Extravehicular Activity (EVA)
Hardware & Operations Overview

UTMB - Galveston
29 June 2012

Sandra Moore
Jose Marmolejo
Objectives and Overview

• Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program
• Identify the types of EVAs that may be performed
• Describe some of the U.S. Space Station equipment and tools that are used during an EVA
 • Extravehicular Mobility Unit (EMU)
 • Simplified Aid For EVA Rescue (SAFER)
 • International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1)
• EVA Tools & Equipment
• Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations
• Describe the Russian spacesuit used to perform an EVA
• Provide a comparison between U.S. and Russian spacesuit hardware and EVA support
• Define the roles that different training facilities play in EVA training
Definition of EVA

- Extravehicular Activity (EVA)
 - Definition: Crewmember leaves the protective environment of a pressurized spacecraft cabin and ventures out into vacuum of space wearing an extravehicular spacesuit.

- Purpose
 - Contingency or Mission Success Repairs
 - Experiments or Testing
 - Spacecraft Servicing
 - Space Structure Construction [e.g., International Space Station (ISS)]
Definition of Spacesuits

• Spacesuits
 • Typically, 2 types of pressurized “spacesuits’ have been constructed to support our space programs

 • Launch, entry, and abort (LEA) spacesuit
 – Used to protect crewmembers from launch, ascent, abort, landing and other dynamic loading
 – Capable of providing protection from loss of cabin pressure and crew rescue following landing.

 • Extravehicular Activity (EVA) spacesuit
 – Used to allow crewmembers to work effectively in the harsh external space environment (provides protection from vacuum, thermal, micrometeoroids, radiation, etc.).
Historical Overview

• First EVA was conducted by USSR/Alexi Leonov on March 18, 1965.
 – Many EVAs have since been accomplished by the Soviet Union & Russia continuing into the International Space Station era.

U.S. EVA Experience
• Gemini EVA Experience -
 – Start of EVA program was excursion to perform a special set of procedures in a new and hostile environment.
 – Proved EVA to be a viable technique for operations outside the spacecraft crew compartment.
 – Problems encountered: helmet fogging, overheating due to high metabolic activity (primarily due to suit constraints and lack of training).
 – Gemini Extravehicular Spacesuit and Life Support
 • 5-layer Gemini spacesuit was intended primarily for Intravehicular Activity (IVA).
 • 2 additional layers were added for EVA (making 7 layers total).
 • An umbilical was used to tether the EVA crewmember to the spacecraft and to supply breathing oxygen.
 – 5 Gemini missions involved nine EVAs for a total of **12 hours and 22 minutes** of EVA.
Historical Overview

• Apollo EVA Experience
 – Spacesuit was redesigned to allow greater mobility.
 – Suit used for lunar and in-space EVAs.
 – Suit was configured with its own portable life support system providing:
 • Pressurization & Atmosphere
 • Communication
 • Ventilation
 • Cooling
 • Waste management system
 – 7 EVA missions totaling 170 hours of EVA (15 on lunar surface, 5 outside Crew Module).
 – Last 3 Apollo missions (15, 16, & 17) utilized the lunar rover vehicle for greater range in lunar exploration.
Historical Overview

• Skylab EVA Experience
 – Apollo-style suit used.
 – Umbilical replaced portable life support system and provided breathing oxygen, cooling, and served as a tethering device.
 – 10 EVAs were performed during the 3 Skylab missions totaling 82.5 hours.

• Space Shuttle EVA Experience
 – New space suit design for additional mobility and modularity.
 – Portable life support system designed for microgravity operation.
 – Increased operational capability from orbiter.
 – Accumulated 1000s of hours of EVA experience over 200+ EVAs.

• Space Station EVA Experience
 – EMU certified for extended duration on-orbit operations (25 EVAs).
 – Orbital Replacement Unit (ORU) capability added.
 – Accumulated 1000s of hours of EVA experience over 150+ EVAs.
• Three basic categories of EVA:

1. **Scheduled EVA:**
 - EVA planned and trained prior to launch and included in the mission timeline.
 - Both ‘skills-’ and ‘task-based’ training used

2. **Unscheduled EVA:**
 - EVA, although trained, not included in the scheduled mission activities, but which may be required to achieve mission or operational success.
 - Both ‘skills-’ and ‘task-based’ training used

3. **Contingency EVA:**
 - EVA required to effect the safety of the crew and vehicle.
 - ‘Skills-based’ training used
EVA Systems

- Extravehicular Mobility Unit (EMU)
- ISS Joint Airlock
- Equipment & Tools (including Simplified Aid For EVA Rescue (SAFER))
• The EMU is an independent system that provides the crewmember with environmental protection, mobility, life support, and communications during EVA.

