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Outline!

Motivation / Objective!
!
OVERFLOW Improvements and Results!
!

•  Fuselage Drag Reduction Via Active Flow Control!
•  Turbulence Model Assessment for Rotorcraft Flows!
•  Rotorcraft Transition Modeling—Future!
•  Simulation of V22 Rotor System in Hover!
•  Simulation of UH60 Rotor System In Forward Flight!
•  Near Body Adaptive Mesh Refinement!
•  Heavy Lift Slowed-Rotor Compound Helicopter Flow Computations!
•  Isolated Rotorblade Flutter Computations!

!
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Motivation / Objective!
•  Helicopters/Tiltrotor Aircraft Provide Many Crucial Services!

•  Emergency medical/rescue evacuation, security, offshore oil platforms, heavy-lift, military 
operations!

•  Challenging Phenomena Associated with Rotorcraft!
•  Aerodynamic performance and noise prediction!
•  Vortex wakes and vortex blade interaction (BVI)!
•  Rotor blade flexibility and vibration!
•  Moving components!
•  Multidisciplinary (aerodynamics, structures, trim)!

•  Many of These Phenomena Are Poorly Understood and Difficult to Accurately Predict!
•  One objective of NASAʼs Subsonic Rotary Wing (SRW) Project is to develop physics-

based computational tools to address these issues!
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Fuselage Drag Reduction via Active Flow Control!

 POCs: Brian Allan and Norman Schaeffler, NASA LaRC!
Subsonic Rotary Wing Project  - 4 

Results!
•  Validated CFD using small scale isolated fuselage wind tunnel test!
•  Identified blowing slot locations and actuator parameters for maximum predicted fuselage drag 

reduction (~20% in forward flight)!
•  CFD also predicts maximum fuselage download reduction of 30%!
Significance!
•  Drag reduction with simultaneous download reduction offers potential to significantly improve 

helicopter performance in forward flight.  !
•  Drag reduction enables higher speeds!
•  Download reduction allows increased payload and/or maneuver performance !

Problem!
•  Helicopter fuselage drag significantly reduces 

forward flight performance and must be reduced to 
enable high-speed flight  !

Objective!
•  Use CFD to provide guidance on design of active 

flow control system for fuselage drag reduction in 
forward flight for a mid-scale wind tunnel test!

Approach!
•  Study placement of flow control actuators and 

actuator parameters using CFD!
•  Generic fuselage shape (ROBIN-mod7)!
•  OVERFLOW2/CAMRAD II loose coupling!
!



Fuselage Drag Reduction via Active Flow Control!

 POCs: Brian Allan, Norman Schaeffler, NASA LARC! Subsonic Rotary Wing Project  - 5 
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Turbulence Model Assessment for Rotorcraft Flows!

Subsonic Rotary Wing Project   POC:  Tom Pulliam, NASA Ames  

•  Most rotorcraft RANS computations use 
fixed-wing turbulence models (TM) >> 
Difficulties!

•  Effect of TM on rotorcraft flows largely 
unexplored!

•  Objective: Assess effect of TM on 
rotorcraft flows!

•  Study guidelines:!
–  OVERFLOW flow solver!
–  Hover & forward flight conditions !
–  Two geometries: XV15, UH60!
–  Near body (NB) & off body (OB) grids 

treated independently!
–  NB & OB viscous terms activated 

independently!
•  Example results at right!
–  Grid size: NB=19x106, OB=28x106!

–  NB TM = Spalart-Almaras (SA)!
–  NB viscous = RANS!

•  High levels of eddy viscosity (right) 
diffuse flow structure > large errors in FM!

OB grid:!
SA (source term OFF)

Viscous terms OFF!
FM = 0.777!

OB grid:!
SA (source term ON)!

Viscous terms ON!
FM = 0.730!

Inviscid OB! Fully RANS !

Eddy viscosity!

Iso-surface of vorticity colored by eddy viscosity!



Turbulence Model Assessment—Grid Refinement!

Subsonic Rotary Wing Project   

  XV15 in Hover!
  θ=10°!
  Spalart-Almaras!
  14 Revolutions!
  FMexp ~ 0.77!
!

 
 

POC:  Tom Pulliam, NASA Ames !

Grid (x106) !NB     OB!     FM (Inv OB)   FM (RANS OB)!
Coarse ! !5.3  !   4.4!            0.785      !   0.752!
Medium ! ! 19 !    28!            0.777       !   0.730!
Fine! !   ! 80 !  207!            0.772      !   0.715!

 
 

 

Iso-surface of vorticity 
colored by eddy viscosity!
RED ~ High!
Blue ~ Low!

Coarse grid !   Medium grid !             Fine grid!
OB grid:!

