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ABSTRACT

To facilitate locating archaeological sites before they are compromised or destroyed, we are developing approaches
for generating maps of probable archaeological sites, through detecting subtle anomalies in vegetative cover, soil
chemistry, and soil moisture by analyzing remotely sensed data from multiple sources. We previously reported
some success in this effort with a statistical analysis of slope, radar, and Ikonos data (including tasseled cap
and NDVI transforms) with Student’s t-test. We report here on new developments in our work, performing an
analysis of 8-band multispectral Worldview-2 data. The Worldview-2 analysis begins by computing medians and
median absolute deviations for the pixels in various annuli around each site of interest on the 28 band difference
ratios. We then use principle components analysis followed by linear discriminant analysis to train a classifier
which assigns a posterior probability that a location is an archaeological site. We tested the procedure using
leave-one-out cross validation with a second leave-one-out step to choose parameters on a 9,859x23,000 subset
of the WorldView-2 data over the western portion of Ft. Irwin, CA, USA. We used 100 known non-sites and
trained one classifier for lithic sites (n=33) and one classifier for habitation sites (n=16). We then analyzed
convex combinations of scores from the Archaeological Predictive Model (APM) and our scores. We found that
that the combined scores had a higher area under the ROC curve than either individual method, indicating that
including WorldView-2 data in analysis improved the predictive power of the provided APM.
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1. INTRODUCTION

Archaeological sites are being destroyed or compromised at a catastrophic rate in most regions of the world in
this age of globalization. Populations are growing much more rapidly in developing countries than in developed
countries. These populations are migrating to areas that in the past have been affected very little by human
activities. As China, India, Brazil, and other countries aspire to levels of consumption enjoyed by the United
States and Europe, large areas are cleared for agriculture and communities are springing up around mines,
oil wells, and newly established industries. At the same time, tourism has been seized upon by developing
countries because it holds the promise of jobs for which high levels of education and training are not necessary.
If archaeological sites are not destroyed outright by construction of hotels, transportation systems, and other
visitor amenities, the increasing numbers of people that inhabit or travel through heretofore isolated areas results
in the discovery of archaeological sites not by archaeologists, but by indigenous populations. Site looters who are
tied into the global, underground, and illicit trade of antiquities seek out members of indigenous communities
with such knowledge and exploit them. For example, a Khmer statue that might have been obtained for a bowl
of rice from a Cambodian living in Siem Reap might fetch thousands of dollars in one of the many antiquity
boutiques in Bangkok. The only effective solution to all of the problems listed above is to find archaeological
sites and landscapes before they are overtaken by agricultural and industrial development or found by looters,
and then to take steps to protect them.

Detecting archaeological sites by the analysis of imagery acquired by airborne and spaceborne sensors is
often possible because human activities hundreds or even thousands of years ago has frequently caused localized
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environmental changes that have persisted to the present. These can be the addition of humanly constructed
features to the landscape that display a regular geometry and so are anomalous to their surroundings. Such
features include houses, temples, causeways, roads, trails, agricultural terraces, reservoirs, canals, and adminis-
trative structures. Human activities also produce changes in soil chemistry that can be detected directly, or that
cause subtle anomalies in the vegetative cover because certain plant species flourish in or are stressed by altered
soils. Non-native vegetation introduced in ancient times for food or for aesthetic purposes sometimes persists for
great periods of time.

Comer and Blom1–3 developed a means of utilizing aerial and satellite remote sensing data to identify probable
locations of archaeological sites over a wide area based on detecting the subtle anomalies in vegetative cover
described above. The remote sensing data utilized included SAR (synthetic aperture radar) data collected by
the GeoSAR (airborne synthetic aperture radar) sensor, 11-bit multiple band optical data from the IKONOS
sensor (operated by GeoEye, Inc.). A DEM (digital elevation model) was derived from the SAR data from which
slope data was computed. These data, along with features computed from the IKONOS data served as input
image layers for the anomaly detection approach.

We report here on new developments in our work, performing linear discriminant analysis on 28 band difference
ratios computed from 8-band multispectral Worldview-2 data. We first describe both the remotely sensed data
and the archaeological site data that was utilized for training and testing our analysis approach. Then we
elaborated on our new analysis approach, and the demonstrate the effectiveness of our approach over a test site
over the western portion of Ft. Irwin, CA, USA and compare our results with an Archaeological Predictive
Model (APM).