• EMU provides consumables to support an EVA of 7 hours maximum duration.
 • 15 minutes for egress
 • 6 hours for useful work
 • 15 minutes for ingress
 • 30 minutes for reserve

• EMU is an integrated system consisting of two subassemblies:
 • Space Suit Assembly (SSA)
 • Portable Life Support System (PLSS)
• Space Suit Assembly Components:
 • Hard Upper Torso (HUT)/arms
 • Lower Torso Assembly (LTA)
 • Extravehicular (EV) gloves
 • Helmet/Extravehicular Visor Assembly (EVVA)
 • Communications Carrier Assembly (CCA; Comm Cap)
 • Liquid Cooling and Ventilation Garment (LCVG) / Thermal Cooling Under-Garment (TCU)
 • Operational Bioinstrumentation System (EKG)
 • Disposable In-Suit Drink Bag (DIDB)
 • Maximum Absorption Garment (MAGs)
EVA Systems – Space Suit Assembly

• Extravehicular (EV) gloves

• Extravehicular (EV) boots (and insert)
EVA Systems – Life Support

• Life Support System Components:
 • Display and Control Module (DCM)
 - Provides Caution & Warning System (CWS) messages, EMU parameters, and EMU controls to crewmember
• Life Support System Components:
 • Portable Life Support Subsystem (PLSS)
 - Provides breathing O₂, electrical power, communications, cooling
 - Responsible for suit pressure control
 - Circulates O₂ and removes CO₂, humidity and trace contaminants
 - Controls thermal environment
 • Secondary Oxygen Package (SOP)
 - Provides a minimum of 30 minutes of emergency O₂ in open-loop purge mode
 - Activated automatically during EVA, if necessary
• Life Support System Components (Cont’d):
 • Space-to-Space EMU Radio (SSER)
 • Caution and Warning System (CWS)
 • Early Caution and Warning System (ECWS)
 - Provides EMU status parameters and biomedical data for transmission to Mission Control
 • Battery
 – Primary
 – Rechargeable EVA Battery Assembly (REBA)
 • Contaminant Control Cartridge (CCC; LiOH Cartridge or Metal Oxide (METOX) Cartridge)
 - Removes CO₂ and trace contaminants
EMU Quantity & Consumables

• Space Shuttle
 • Two (2) EMUs are baselined on each Shuttle flight with enough consumables to support three (3), two-crewmember EVAs. Of these 3 EVAs,
 – One 7-hour EVA may be supported.
 – Two EVAs of 3-hours and 4-hours respectively may be supported for Orbiter contingency EVA operations.
 • Consumables provided include:
 • CO2 cartridge (non-regenerable LiOH)
 • Oxygen
 • Potable water (for drink bags)
 • Feedwater (or sublimator water)
 • Power
 • Battery chargers

• International Space Station (ISS)
 • 4 - EMUs are, typically, kept on board to support EVAs
 • Sufficient consumables allow a large number of EVAs to be performed
 • Consumables provided include:
 • CO2 cartridge (metal oxide) and regenerator
 • Oxygen
 • Potable water (for drink bags)
 • Feedwater (or sublimator water)
 • Power
 • Battery chargers
• ISS Joint Airlock:
 • Primary for U.S. ISS EVAs (both Orbiter and Station-based)
 • Compatible for use with Russian Orlans
 • Made up of two parts: Crew Lock and Equipment Lock
 – Equipment Lock is used for stowage, recharge and servicing of EMUs and to don/doff the EMUs
 – Crew Lock is the volume nominally depressed to vacuum for crew to go EVA
EVA Systems - ISS Joint Airlock

