Fundamental Aeronautics Program

Subsonic Rotary Wing Project

Flight Dynamics and Controls Discipline Overview

Colin Theodore
Technical Lead for Flight Dynamics & Controls
NASA Ames Aeromechanics Branch

2012 Technical Conference
March 13-15, 2012
Objectives and Challenges

• Flight Dynamics and Controls deals with the pilot and cockpit technologies as a bridge between the vehicle and operations concepts

• Flight control of large, complex rotorcraft
 – Implications of large aircraft size
 – Obtaining high bandwidth control
 – Emerging blade control concepts
 – Rotor speed changes
 – Flexible structures
 – Cockpit and pilot inceptors

• Complex flight operations management
 – Hover to cruise to hover conversions
 – Control mode changes
 – Noise abatement
 – Obstacle rich, poor visibility, low altitude operations
 – Congested airspace operations
FD&C Discipline Tasks

• **Control Theory and Intelligent Automation**
 – Full envelope flight dynamics modeling
 – Optimal trajectories for noise abatement
 – Human pilot interface modeling

• **Applied Flight Dynamics and Controls**
 – Handling qualities design envelope requirements
 – Guidance and control for advanced rotorcraft in NextGen airspace
 – Safety analysis of helicopter accidents
Full Envelope Flight Dynamics Modeling

- Simplified hover dynamics model: 2008-2009
- Enhanced low-speed model: 2010-2011
 - Expanded speed envelope
 - Nacelle tilt, independent rotor control
- Full flight envelope stability derivative model: 2012-2013
 - Full nacelle range, flaps, rotor speed changes
 - Supports research with modest computational requirements
- Total force and moment model: ~ 2014
 - Higher fidelity physics-based full flight envelope simulation model
- LCTR/HETR test in Army AFDD 7x10 foot wind tunnel at Ames: 2011
 - Measure basic low-speed aerodynamics of fuselage/tail/wing/nacelle
LCTR 7x10-ft Wind Tunnel Test

- First wind tunnel test to measure complete LCTR airframe aerodynamics (without rotors)
- Part of a joint test between NASA and US Army
- Test objectives:
 - Airplane mode (shown) - High speed (200 knots) for lateral-directional airframe stability assessment
 - Helicopter mode - Low speed data (<60 knots) with pitch (+/- 10 deg) and yaw (+/- 180 deg) variations for low speed aerodynamics
- Tasks completed to date:
 - LCTR model installed in the test section
 - Oil flow visualization in airplane mode (shown)
 - Aerodynamic forces and moments measured in airplane mode for three different wingtip/nacelle configurations
- Data to be used for:
 - Comparison/validation of CFD tool predictions
 - Development of flight dynamics simulation models
Optimal Trajectories for Noise Abatement

Objective:
- Apply state of the art optimization techniques to design rotorcraft approach techniques that minimize ground noise.

Approach:
- Configuration space for motion planning defines the set of transformations that can be applied to the rotorcraft during approach.
- State of the art constraint optimization and path planning algorithms (A*, Field D*, Probabilistic Roadmaps) search for best trajectories, straight and maneuvers.
- Noise predictions from Rotorcraft Noise Model (RNM) used to evaluate candidate trajectories
- Realistic terrain representations (water, residential, industrial, etc.) allow for solutions that can be applied to real landing environments.

1999 XV-15 Proposed Approach Profiles

Land Use Model around Pensacola Airport
Optimal Trajectories for Noise Abatement

Status:

• Joint work with SRW Acoustics team
• SAA with University of Padua, Italy to develop noise 'cost' functions based on RNM output to be used by optimizer.
• WYE support for developers at Florida Human and Machine Cognition (IHMC) for implementing path planning algorithms, develop land-use models around real airports

Results:

• Optimizer based on stochastic local search finds trajectories that are roughly 20% quieter on average than 'pilot-defined' quiet paths.
• Pilot-defined 'flyability constraints' means that the optimal trajectories adhere to requirements for safety and passenger comfort.
Active Inceptor Handling Qualities Study

- Joint Army-NASA investigation
- Objectives:
 - Study interaction between inceptor force-feel characteristics and handling qualities
 - Investigate flight control system optimization including inceptor characteristics
- Approach:
 - Systematic investigation of varying inceptor force-feel parameters and different types of command response
 - Piloted ground simulation and flight tests
- Current status:
 - Flight tests conducted in 2011 with US Army RASCAL and DLR FHS helicopters
- Next Steps:
 - Piloted simulation experiment at NASA-Ames Vertical Motion Simulator (VMS)

Analysis of gradients shows sensitivity of handling qualities to inceptor damping ratio, but not to the natural frequency.
LCTR2 Handling Qualities Investigations

