n)P?|) sin (wnAH)AL = m(ﬂu ot ko). (22)
n=0

Therefore, a complete model of the wing can be obtained by estimating the unknown parameters of Eqn. 20
given the constraints 22.

V. Best Fit Model via Cross-Validation

Although Eqn. 20 provides a compact model description, it yields a non-trivial estimation problem.
A typical estimation procedure would involve a nonlinear least-squares approach because of the unknown
coeflicients associated with the exponential term.”” In this paper, we chose to parameterize a set of basis
functions using a priori knowledge from the present dynamic experiments and using a cross-validation
technique to select a best fit model which contains an approximate basis function.

A. Predicitive Capability Using an ARMA Model Formulation

In many cases although a nonlinear model is suspected or assumed from finite element modelling efforts,
experiments are conducted about a small operating region due to safety concerns and hardware limitations.
This often renders the nonlinear effect unobservable and, hence, unidentifiable.”* As such, we first estimate
a linear model, namely, Eqn. 20 with the basis function truncated to assess whether a linear model is capable
of predicting the observed output before proceeding to postulate a more advanced nonlinear one.

Specifically, we used one of eleven datasets for estimation and the remaining ten to validate the linear
model’s predictive capability. The accuracy of a k-step-ahead predictor was quantified by computing the
%Fit as

1 N A2
%Fit = (1 _ N 2oz (% = o) ) x 100 (23)

% 2521 (cvn)?

where & is the predicted output. Figure 9 shows a typical cross-validation output for the postulated ARMA
model. The figure illustrates that a linear model is not capable of accurately reproducing the measured data
with high accuracy. For all cross-validation datasets the ARMA model was only able to predict approximately
75% of the observed output variance. This result provides justification to assess whether a nonlinear model
can provide improved predictive capability.

B. Predicitive Capability Using a Nonlinear Model Formulation

We evaluated the ability of the nonlinear model given by Eqn. 20 to accurately predict the observed output.
The parameterization chosen for the exponential terms, po and ps is given in Table 2. The values of ps and
p3 were selected by trial and error as ones that provided good curve-fits with a maximum error of less than
10%. For estimation and model selection, we again used one output as estimation data and the remaining ten
as validation data. A model (Eqn. 20) was estimated for each parameterization giving 16 models for every
validation data record. Each model’s output was computed using a k-step-ahead predictor and accuracy
quantified as %Fit (Eqn. 23). The model that yielded the highest %Fit was deemed the best fit model. This
procedure was repeated for each validation output.
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Typical Cross—Validation Without Nonlinear Term
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Figure 9. Cross-Validation: Typical linear model prediction (dash-dot line “-.’) superimposed on top of the
measured output (solid-line “—).

p 08 09 10 11 12 13 14 15 16 1.7 18 19 20 21 22 23
ps 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 1.6

Table 2. Values of p2 and p3 used to parameterize the basis function in Eqn. 20.

The results produced the same best fit model for each validation data indicating the estimated model is
robust. The selected model was consistently parameterized with the values, po = 2.0 and ps = 1.3.

Figure 10 provides a typical cross-validation output for the nonlinear model. The figure illustrates that
this nonlinear model is capable of accurately reproducing the measured data with high accuracy. For all
cross-validation datasets, the discrete-time nonlinear model was able to predict 99.2% of the observed output
variance.

Figure 11 summarizes the cross-validation %Fit’s for each validation data, The results show that the
predicted output, for these parameter estimates, account for a large portion of the variance. This indicates
that the model parameters explain the measured data well.

VI. Discussion

Our results show that a linear model is not capable of reproducing the observed output for this model of
stall flutter response. In many cases, researchers have not been able to quantify nonlinearities in their data,
possibly due to it being collected about a small operating point, making the nonlinear effect unobservable.

Although our model is nonlinear, we posed a linear statistical model to implement a best fit model
selection approach via cross-validation data to avoid using a nonlinear least-squares estimation approach.
This approach was feasible due to having a priori insight to good parameterization (see Tab. 2) to be used
with this model. Although this methodology provided a high percent fit for all validation sets, since the
underlying model is nonlinear and we used a coarse parameterization, the estimated parameters may be at
a local minimum. Nevertheless, the estimated model could be used in applications where the concern is to
achieve high fidelity simulations or as a seeding in a nonlinear least-squares framework possibly facilitating
rapid convergence to a global minimum.

In this study, we only considered one class of an infinite number of basis functions. It may be possible
to reformulate this problem as a proper linear statistical model, thus, avoiding the need to have insight to
“good” parameterization of the exponential term or other similar basis functions. In addition, recasting this
problem in a linear framework offers the advantage of not converging to a local minimum. The results of
this study will be presented in a future paper.
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Figure 10. Cross-Validation: Typical nonlinear model prediction (dash-dot line “-.’) superimposed on top of
the measured output (solid-line “-).
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Figure 11. Cross-validation: %Fit versus experimental trial.

VII. Conclusion

This study illustrates that nonlinear effects are present in the stall flutter response of an aeroelastic
wing structure and that a nonlinear model is capable of modelling the dynamics with high accuracy. We
showed that this nonlinear model can be accurately posed as a linear statistical model allowing ¢5 estimation
techniques to be used and, thus, avoiding a full nonlinear least-squares solution. These results may have
utility for initialization of nonlinear least-square problems providing a global minimum in fewer steps than
traditional approaches.
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