STS-104 / Flight 7A
(Summer 2001)
EVA Systems - ISS Joint Airlock
• EMU-mounted tools & equipment
 – TV Camera
 – Lights
 – Mini-workstation
 – Waist tethers
 – EVA Cuff Checklist
 – Wrist mirror
 – Body Restraint Tether
 – Pistol Grip Tool (PGT)
 – ISS Small Trash Bag
EVA Equipment & Tools

- Mini Work Station (MWS)
 - Attaches to front of the EMU
 - Used to carry small tools
 - Tools are secured via tether rings or via bayonet receptacles
 - MWS end-effector with retractable tether provides restraint to EVA Crewmember at worksite

- Note: “Drop-proof tether” PIP pins are used to secure certain items such as a socket onto a tool caddy.
• Commonly Used Tethers
 - Safety Tether (55’ and 85’)
 - Used to secure the EVA crewmember to the vehicle
 - Suit tethers (Waist, Wrist)
 - Used to secure small items to the suit, usually for transfer
 - Retractable EVA Tether (RET)
 - Used to secure small items, usually while item is in use
 - Body Restraint Tether (BRT)
 - Attaches to the Mini-Work Station (MWS)
 - End-effector provides semi-rigid restraint to EVA crewmember at worksite via handrail (also used for translating small objects)
 - Requires less time than setting up a Portable Foot Restraint and is more stable than a MWS end effector
 - Note: EVA tether protocol is that crewmembers and equipment must be tethered at all times
 - Always make a connection before you break a connection.
SAFER (Simplified Aid for EVA Rescue)

- SAFER is a self-contained, propulsive backpack self-rescue system that provides the EV crewmember with self-rescue capability when the orbiter is not present or cannot immediately perform EVA rescue.
 - Propellant: Pressurized nitrogen gas
 - Controlled by a single hand controller
 - Stowed in ISS Airlock, used on ISS EVAs
 - Sufficient propellant and power for one self-rescue (~13 min)
 - Test flight on mission STS-64; self-rescue capability on STS-76
 - Power up of production model SAFER on STS-86
 - Tethered test flight of production model SAFER on Flights 2A and 3A
SAFER Deployment
EVA Equipment & Tools

- Pistol Grip Tool (PGT)
- EVA torque wrench (i.e., a bolt turner)
 - Has a programmable torque limiter and turn limiter
 - Crewmember needs to be secured depending on amount of torque required
 - 2ft-lbs to 25ft-lbs of torque available
 - Generally used for ISS assembly missions and maintenance EVAs

← 1-G Testing of the PGT
EVA Equipment & Tools

• Foot Restraints
 • Attach to structure via a socket
 • Provides EVA crewmember rigid restraint at a worksite (Newton’s 3rd Law)
• Different types:
 • Portable foot restraint (PFR) \textit{(Shuttle)}
 • Articulating PFR (APFR) \textit{(U.S. ISS)}
 • Interoperable APFR (IAPFR) \textit{(U.S. & Russian ISS)}
• Crew and Equipment Translation Aid (CETA) Cart
 • Essentially an EVA equipment cart
 • Translates by CM manually pulling it along truss
 • Use brakes to stop and stay parked
 • Typical use: small ORU replacement on front truss face
EVA Operations Overview

EVA operations can be divided into three phases:

- Pre-EVA
- EVA
- Post-EVA
Pre-EVA: Preparation & Checkouts

• Equipment Prep
 – Prepares the airlock and the EMUs to be checked out before EVA.
 • This is normally performed a few days before the EVA or before the Orbiter docks to the Station.

• EMU Checkout
 – Checks all EMU systems.
 • Performed a few days before the EVA or before the Orbiter docks to the Station.

• EVA Prep
 – All steps performed the day of the EVA prior to going EVA, including:
 • EMU Donning
 • Prebreathe with 100% oxygen
Pre-EVA: Prebreathe