Source term OFF!
Viscous terms OFF!

OB grid:!
Source term ON!

Viscous terms ON!



Turbulence Model Assessment—UH60A Rotor!

Forward flight results!
!

•  OVERFLOW/CAMRAD II, loose 
coupling!

•  High Speed Flight Counter 
(C8534:  M∞=0.236, µ=0.368)!

•  SA and SST TM models!

POCs: Jasim Ahmad - NASA ARC 

Hover results!
• OVERFLOW with 5th O convection in OB, 2nd O time!
•  Isolated rotor with no trim tab!
• Aeroelastic deflections based on exp measurement!
• MTIP=0.65, θ=10.5°!
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Model! FM! OB turb model options!
SA-DES! 0.7571! Hybrid RANS/LES!
SA! 0.7578! Source terms OFF, Inviscid!
SST! 0.7612! Source terms OFF, Inviscid!
SA! 0.7557! RANS!
SST! 0.7627! RANS!

Boundary layer profile comparisons 

Upper surf  
r/R=0.4 
50% chord 



Rotorcraft Transition Modeling--Future!
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•  Langtry-Menter transition model incorporated into OVERFLOW!
•  Improves accuracy for cases with laminar-to-turbulent transition!
•  Future effort: Include/evaluate Langtry-Menter model for rotorcraft flows to improve 

rotor blade stall prediction!

POC: Pieter Buning, NASA Langley!

Flat plate skin friction!
Different free-stream turbulence levels illustrate 
effect of Langtry-Menter transition model!

S809 airfoil drag polar!
Comparisons between transitional and fully 
turbulent simulations.!

Drag!

Li
ft!

Reynolds number -- ReX!
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Simulation of V22 Rotor System in Hover!

POC: Neal Chaderjian, NASA Ames!
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•  Improved body resolution!
•  5th-order spatial accuracy (OB convective terms)!
•  Detached Eddy Simulation (DES)!

Adaptive Mesh Refinement (AMR)!
•  Vortical worms produced due to blade wake 

shear-layer entrainment into vortex cores!
•  Prediction of vortex-core diameter growth more 

closely agrees with experiment!
•  Reduced dissipation!
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Simulation of UH60 Rotor System In Forward Flight!

Baseline 
Wake Grid!
69x106 Pts!

AMR !
Wake Grid!
465x106 Pts!

Baseline!
•  Flight Counter C8534 

(High-Speed Case)!
•  M∞ = 0.236   !
•  µ = 0.37Grid:!

•  Uniform spacing in off 
body grid: ∆ = 10% Ctip!

!
Adaptive Mesh Refinement 
(AMR)!
•  Three-level AMR used for 

off body grid:!
•  ∆, ∆/2, ∆/4 = 10%, 5%, 

2.5% Ctip!
•  Improved resolution of 

vortex core size!
•  Improved resolution of 

wake shear layer!

POC: Neal Chaderjian, NASA Ames!



Near-Body Adaptive Mesh Refinement (AMR)!

Cubic Interpolation Used to Avoid Oscillations Due to Faceted Surface Representation!
 

POCs:  Pieter Buning, NASA LARC, Tom Pulliam, NASA ARC ! 12 

Adapted Grid!

Pressure Contours! Pressure Contours!

Adapted Grid!

Bilinear Interpolation! Cubic Interpolation!



Heavy Lift Slowed-Rotor Compound Helicopter 
Flow Computations!
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POCs: Jasim Ahmad, David Kao, NASA ARC; Brian Allan, NASA LaRC  

OVERFLOW2 computations!
•  5th O convection terms in OB, 2nd O time!
• SST turbulence model!
• Structured grid (113x106 points)!
•  Test performed in LaRC 14x22-ft subsonic 

tunnel!
•  Tunnel ceilings, support structure modeled!
• Rotor radius = 0.8966m with non-uniform 

twist and tapered planform!
•  μ=0.54, M∞=0.21!

Vorticity contours superimposed on PIV 
plane with texture mapping! Surface flow!

Contours of 
vorticity mag!

Streamlines colored 
by pressure!



Isolated Rotorblade Flutter Computations!

Codes utilized!
• OVERFLOW2.2 !
• MODFLU (U-g method)!

Coupling Approach!
•  Lagrange equations!
•  Frequency domain!
• UNIX script!
• RUNMOD using MPIEXEC!

Geometry!
• NACA0012 isolated blade!

Grid!
•  1.8x106 points  !

Modes !
• Bending!
•  Torsion!

Computational cost!
•  Flutter Boundary in 24 hrs 

using 1000 cores!
!
!

GRID NEAR TIP 

POC: G. Guruswamy, NASA Ames!
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