2. DESCRIPTION OF THE DATA

In this section we describe the remotely sensed data we utilized in our study, along with the archaeological site
data that we utilize for training and testing our analysis approach.

2.1 The Remotely Sensed Data

The remotely sensed data employed in this study was multispectral WorldView-2 data. DigitalGlobe, Inc.,
Longmont, CO, USA (http://www.digitalglobe.com) contributed 14 swaths of WorldView-2 satellite imagery
data to our study covering the entire land area of the China Lake and Ft. Irwin military reservations in
California, USA. We report on our use of just one of these satellite imagery data swaths in this study, which
covers a large part of the western portion of Ft. Irwin. This data was collected on December 30, 2010. While
DigitalGlobe provided both panchromatic and multispectral data, we utilized only the multispectral data in our
study. Table I shows the spectral bands provided by the WorldView-2 satellite. This data is orthorectified to
2-meter ground resolution and has 11-bit radiometric resolution (stored as 16-bit integers).

Table 1: WorldView-2 spectral bands (from DigitalGlobe Core Imagery Product Guide available on their website.
Band Lower Band Edge (nm) Center Wavelength (nm) Upper Band Edge (nm)

Coastal Blue 396 427 458
Blue 442 478 515

Green 506 546 586
Yellow 584 608 632

Red 624 659 694
Red Edge 699 724 749

Near Infrared 1 765 833 901
Near Infrared 2 856 949 1043

DigitalGlobe provided this swath of data in 45 separate 4096x4096 pixel blocks of data, which we mosaicked
together to form an eight spectral band data set with 9859 columns and 61098 rows. We used in our analysis a
9859 column by 23000 row subset of this data that covered the grounds of a western portion of Ft. Irwin. All
locations outside of the Ft. Irwin land area boundary were masked out.



Based on the suggestion of G. Marchisio of DigitalGlobe,4 we utilized all possible combinations of band
difference ratios of the eight multispectral bands as features for our study. Band difference ratios offer some
robustness to changes in lighting conditions at different times of data collection, which will help in our eventual
extension of our analysis of this portion of Ft. Irwin to other portions of Ft. Irwin and to the nearby China
Lake site. These band difference ratio features are defined as

Bij =
Bi −Bj
Bi +Bj

, ∀i > j. (1)

2.2 The Archaeological Site Data

The archaeological site location data was stored in ESRI shapele (geospatial vector data) format with sites
designated as Lithic Scatter or Habitation and Quarry. The tests in this study were performed using 62 Lithic
Scatter sites and 22 Habitation sites. Precise for these sites were collected from October, 2010 to January, 2011
by revisiting and evaluating sites that had been recorded over the past 50 years at Fort Irwin, California, which is
located in the Mojave Desert. Fieldwork was supervised by author Douglas C. Comer with a crew of professional
archaeologists.

2.3 The Archaeological Predictive Model

The site detection protocols described in this paper are properly thought of as an approach that is different
in kind from an approach that has been used in archaeology for several decades now to predict areas in which
archaeological sites are likely to be found. Such archaeological predictive models (APMs) do not associate certain
returns from aerial and satellite remote sensing devices with the locations of archaeological sites, as we do in this
paper. Instead, they are intended to identify areas within which sites might be found, rather than finding the
sites themselves. That is, APMs predict on the basis of possibilism instead of probablism. Being possibilistic,
APMs deal only with how suitable an area is for a certain activity. It is important to note that not all suitable
areas will be used. For this reason, APMs have had limited success in predicting the locations of archaeological
sites.

Nonetheless, they have had some success, and are the standard against which new the results of new ap-
proaches can be compared. Also, in the future, some of the approaches and technologies that we have developed
might very well be used to improve the performance of APMs. For this reason, we utilized an APM that had
been developed for one of our test areas, Fort Irwin. It was produced by the University of Illinois at Urbana-
Champaigns GIS and Geospatial Lab, through the U. S. Army Corps of Engineers Construction Engineering
Research Laboratory (CERL) in Champaign, Illinois.5

Utilizing a variety of statistical techniques, Ruiz attempted to develop associations between the following
environmental factors and the presence of archaeological sites:

• Distance to spring or lake

• Soil surface texture

• Soil water content

• Depth to bedrock

• Landform type

• Elevation

• Slope

• Direction of slope (aspect)



 