O$_2$ Prebreathe reduces the risk of Decompression Sickness (DCS)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>In-Suit</th>
<th>In Suit Light Exercise (ISLE)</th>
<th>Campout</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask prebreathe time</td>
<td>None</td>
<td>1 hour</td>
<td>1 hour (1$^\text{st}$ day)</td>
<td>80 minutes</td>
</tr>
<tr>
<td>In-suit prebreathe time</td>
<td>4 hours</td>
<td>100 min</td>
<td>50 min (2$^\text{nd}$ day)</td>
<td>1 hour</td>
</tr>
<tr>
<td>Ops Overview</td>
<td>Breathe 100% O$_2$ in-suit for 4 hours while cabin is at 14.7, go out the door.</td>
<td>In Suit prebreathe light exercise totals 90 min; 50 min light exercise, 40 min Metox change out</td>
<td>Breathe 100% O$_2$ on mask while depressing cabin to 10.2, wait approx. 9 hours before in-suit prebreathe, go out the door.</td>
<td>Exercise on ergometer (i.e., bike) for 10 minutes at beginning of mask prebreathe (100% O$_2$), depress airlock to 10.2, breathe in-suit for 1 hour, go out the door.</td>
</tr>
</tbody>
</table>

| Total EVA prep & P/B time: | 5:42 hrs | 3:12 hrs | 13:12 hrs | 4:02 hrs |

Note: Long-duration exploration vehicles plan to utilize 8 psia / 32% O$_2$ atmosphere.
20-Foot Chamber
Overhead of an EVA

(EVA Campout – Times Approximate)

Night Before EVA

- **PRE SLEEP 3 hours**
 - 60 min mask PB
 - 10.2 Dep
 - 45 min before 11.8

EVA Day

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:35</td>
<td>HYGIENE BRK 70 min</td>
</tr>
<tr>
<td>3:15</td>
<td>EVA PREP 90 min</td>
</tr>
<tr>
<td>3:27</td>
<td>Purge</td>
</tr>
<tr>
<td>4:17</td>
<td>EMU Prebreath (50 min)**</td>
</tr>
<tr>
<td>4:47</td>
<td>C/L Dep (30 min)</td>
</tr>
</tbody>
</table>

- 70 min mask P/B
- EMU Donning 55 min Ck
- Rep

EVA Day Summary (continued)

- **EVA PREP 90 min**
 - EMU Prebreath (50 min)**
 - C/L Dep (30 min)

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:1</td>
<td>Rep</td>
</tr>
<tr>
<td>12:37</td>
<td>POST EVA w/o H2O</td>
</tr>
</tbody>
</table>

NIGHT BEFORE EVA SUMMARY

- **Pre Sleep (3 hours total)**
- Mask Prebreathe (1 hour)
 - 10.2 psi Airlock Depress (20 mins)
- 10.2 psi Overnight Campout (8 hours 40 mins minimum)

EVA DAY SUMMARY

- **Post Sleep (1 hour 15 mins total)**
- Mask Prebreathe (1 hour 10 mins)
 - Airlock Repress
 - Hygiene Break/Post Sleep activities
 - 10.2 psi Airlock Depress
- Mask Prebreathe Termination

- **EVA PREP 90 min**
 - EMU Prebreath (50 min)**
 - C/L Dep (30 min)

- **EVA PET = 6:30**
EVA Operations: Overview of EVA Tasks

<table>
<thead>
<tr>
<th>Time</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Airlock depress</td>
</tr>
<tr>
<td>15 min</td>
<td>Airlock egress</td>
</tr>
<tr>
<td>6 hours</td>
<td>Worksite operations: Shuttle and ISS-based</td>
</tr>
<tr>
<td></td>
<td>- All Shuttle EVA crewmembers are trained to perform the following Orbiter contingency tasks (if necessary) for each flight:</td>
</tr>
<tr>
<td></td>
<td>- Failed airlock hatch latches or actuator tasks</td>
</tr>
<tr>
<td></td>
<td>- Failed Remote Manipulator System (RMS) tasks</td>
</tr>
<tr>
<td></td>
<td>- Manual stowage of radiators or Ku-band antenna</td>
</tr>
<tr>
<td></td>
<td>- Manual closure of payload bay doors</td>
</tr>
<tr>
<td></td>
<td>- Installation of payload bay door latch tools</td>
</tr>
<tr>
<td></td>
<td>- Manual separation of Shuttle from ISS (96 bolt task)</td>
</tr>
<tr>
<td></td>
<td>- EVA crewmembers assigned to a flight are also trained for scheduled, unscheduled, or contingency tasks.</td>
</tr>
<tr>
<td>15 min</td>
<td>Airlock ingress</td>
</tr>
<tr>
<td>30 min</td>
<td>Airlock repress</td>
</tr>
</tbody>
</table>
Post-EVA Operations