• Objectives:
 – Develop understanding of the flight control and HQ effects of unique characteristics of large helicopters, including tilt-rotors: low bandwidth response, large pilot offset
 – Develop handling qualities and control system requirements for large helicopters

• Approach:
 – Series of experiments to systematically study fundamental Handling Qualities and control system effects throughout flight envelope and airspace integration
 – Piloted simulation experiments in Vertical Motion Simulator (VMS)
 – Partnership with US Army, US Marines and helicopter industry (Bell, Boeing, Sikorsky)

• Current status:
 – Four successful hover and low speed experiments in the VMS (2008 - 2011)
Previous Experiments (2008 -- 2010)

- 2008 – Studied basic effects of rotorcraft size on piloted handling qualities in hover
 - UH-60 Blackhawk, CH-53, and LCTR
 - LCTR only achieved Level 2 Handling Qualities with Attitude Command-Attitude Hold (ACAH)

- 2009 – Investigated fundamental pitch, roll and yaw response requirements and effect of C.G. to pilot offset on handling qualities
 - Level 2 Handling Qualities was best that could be achieved with ACAH control
 - New yaw bandwidth criteria suggested
 - Ride quality degrades due to pitch/heave coupling with larger pilot offsets

- 2010 – Investigated advanced control mode of Translational Rate Command (TRC) using automatic nacelle motion
 - Level 1 Handling Qualities achieved with ‘Improved’ TRC including nacelle rate cross-feed to longitudinal cyclic
 - Actuator dynamics set at 8 rad/sec
2011 VMS Experiment

• Objectives:
 – Investigate control allocation between automatic nacelle actuation and rotor cyclic for control redundant tilt-rotor aircraft
 • Automatic nacelle: Low bandwidth
 • Longitudinal cyclic: High bandwidth
 – Investigate nacelle actuation requirements and TRC architectures to achieve Level 1 Handling Qualities

• Approach:
 – Vary nacelle actuator dynamics with TRC architecture from 2010 experiment
 – Investigate alternative TRC architectures to achieve Level 1 Handling Qualities with low bandwidth nacelle actuator
2011 Experiment Results

- **Left Figure:** Varying nacelle actuator bandwidth (Nacelle-only control)
 - Level 1 HQ achieved with nacelle actuator rates greater than 4 rad/sec
 - Solid Level 2 HQ with 3 rad/sec nacelle actuator bandwidth
- **Right Figure:** Add feed-forward of velocity command and feedback of velocity error to longitudinal cyclic (3 rad/sec nacelle actuator bandwidth)
 - Level 1 HQ achieved with ‘augmented’ TRC and 3 rad/sec
 - Shows augmenting TRC control architecture can recover Level 1 HQ with lower bandwidth actuators
Concluding Remarks

• Simulation Model Development:
 – Working on full-envelope LCTR physics-based non-linear simulation model for use in piloted-in-the-loop VMS experiments
 – Completing LCTR wing tunnel test in 7x10 foot wind tunnel at Ames to measure basic wing/fuselage/nacelle/tail aerodynamic through flight envelope
 – Continuing development of LPV-based stitched linear model to support flight control and handling qualities research activities

• Trajectory Optimization for Noise Abatement:
 – Joint work with SRW Acoustics discipline including flight test support (Bell 430) and Rotorcraft Noise Model (RNM) in trajectory optimization
 – Currently includes pilot handling qualities and vehicle performance limits and working towards including terrain constraints in trajectory planning

• Cockpit and Pilot Inceptors:
 – Active inceptor handling qualities study jointly with US Army examining interaction between inceptor force-feel characteristics and handling qualities
 – Completed flight tests on US Army RASCAL and DLR FHS helicopters
 – Planning piloted simulation in the NASA-Ames Vertical Motion Simulator (VMS)
Concluding Remarks

• Handling Qualities Design Envelope Requirements:
 – Completed 4 VMS entries examining basic low-speed handling qualities of large rotorcraft
 • Developed basic understanding of effect of vehicle size on handling qualities
 • Suggested new design requirements for large rotorcraft handing qualities
 • Examined advanced control modes including TRC with automatic nacelle control
 • Explored control redundancy to improve handing qualities
 – Working on a summary report combining results of 4 experiments

• Future Work in Handling Qualities:
 – Define follow-on experiments in the VMS
 • Trajectory optimization for noise abatement
 • Guidance and control of advanced rotorcraft in NextGen
 – Develop basic handing qualities analysis in preliminary design / sizing phase with tools such as NDARC
 – Develop higher fidelity handling qualities scale as an addition to Cooper-Harper handling qualities ratings scale