Figure 1: The Archaeological Predictive Model for Habitation Sites

While the statistical treatments that were used to develop the APM for Fort Irwin are not well described,
the performance of the resulting model was good as measured by the metric of gain, which has been devised for
this purpose. The formula used to calculate the gain statistic is: 1− 5 of area

% of sites .6

The APM for Fort Irwin was actually composed of several APMs, each predicting areas in which different
types of archaeological sites might be found. We will consider here only the APMs done for only two types of
sites: habitation and lithic. An APM for these habitation sites is seen in Fig 1. Areas in green are those which
are predicted to be most favorable for the presence of archaeological sites, red the least, and colors between
those two in order of decreasing likelihood. For the highest class in the APMs (the area on the final favorability
map that is colored dark green to indicate that the area is the most favorable for the type of site in question)
the gain statistic is 0.86 for habitation sites. For the green area in the Lithic APM, a gain statistic of 0.67
was calculated. ROC curves presented elsewhere in this paper compare the performances of APMs and the site
detection protocols that we have developed. It is significant that the two approaches can be combined to produce
a better performance than could be obtained by either alone.

3. ANALYSIS APPROACH

In this work, we present a framework to classify whether a location is likely to be an archaeological site based
on multi-spectral image analysis. Image processing is first used to form a quantitative representation of the
location. Secondly, feature extraction is used on this image processed representation to form a low dimensional
representation of the location. The final step is to classify this low dimensional representation to determine
whether or not the location is suitable for an archaeological site. In order to build this classifier, appropriate



training data and classification techniques must be used. We validated this method by comparing with the
archaeology predictive model (APM). By considering combined classifiers using the APM and the WorldView
analysis we can demonstrate that our method provides additional discrimination power over the APM.

In this section, we present the statistical setting and a general framework for image processing, dimensionality
reduction and classification and conclude with a discussion of our parameter selection and validation technique.

3.1 Statistical Setting

We consider a multi-spectral image as B random images. Formally, let w, h, and B be positive integers. Let
S = {1, 2, . . . , w} × {1, 2, . . . , h}. Each element s = (s1, s2) ∈ S corresponds to a specific geographical location,
such as latitude and longitude coordinates. A feature image B ∈ Rw×h is a random image which maps each

location to an intensity value. A multispectral image is a B-tuple of bands (B(1),B(2), . . . ,B(B)) ∈ (Rw×h)
B

.

The value of band b ∈ {1, 2, . . . , B} at location s ∈ S is denoted B(b)s . We assume that the bands are fully
observed. Note that the bands in the multi-spectral image need not be the original bands but could be derived
or preprocessed bands, such as the band difference ratio features.

In addition to the bands, we suppose that each site location is given a class label in {0, 1, . . . ,K−1} which is
encoded in the random image Y ∈ {0, 1, . . . ,K − 1}w×h for some positive integer K. We take K = 2 and denote
the class label at location s by Ys. Class label Ys = 1 denotes that location s is considered to have archaeological
significance. Class label Ys = 0 denotes that site s has no archaeological significance.

All together, we have a (B+1)-tuple (B(1),B(2), . . . ,B(B),Y) which is distributed according to some unknown
joint distribution. The bands, the pixels within each band, and the class labels will all depend on each other.
The unknown parameters for this distribution will be determined by the geographical formations, environmental
and historical conditions, the sensor used to collect the image, as well as many other factors. Due to these
complications, we do not attempt to estimate its parameters directly.

Finally, we suppose that there are n locations for which ground truth has been gathered.Formally, there are n
locations s(1), s(2), . . . , s(n) ∈ S and for each location s(i) we have observed the class label Ys(i) . These locations
can be used for training our method and testing our classifier against the ground truth. All other class labels
are un-observered.

We consider the classification algorithm as consisting of three components the image processor, feature
extractor and classifier, determined by the functions f , g, and h:

f : S × (Rw×h)B 7→ Rd̃, (2)

g : Rd̃ → Rd with d < d̃ (3)

h : Rd → {0, 1} (4)

The classification algorithm is then given by the composition h ◦ g ◦ f . Each of the functions f , g, and h will
be chosen from some class and may depend on the sites with observed class labels. Indeed, our paper considers
using statistics on annuli centered at the site for image processing, PCA for feature extraction and LDA for
classification. Figure 2 provides a diagrammatic representation of this protocol.