- EMU Doffing
- EMU Maintenance and Recharge
 - O_2 tank recharge
 - Battery recharge
 - H_2O tank refill
 - METOX regeneration/ LiOH swap
 - Suit cleaning
 - Suit resize (if required)
Comparison of Russian & U.S. EVAs

- Russian Orlan-M Spacesuit
- U.S. Extravehicular Mobility Unit (EMU)
• Orlan-M Spacesuit

- Visors
- Electrical Control Panel (ПО-4МТ)
- Fluid Umbilical Connector (ОРК-19)
- Orlan Safety Tether
- Helmet Lights
- Suit Pressure Gauge (УДСК)
- Backpack Closure Strap
- Pneumo-Hydraulic Control Panel (ПГПУ-1М)
- Emergency O₂ Hose
- Electrical Umbilical
- Backpack
- LCG

Back-Entry Orlan-M
- Suit Enclosure

- Helmet Assembly
- Upper Arms
- Lower Arms
- Umbilical Interface
- Gloves
- Orlan Safety Tethers
- Hard Upper Torso
- Backpack Closure Strap
- Suit Probe
- Leg Assembly
- Boots
• Arm Assembly
(Thermal Micrometeoroid Garment “TMG” Removed)
• Leg Assembly
 (TMG Removed)
Orlan-M Glove
Electrical Control Panel (ПО-4МТ)

- Battery Voltage/Oxygen Tank Pressure Display
- Liquid Crystal Display
- Primary Pump Switch
- Primary Fan Switch
- Reserve Pump Switch
- Reserve Fan Switch
- Power Switch
- Volts/Tone Mute Button

Orlan-M Electrical Control Panel (ПО-4МТ)
Electrical Control Panel (ΠΟ-4МТ)

• Orlan-M Electrical Control Panel (ΠΟ-4МТ) (side view)
Radio Telemetry Apparatus Unit (БРТА-1М)

- Contains the following electrical assemblies:
 - Korona-M Communications Radio
 - Tranzit-A Telemetry Radio (2 parts)
 - Data Gathering Unit (TA-237)
 - Transmitter (ША-347)
 - Battery (autonomous power supply)
 - Current and Power Measurement Unit (БКНТЗ)
 - High-Frequency Filter (ΦР (ТК))
 - Annunciation Unit (БС-1М)
 - Relay Module (МР)

- БРТА-1М attaches to bottom of backpack enclosure (not pressurized)

- Easily attached to and removed from suit
Radio Telemetry Apparatus Unit (БРТА-1М) (Shown without Primary Oxygen Tank installed)

- Tranzit-A Transmitter (ША-347)
- Electrical Connectors to Orlan (X107 (upper)), (X109 (lower))
- Support Strut w/ Coupling Nut (left and right)
- Battery Connector (X21)
- Battery (not installed)
- Tranzit-A Data Gathering Unit (TA-237)
- Korona-M Communications Radio
- High-Frequency Filter (ФР (ТК))
- Current and Power Measuring Unit (БКНТЭ)
Two Safety Tethers attached on the right HUT/Leg Assembly flange

- Not designed for EVA removal
- One Tether is fixed length
- One Tether is variable length
- Both tethers share an attaching strap
- Tether hooks
 - One fault tolerant
 - Titanium construction
 - Certified for 600 kg (1320 lbs)
EVA Tools and Crew Aids

• Orlan Tether Adapter (OTA)
 – Provides interface points for U.S. tools
 – Provides various equipment tether loops

• OTA Interface Block
 – Permanently mounted to the waist flange of the Orlan suit
 – Provides load support to the OTA
 – Provides one crew safety tether loop

• Standard U.S. Tool Configuration
 – OTA
 – Right Swing Arm
 – Retractable Equipment Tethers (RET)
 – EVA Camera (Digital or F5)
Comparison with Russian EVAs
EMU vs. Orlan - Manufacturers

