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Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with 
simplified hub in forward flight and hover flight conditions.  Flexible rotor blades and flight trim 
conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid 
Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code.  High order spatial 
differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to 
obtain highly resolved vortex wakes, where the largest turbulent structures are captured.  Special 
attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and 
verifying the loose coupling convergence process using AMR.  The AMR/DES simulation produced 
vortical worms for forward flight and hover conditions, similar to previous results obtained for the 
TRAM rotor in hover.  AMR proved to be an efficient means to capture a rotor wake without apriori 
knowledge of the wake shape. 
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!N  Sectional blade normal force 
NB Near body 
Ni Number of dual-time sub-iterations 
OB Off body 
Q Rotor torque 
r Radial position 
R Rotor radius 

Re Reynolds number, 
Vtipctip

!  
T Rotor thrust 
!T  Sectional blade thrust 

u,v,w Cartesian velocity components 
V Velocity magnitude 
x, y, z Cartesian coordinates 
y+ Non-dimensional viscous wall spacing 
β Blade flap angle, deg 
Δ Grid spacing 
Δt Time step, deg rotation 

δ Boundary layer thickness 

! X
(6)

 6th-order central difference operator 
!
X6  6th-derivative artificial dissipation operator 

ζ Blade Lag angle, deg 
θ Blade collective pitch angle, deg 
n Fluid kinematic viscosity 
!t  Kinematic turbulent eddy viscosity 

 !!  Turbulence variable 
r Fluid density 
ψ Azimuthal angle of rotor blade, deg 
Ω Rotor rotational speed or vorticity magnitude 



 

Introduction 

The accurate simulation of rotorcraft flow fields with 
Computational Fluid Dynamics (CFD) continues to be a 
challenging problem.  Unlike fixed-wing applications, a 
rotor blade can encounter the tip vortices of other blades, 
and in some cases its own tip vortex.  This interaction can 
strongly affect the rotor-blade loads and performance, 
generate high levels of noise, and produce a strong 
interaction between the rotor blade trailing edge shear layers 
and the tip vortices. The situation is further complicated by 
flexible rotor blades, which require the coupling of fluids 
and structures solvers, and a trim algorithm for static flight 
conditions.  

Chaderjian and Buning1 recently used the 
OVERFLOW2,3 code to simulate hover flight conditions for 
the Tilt Rotor Aeroacoustics Model (TRAM) isolated rotor 
over a range of collective angles.  These time-accurate 
Reynolds-averaged Navier-Stokes (RANS) simulations 
were carried out in an inertial overset grid system.  Body-
fitted curvilinear grids attached to the rotor blades rotated 
through a fixed Cartesian grid system.  The latter was used 
to resolve the vortex wake and extend the computational 
domain to the far field.  Baseline computations were carried 
out on a wake grid with uniform grid spacing, ∆=10% ctip.  
This is the approximate size of the physical vortex core 
diameter.  The wake region was further resolved using a 
new dynamic Adaptive Mesh Refinement (AMR) 
procedure.  Refined Cartesian grids were added or removed 
in the vortex-wake region based on a vorticity sensor 
function.  Two levels of refinement were used (each level 
differs by a factor of two), so that the wake region was 
resolved with Cartesian grids whose grid spacing was 
∆=10% ctip, 5% ctip, and 2.5% ctip, see Fig. 1.    

For the first time, the TRAM Figure of Merit (FM) was 
predicted within experimental error for a wide range of 
collective angles.  This study had three important findings.  
First, fine surface-body grid resolution and the use of 5th-
order spatial differences were more important to accurately 
predicting FM at a high-thrust condition (θ=14°) than 
resolving the wake vortices.  Second, the FM was accurately 
predicted over a collective range of 6°≤θ≤16° using the 
Spalart-Allmaras (SA) turbulence model4 together with the 
Detached Eddy Simulation5-6 (DES) length scale.  This was 
accomplished on the baseline grid system (uniformly spaced 
wake grids) without the expensive use of AMR.   