3.2 Image Processing

The image processing step transforms the bands into statistics about each location. We formally define an image
processor as a function

f : S × (Rw×h)B 7→ Rd̃, (5)

that takes a location and B image bands and returns a vector. This function returns local statistics about
the image for each location. For location s ∈ S let X̃s = f(s,B(1), . . . ,B(B)) and for location s(i) let X̃(i) =
f(s(i),B(1), . . . ,B(B)).
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Figure 2: A diagrammatic representation of our protocol.

For this work, we suppose that

f(s,B(1), . . . ,B(B)) =


f1(s,B(1))
f2(s,B(2))

...
fB(s,B(B))

 ∈ Rd̃, ∀s,B(1), . . . ,B(B) (6)

where fb : S ×Rw×h 7→ Rd̃/B depends only on band b for each b. (Clearly, we assume d̃ is an integer multiple of
B.) Further we assume that all the functions fb are identical, so that the same statistics are computed for each
image. These assumptions may not be appropriate in some instances but is a useful simplification in the current
setting.

In this paper, we use a particular imaging processing method based on statistics of pixels in annuli centered
at each site. The image processor was motivated by the observation that the archaeological sites are typically
circular and of relatively consistent sizes.

Let
As(r

(in), r(out)) = {s′ ∈ S : r(in) ≤ ‖s− s′‖ < r(out)} (7)

be the set of coordinates in the annulus centered at s ∈ S with inner radius r(in) and outer radius r(out). We
define ν : S × Rw×h 7→ R30 and δ : S × Rw×h 7→ R30 by

νi(x,B) = median{Bx′ : x′ ∈ Ax(r
(in)
i , r

(out)
i )} (8)

δi(x,B) = MAD{Bx′ : x′ ∈ Ax(r
(in)
i , r

(out)
i )}

= median{|Bx′ − νi(x)| : x′ ∈ Ax(r
(in)
i , r

(out)
i )}

(9)

for i ∈ {1, 2, . . . , 30} where MAD denotes the sample median absolute deviation.

The inner and outer radii ranges we consider are given in this table:

i 1 2 3 . . . 10 11 12 13 . . . 20 21 22 23 . . . 30

r(in) 0 3 6 . . . 27 0 5 10 . . . 45 0 7 14 . . . 63
r(out) 2 5 8 . . . 29 4 9 14 . . . 49 6 13 20 . . . 69

Since the annuli overlap and cover a relatively large area, the statistics for these ranges will likely contain some
redundant information so the feature extraction step will be useful to reduce this redundancy while maintaining
the components that discriminate between classes.

We now define the image processing function fb : S × Rw×h 7→ R2·30 by fb(x,B) = [ν(x,B)T , δ(x,B)T ]T . As
in Eqn. 6, this induces the function f : S × Rw×h×B 7→ R2·30·B .



3.3 Feature Extraction

Each location is now represented by a vector in Rd̃ (with d̃ = 60B). The dimension d̃ is much larger than the
sample size n. This leads to classification difficulty because not enough data is available to build a reasonable
model. Such high dimensionality can also result in complicated computational issues and reduces classification
accuracy. This problem is termed as “the curse of dimensionality”.7,8 Feature extraction for lowering the
dimensions in feature space is thus necessary. It eliminates irrelevant features, reduces noise in the data set.
Moreover it converts high dimensional feature space to a lower dimension that captures most variation of the
original data. Mathematically, we define g as the following:

g : Rd̃ → R with d < d̃

Note that g depends on the labeled data (X1, Y1), ..., (Xn, Yn). We denote the feature extracted vectors
for location s ∈ S as Xs = g(X̃s) = (f ◦ g)(s,B(1), ...,B(n)) and for location s(i) as X(i) = g(X̃(i)) = (f ◦
g)(s(i),B(1), ...,B(n)).

In this paper, principal components analysis (PCA) is used for feature extraction. Suppose the sample mean

of the vectors X̃1,...,X̃n is zero; otherwise, we centralize the vectors by subtracting its mean. Let Σ̃ ∈ Rd̃×d̃ be
the sample covariance matrix corresponding to the data matrix D whose rows are data instances and columns
are features. Note that the covariance matrix is positive semi-definite; thus it has all but negative eigenvalues

and its eigenvectors form an orthonormal space. Let U ∈ Rd̃×d be a matrix whose columns are orthonormal
eigenvectors corresponding to the d largest eigenvalues of Σ̃. The feature extractor g of PCA is defined by

g(x) = ŨTx ∈ Rd for all x ∈ Rd̃. Hence, the first principal component, a linear combination of the original
features, is the dimension with the most variance in the original feature space; the second principal component,
orthogonal to the first, captures second most variation of the data set and so on.... Usually, a small fraction of
the total dimension is needed via PCA. To select the PCA dimension d̃ we use cross validation (see section 3.5).