- EMU
 United Technologies, Hamilton-Sundstrand, Windsor Locks, CT

- Orlan
 Zvezda Research, Development, and Production Enterprise, Tomilino (Moscow Region), Russia
• EMU – Space Shuttle and International Space Station (ISS)
 – In operation since 1981 to present
 • Several upgrades have been made

• Orlan-M – Mir Space Station and ISS
 – In operation since 1997 (replaced Orlan-DMA)
 • Upgraded Orlan-MK to be delivered to the ISS in 2008
Comparison with Russian EVAs
EMU vs. Orlan – General Characteristics

• EMU
 – Suit operating pressure: 4.3 psi
 – Mission duration: 6.5 hours + 30-minute contingency
 – Weight: ~280 lbs
 – On-Orbit Service life: 25 uses/2 years (with maintenance)
 • Returned for refurbishment

• Orlan-M
 – Suit operating pressure: 5.8 psi
 – Mission duration: 6.5 hours + 30-minute contingency
 – Weight: ~230 lbs
 – On-orbit Service life: 12 uses/4 years (with maintenance)
 • Not returned for refurbishment
Comparison with Russian EVAs
EMU vs. Orlan – Spacesuit Assembly

• EMU Construction
 – Semi-rigid construction; aluminum hard upper torso
 – Urethane-coated nylon pressure bladder
 – Orthofabric and aluminized mylar thermal/meteoroid garment
 – Ball-bearing joints
 – Liquid-cooling and ventilation undergarment
 – Display & Controls Module (DCM)
 – Polycarbonate helmet and polysulfone visors; helmet lights
 – Location for attachment of mini-work station, etc.

• Orlan-M Construction
 – Semi-rigid construction; aluminum hard upper torso
 – Urethane-coated nylon pressure bladder
 – Orthofabric and aluminized mylar thermal/meteoroid garment
 – Liquid-cooling undergarment
 – Electrical Control Panel / Pneumo-Hydraulic Control Panel
 – Polycarbonate helmet and visors; helmet lights
 – Probe provided for attachment of mini-work station, etc.
Comparison with Russian EVAs
EMU vs. Orlan – Spacesuit Assembly Differences

• EMU
 – Sizing: Medium, large, and extra large size modular components and the use of sizing inserts (legs and arms) allow a fairly large population range to be accommodated
 – Multiple glove sizes including some custom-sized gloves
 – Gloves are heated to provide protection from cold environment; wrist disconnect is on suit side
 – Suit Donning: Bottom entry
 – Helmet is removable
 – Waist tether(s) removable
 – Includes provisions for TV camera

• Orlan-M
 – Sizing: One size with adjustable sizing axial restraint cable in arms/legs
 – 2 glove sizes
 – Glove wrist disconnect is on glove side
 – Suit Donning: Back entry
 – Helmet integrated into suit
 – 2 Waist tethers (fixed and variable length); not removable
 – Orlan-MK includes provisions for U.S. TV camera
Comparison with Russian EVAs
EMU vs. Orlan – Portable Life Support Assembly

• EMU
 – Closed-loop, 100% oxygen
 – Expendables replaced or recharged on-orbit
 – Primary & secondary oxygen tanks
 – Liquid cooling via garment and use of sublimator
 – Carbon Dioxide and trace gas scrubber
 – Average/Max metabolic rates: 1000 BTUs (290 W) / 2000 BTUs (580 W)
 – Primary battery Li-ion
 – Radio for voice, data, and medical information; use of headset

• Orlan-M
 – Closed-loop, 100% oxygen
 – Expendables replaced or recharged on-orbit
 – Primary & secondary oxygen tanks
 – Liquid cooling via garment and use of sublimator
 – Carbon Dioxide and trace gas scrubber
 – Average/Max metabolic rates: 1025 BTUs (300 W) / 2050 BTUs (600 W)
 – Primary battery is zinc-silver-oxide (rechargeable)
 – Radio for voice, data, and medical information; use of headset
Comparison with Russian EVAs
EMU vs. Orlan – Portable Life Support Assembly Differences