The difference in predicted FM between the SA-RANS 
and SA-DES models is shown in Fig. 2.  Note that the SA-
DES turbulence model had excellent agreement with the 
experimental data over the entire range of collectives, but 
the SA-RANS model only agreed well at the high-thrust 
collectives.  This marked difference between turbulence 
models occurs when there is Blade Vortex Interaction (BVI) 
between the tip vortices and the rotor blades.  The DES 
length scale produces a much smaller Turbulent Eddy 
Viscosity (TEV).  As long as there is no BVI, the RANS 
FM results are very good.  However with BVI, the large 
TEV in the rotor wake can infiltrate the rotor blade 
boundary layer, increasing CQ and greatly reducing the FM.  

Although DES was developed to resolve the largest eddies 
in a separated turbulent flow, DES was not used in this 
manner for the TRAM simulations.  Rather, the more 
realistic DES turbulent length scale was used in the rotor 
wake to reduce the TEV and improve the prediction of FM.   

A third finding1 showed the new DES/AMR procedure 
produced a vortex wake rich in turbulent physics, see Figs. 
1,3.  The tip vortices were much stronger and had smaller 
core diameters than the baseline result.  Moreover, vortical 
“worms” were found to encircle the tip vortices through a 
process of entrainment of the wake shear layers into the tip 
vortices and vortex stretching.  The worms are less 
prevalent in the upper wake and quite dense in the lower 
wake due to the entrainment process.  These simulations 
were for a rigid TRAM blade system. 

Ahmad and Chaderjian7 recently reported a significant  
improvement in the prediction of the normal force and 
pitching moments for the UH-60 rotor in forward flight.  
This was accomplished by loosely coupling the 
OVERFLOW code with the CAMRAD II helicopter 
comprehensive code.8  CAMRAD II provided blade 
deformations and trim conditions, while OVERFLOW 
provided CFD loads from the RANS equations.  The 
improvement of the predicted loads was attributed to 
improved surface-grid resolution and the use of 5th-order 
spatial differences in OVERFLOW. 

The goal of this paper is to demonstrate OVERFLOW’s 
new high-order spatial differencing, AMR process, and the 
use of the SA-DES turbulence model on the flexible UH-60 
rotor in forward flight and hover.  Moreover, attention will 
be given to the time accuracy of the numerical method, 
convergence of the loose-coupling process with AMR, and 
details of the UH-60 rotor wake in hover and forward flight. 

The numerical approach is described in the next 
section, including a brief description of the CAMRAD II 
helicopter comprehensive code, fluid/structure loose 
coupling procedure, UH-60 geometry and overset grid 
system, flow-solver algorithm, dynamic AMR algorithm, 
and turbulence model.   This is followed by a discussion of 
the numerical results and concluding remarks. 

Numerical Approach 

A numerical approach that is used to simulate the flow 
field for a flexible UH-60 rotor using the time-dependent 
Navier-Stokes equations is now described.   

Comprehensive Code: CSD and Rotor Trim 

The helicopter comprehensive code CAMRAD II8 
provides Computational Structural Dynamics (CSD) and 
rotor trim for a coupled CFD/CSD simulation. This code is 
widely used in the helicopter industry. It models the flexible 
rotor blade structure using nonlinear finite elements. 
CAMRAD II has its own simplified aerodynamic lifting-
line model, a 2D airfoil table lookup for additional viscous 
realism, and tip-vortex wake models. Although this code has 
been widely used, its prediction capability is limited due to 
the low fidelity aerodynamic model. However, it has been 
used with high-fidelity CFD models in a loosely coupled 
manner. The details of this comprehensive code are 



 

described by Johnson,8 and the coupling strategy is 
described briefly below and in more detail by Potsdam et 
al.9 

Fluid/Structure Interaction: Loose Coupling 

For static flight conditions, a loose coupling procedure 
between CFD and CSD is employed.  This coupling is done 
in a periodic manner, as specified by the user.  The coupling 
period is some fraction of the number of rotor blades.  In the 
case of the four-bladed UH-60 rotor, coupling periods of ¼, 
½, and 1 revolution are typical.  The lower coupling periods 
often provide faster loose-coupling convergence, provided 
the process is stable.  More difficult cases, e.g., dynamic 
stall, may require larger coupling periods.  A coupling 
period of ¼ revolution is used in this paper.   