3.4 Classification

We define a classifier as a function h : Rd 7→ {0, 1}. After image processing and feature extraction, h assigns a
class label to each data vector on the lower dimension space.

The simple classifier we choose is linear discriminant analysis (LDA). LDA is the Bayes plug-in classifier under
the assumption that the data is distributed according to class conditional multivariate normal distributions with
the same covariance matrices. We estimate the means and covariance by

µ̂y =
1

ny

∑
i:Y (i)=y

X(i) and Σ̂ =
1

n− 2

n∑
i=1

n∑
j=1

(X(i) − µ̂Y (i))(X(j) − µ̂Y (jT ))
T , (10)

respectively. We then have the estimate of the posterior probability that a site with feature extracted vector x
is from class 1 defined by

η̂(x) = P̂(Y = 1|X = x) =
φ(x; µ̂1, Σ̂)

n1

n φ(x; µ̂1, Σ̂) + n0

n φ(x; µ̂0, Σ̂)
, (11)

where ny is the number of training samples with class label y and φ(·;µ,Σ) is the density for a multivariate
normal distribution with mean µ and covariance Σ.

The classifier h is defined as h(x) = I{η̂(x) > τ} for some threshold value τ ∈ R.



3.5 Parameter Selection and Validation

The key parameters we must select for this algorithm are the PCA dimension d and the threshold parameter τ .
The threshold value τ will depend on how the classifier is being used so we do not attempt to explicitly select a
threshold but consider a range of thresholds. We use leave-one-out cross validation to select the PCA dimension.

Leave-one-out cross validation is a technique to estimate the error of probability of a classifier that is trained
on data. The procedure loops through each data sample, removing it and training on the remaining data. We
then evaluate the resulting classifier on the removed sample and the estimated error rate is then the percent of
the samples that were incorrectly classified. This results in a more accurate estimate of the generalization error
of the procedure since we do not test on data that was trained on.

To select the PCA dimension d from among {1, 2, . . . , n− 1} we perform a leave-one-out estimate of error for
each d and then select the dimension which results in the smallest error. For these estimates we use a threshold
value of τ = 0.5. Finally, we train a final classifier on the whole dataset. This classifier then allows us to compute
the posterior η for any new location.

To assess this procedure, we again use leave-one out cross validation. This means we have two loops of cross
validation, an outer loop to train the classifier for each removed sample and compute a posterior and an inner
loop select the PCA dimension. Additionally, we use receiver operating characteristic (ROC) curves to asses the
the procedure. The ROC curve is parametrized by the the threshold τ and for each value of τ we plot the the
percentage of false positives on the x-axis and the percentage of true positives on the y-axis. Depending on the
application, one may be concerned with different aspects of the ROC curve. The area under the curve (AUC) is
a summary statistic that computes the area under the ROC curve. This ranges from 0, reverse classification to
1, perfect classification.

4. RESULTS

We analyzed the above procedure using the 28 band difference ratio feature bands derived from the Worldview-2
data. For our true sites we consider two different classes, lithic sites (n1 = 33) and habitation sites (n1 = 16).
We trained separate classifiers for the lithic and habitation classes. For the class zero training data we selected
n0 = 100 locations uniformly at random from the surveyed region of the image swath. We also ensured that the
selected locations were at least 100 pixels from every known true site. Since the negatives are selected from the
surveyed regions and are far from known sites, we can safely assume that these sites do not have archaeological
significance.

The result of our analysis is a posterior probability for each site derived from classifier trained on the re-
maining sites. We denote this posterior by η̂WV for the WorldView dervied posterior. Independent of the
WorldView analysis, the archaeological predictive model (APM) provides a score which, when normalized to be
in {0, 0.2, 0.4, 0.6, 0.8, 1}, can be considered as an alternative posterior estimate which we denote η̂APM . We
consider convex combinations of the APM posterior and the Worldview analysis posterior. For each value of
γ ∈ [0, 1] this gives a new posterior estimate:

Combinedγ = (1− γ)APM + γWorldView (12)

η̂γ = (1− γ)η̂APM + γη̂WV (13)

Figure 3 shows the AUC value for each γ ∈ [0, 1] where 0 represents using only the APM and 1 represents
using on the WorldView-2 analysis. For the habitation sites, Figure 3a, we see that the APM outperforms the
WorldView but that a combined classifier with γ ≈ .3 provides even better performance. Noticeably, there is a
jump in the AUC at γ = 0. This is due to the fact that the APM gives only 6 possible values so for γ near zero
the WorldView analysis acts as a tie breaker for sites that have the same APM score. Similar behavior is see for
lithic sites, Figure 3b, but in this case the WorldView analysis outperforms the APM and that the a combined
classifier with γ ≈ .65 provides even better performance.