- **EMU**
 - Primary O2 pressure: 2 tanks @ 900 psi (rechargeable); Secondary O2 pressure: 2 tanks @ 6000 psi (non-rechargeable)
 - Most electronics located in life support backpack @ vacuum
 - Crewmembers communicate between each other
 - Single fan-pump-water separator
 - Liquid cooling and ventilation garment; biocide: iodine
 - CO2 scrubber: silver oxide or lithium hydroxide
 - Additional rechargeable battery used for glove heating (nickel-metal-oxide)
 - Prebreathe: 4-hour in-suit, 10.2 psi, and 14.7/10.2 psi & ergometer protocols available

- **Orlan-M**
 - Primary and Secondary O2 pressure: 6000 psi; both removable and non-rechargeable
 - Electronics (except for БРТА) located in life support backpack @ 100% O2
 - Crewmembers communicate via the vehicle (signal is relayed)
 - Redundant fans and pumps
 - Liquid cooling garment; biocide: silver ions
 - CO2 scrubber: lithium hydroxide
 - Prebreathe: 1-hour @ 550 torr
Comparison with Russian EVAs
EMU vs. Orlan – Work Aids

• **EMU**
 - Compatible with:
 • Mini-work station
 • Numerous EVA tools including foots restraints, etc.
 • Simplified Aid For EVA Rescue (SAFER)
 • Donning stations

• **Orlan-M**
 - Compatible with:
 • Mini-work station
 • EVA tools including foots restraints, etc.
 • REBA – helmet lights
 • Donning stations (however, rarely used on orbit)
Comparison with Russian EVAs
EMU vs. Orlan – Crew Preference Items

- **EMU**
 - Comfort gloves
 - Eyeglass holder
 - Fresnel lens (various strengths)
 - In-suit drink bag
 - Maximum absorbent garment (MAG)
 - Socks
 - Valsalva device
 - Wristlets
 - Miscellaneous: Lint free wipes, Anti-fog wipes, Comfort pads, Moleskin tape, Stericide sanitizer

- **Orlan-M**
 - Comfort gloves
 - Dosimeter (passive)
 - Socks
Comparison with Russian EVAs
EMU vs. Orlan – Operations Differences

- Russian EVA crewmembers talk directly to engineers on ground
- U.S. EVA crewmembers talk through Capcom

- Russian EVA training is more skills based
- U.S. EVA training is more task based

- Russian EVA crewmembers have little or no Intravehicular (IV) interaction
- U.S. EVA crewmembers work with an IV crewmembers before, during, and after an EVA

- Russian EVA crewmembers use a hand-over-hand tether protocol
- U.S. EVA crewmembers use a safety tether (ISS & shuttle) and a slidewire (Shuttle)
EVA Training Facilities

- Shuttle Full-size Mockup Trainers (historical)
 - Crew Cabin Trainer (CCT) and CCTII
 - Full Fuselage Trainer (FFT)
EVA Training Facilities

- Space Station Mockup Training Facility (SSMTF) Airlock Mockup
EVA Training Facilities

- EMU Caution and Warning System (ECWS) Trainer
EVA Training Facilities

- Vacuum chambers
 - 11-foot chamber
 - Environmental Test Article (ETA) chamber
 - Space Environment Simulation Lab (SESL) chamber
 - Space Station Airlock Test Article (SSATA)
EVA Training Facilities

- Virtual Reality Lab
EVA Training Facilities
Charlotte for Low Gravity Mass Ops

Source: Osterlund, J. & Lawrence, B. 2012
EVA Training Facilities

• Precision Air-Bearing Floor (PABF)
EVA Training Facilities

- Neutral Buoyancy Laboratory (NBL)
EVA Training Facilities

- Micro-gravity via DC-9 (KC-135 below retired)
EVA Training Facilities
The Active Response Gravity Offload System (ARGOS)

• ARGOS uses an inline load cell to continuously offload a portion of a human or robotic subject’s weight during all dynamic motions
WEB Links

• EVA History/Advanced suit program –
 http://www.jsc.nasa.gov/xa/advanced.html

• Hamilton Sunstrand (designers of the EMU) -
 http://www.hsssi.com/Applications/SpaceSuits/

• DX32/35 Home page –
 http://mod.jsc.nasa.gov/dx/dx32/evahp.htm

• EC5 Homepage –
 http://ctsd.jsc.nasa.gov/ESS/index.html

 http://dx.doi.org/10.1016/j.actaastro.2011.03.031
Backup Material
Pressures

<table>
<thead>
<tr>
<th>Altitude (ft)</th>
<th>Atmospheric Pressure (psi)</th>
<th>Oxygen Concentration (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Level</td>
<td>14.7</td>
<td>20</td>
<td>Nitrogen Concentration is 80%. 1 atmosphere (1 atm). 101.325 kPa.</td>
</tr>
<tr>
<td>10,000</td>
<td>10.11</td>
<td>70% of Sea Level</td>
<td>Early signs of hypoxia (shortage of oxygen in the body)</td>
</tr>
<tr>
<td>15,672</td>
<td>8.3</td>
<td>56% of Sea Level</td>
<td>Exploration Atmosphere recommended pressure</td>
</tr>
<tr>
<td>18,000</td>
<td>7.34 or (14.7 / 2)</td>
<td>51% of Sea Level</td>
<td>½ atm</td>
</tr>
<tr>
<td>23,500</td>
<td>5.8</td>
<td>40% of Sea Level</td>
<td>Russian Orlan operating pressure</td>
</tr>
<tr>
<td>30,250</td>
<td>4.3</td>
<td>30% of Sea Level</td>
<td>U.S. EMU operating pressure</td>
</tr>
<tr>
<td>34,000</td>
<td>3.62 or (7.34 / 2)</td>
<td>25% of Sea Level</td>
<td>¼ atm</td>
</tr>
<tr>
<td>101,381</td>
<td>0.147 or (14.7 / 100)</td>
<td>≈1% of Sea Level</td>
<td>1/100 atm</td>
</tr>
<tr>
<td>283,076</td>
<td>0.000147 or (14.7 / 100,000)</td>
<td>0% of Sea Level</td>
<td>ISS (220 miles or 1,161,600 ft)</td>
</tr>
</tbody>
</table>
Life Support Schematics
Comparison with Russian EVAs
EMU vs. Orlans

<table>
<thead>
<tr>
<th>Suit Feature</th>
<th>Orlan - M</th>
<th>EMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Method</td>
<td>Rear Entry:</td>
<td>Waist Entry:</td>
</tr>
<tr>
<td></td>
<td>Self-donning typical</td>
<td>Self-donning possible</td>
</tr>
<tr>
<td></td>
<td>Easy suit ingress/egress</td>
<td>More difficult in/egress</td>
</tr>
<tr>
<td>Pressure</td>
<td>5.7 psid nominal</td>
<td>4.3 psid nominal</td>
</tr>
<tr>
<td>Pre-breathe</td>
<td>30-minute nominal</td>
<td>40 min. nominal from 10.2 psi cabin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 hour nom from 14.7 psi</td>
</tr>
<tr>
<td>Sizing</td>
<td>One size</td>
<td>Modular</td>
</tr>
<tr>
<td></td>
<td>Adjust lengths of arms and legs</td>
<td>137 measurements made</td>
</tr>
<tr>
<td>Useful Life</td>
<td>4 years or 12 EVAs Burns on re-entry in Progress vehicle</td>
<td>2 years or 25 EVAs Refurbished and recertified on ground</td>
</tr>
<tr>
<td>Displays</td>
<td>C&W lights on front of suit and in helmet; can send suit data to ground</td>
<td>CWS, DCM display: msg and status; can send suit data to ground</td>
</tr>
</tbody>
</table>
Comparison with Russian EVAs
EMU vs. Orlans

• Resupplying/Recharging
 – Orlan H2O tank refilled and O2 tanks replaced after each EVA
 – EMU H2O and O2 tanks resupplied via umbilical
• Orlan and EMU coolant operation similar
 – Both Orlans and EMUs use sublimators
 – Liquid Cooling (and Ventilation) Garments [LC(V)Gs] are similar
• Umbilicals
 – Orlan umbilical provides power, comm, and pre-breathe O2
 – EMU umbilical provides power, comm, O2, recharge H2O and cooling H2O
• Gloves
 – Orlan gloves used for two EVAs
 – EMU gloves used multiple times, electrically powered glove heaters
• Emergency procedures
 – Orlan: Few simple messages, gloves have reference tables on them
 – EMUs have Caution and Warning System, combined with a cuff checklist
• Both Orlans and EMUs have duplex comm
Thermal Micrometeoroid Garment