Figure 4 shows the receiver operating characteristic (ROC) curve of lithic sites and habitation sites corre-
sponding to five classifiers: APM, Worldview-2, half of each (γ = 0.5), the optimal combined model, and the
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Figure 3: Area under the ROC curve for combined model with respect to γ.
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Figure 4: ROC curves for various choices of γ.

tie-breaking model. For different choices of false positive percentage (or true positive percentage) we see that
the combined model typically improves performance over using either the APM and the WorldView analysis
alone. The consistent superior performance of the combined model to APM, indicate that adding-in our method
increases prediction power over using the APM alone.

4.1 Discussion

In this paper we consider one particular example of a statistical approach to archaeological site discovery using
multi-spectral imagery. In particular we consider the framework specified by three components: an image
processor, feature extractor, and classifier. Specifically, we use a relatively simple image processor in the annuli
technique and common feature extractors and classifiers in PCA and LDA.

We demonstrate that our method provides performance which is better than chance and which provides
additional improved performance when used in conjunction with an archaeological predictive model. It gives
strong evidence that including our method in archaeological prediction analysis improves classification accuracy.
We do not claim that these represent optimal results but rather that this framework provides a valuable way to
attach the problem of archaeological site discovery. Almost certainly there are other methods for each component
which will give a further improvement in performance.



For example, the archaeological sites will have some known properties which will help in choosing an image
processor. For example, it might be desirable to have fb invariant to rotations, changes in scale, or changes in
lighting. On the other hand, if we are attempting detect sites with a certain aspect, size, or brightness, then
these invariance properties would be detrimental. There is a rich literature regarding useful image processors for
remote sensing;9 however, no image processor is optimal for every task so using prior knowledge about the sites
and the imagery will be critical.

We used PCA for feature extraction and applied LDA on the reduced space. There is a wealth of empirical
evidence that the composition of these two procedures often gives improved results over using LDA on the original
feature space. One may also use a different feature extractor and predict the data with classifiers such as support
vector machine, boosting, k-nearest neighbor. The literature on feature extraction and classification is vast and
much improvement is likely possible within this basic framework.

In addition to changing the components, we also suspect that including additional feature bands, includ-
ing especially slope data and possibly data related to aspect and other topographical properties, will improve
performance. Future work will consider this framework with these additional features.

5. CONCLUSION

We have reported here on our latest work in generating maps of probable archaeological sites. This work follows
up on a previous study that utilized the Student’s t-test. We report here on our work with a new, more flexible
approach utilizing principle components analysis followed by linear discriminant analysis. In a future study
we hope to compare the effectiveness and ease of use of the two approaches, as well as how they might most
effectively be combined. We compared our new approach to an archaeological predictive model (APM), which
has been considered as the standard means for identifying areas that are likely to contain archaeological sites.
While the APM had a better performance than our new method for habitation sites, our method outperformed
the APM for lithic sites and a combination of our method with the APM outperformed either method by itself.
Further, we have determined that the statistical treatments that we employed in this study can be used to greatly
improve APMs. By combining improved APMs and the image analysis protocols that we have develop, we are
optimistic that we can develop even more productive methods of finding archaeological sites in the future.

We have demonstrated the effectiveness of our new approach over a portion of the Ft. Irwin military reser-
vation in California. We plan to extend our work to other portions of Ft. Irwin and also to the nearby China
Lake military reservation, with the ultimate objective of establishing the capacity to conduct rapid, wide-areas
surveys for archaeological sites with results as reliable, or nearly so, as those obtained from on-ground surveys
for archaeological sites. We also will be working to gain acceptance of this survey approach by the Advisory
Council on Historic Preservation and State Historic Preservation Offices as a substitute for such time-consuming
and more expensive on ground surveys, or to direct on-ground efforts in ways that will great reduce the time
and expense required for such surveys.
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