The coupling procedure is valid as long as the rotor 
loads are periodic.  This does not preclude some 
aperiodicity in the vortex wake, which is often the case in a 
high-resolution turbulent flow simulation.  If the rotor loads 
are not periodic, e.g., a maneuvering vehicle, then the 
procedure is not time accurate.  In this case, a tight-coupling 
procedure is required.   

At each coupling step, CFD rotor loads are provided to 
CAMRAD II and, in turn, it uses these CFD loads to make a 
correction to its own simplified aerodynamic model.  
CAMRAD II then goes through a CSD analysis and re-trims 
the rotor blade motions.  CAMRAD II then provides a new 
rotor-blade deflection file to the CFD code.  When this 
loosely coupled process is fully converged, the CFD 
airloads have fully replaced the CAMRAD II airloads.   

Figure 4 shows a flow chart of the loose coupling 
iterative procedure. The detailed logistics for running the 
coupled CAMRAD II and OVERFLOW process is 
accomplished using a C-shell script. This script helps 
automate the run process, which uses many CAMRAD II 
tools and coupling steps. The reader is again referred to 
Refs. 8-9 for additional details. 

Rotor Geometry/CFD Grid 

The OVERFLOW 2.2 CFD code has been used for the 
UH-60 flow simulations presented in this paper.  This code 
utilizes structured overset grids for this four-blade/simple-
hub geometry.  Figure 5 shows body and volume grids for 
the UH-60 rotor blades, and the locations of flight-test data.  
Near-body (NB) grids refer to the curvilinear grids attached 
to the rotor blades and hub.  Off-body (OB) grids refer to all 
Cartesian grids.  The O-grids on the rotor blades have 
253x255x63 grid points in the chord, radial, and body-
normal directions.   There are ten grid cells across the blunt 
trailing edge.  O-type cap grids are also used to resolve the 
inboard and outboard rotor-blade tips.  All of the NB grids 
extend about one tip chord in the body normal direction, and 
have a total of 23 million grid points.  A uniform Level-1 
Cartesian grid is typically used to resolve the rotor-wake 
region with a spacing of ∆ =10% ctip.  Coarser “brick” grids 
are used to extend the computational domain to the far field.  
Each brick grid has a grid spacing that is twice as coarse as 
the previous one.  Surface grid resolution follows the 

practice and recommendations of Ref. 1.  The viscous wall 
spacing typically has a range of 0.5≤y+≤1.0 on the blade 
surfaces.   

Flow-Solver Algorithm 

OVERFLOW is a finite-difference, overset grid, Navier-
Stokes CFD code. Up to 6th-order spatial accuracy for 
inviscid fluxes and 2nd-order time accuracy are available.10 
OVERFLOW has two modes of operation, stationary grids 
and dynamic grid motions. In the case of grid movement, 
both rigid-body motions and deforming grids are permitted.  
Inter-grid overset communication can be established 
external to OVERFLOW using the PEGASUS code.11 This 
is only done for non-moving grid cases.  For the present 
dynamically moving grid simulations, inter-grid 
communication is established using X-Rays3 and the very 
efficient Domain Connectivity Function3 within 
OVERFLOW.  OVERFLOW has several turbulence models 
available. For the present study, the one-equation Spalart-
Allmaras model4 is used.  OVERFLOW has many flow-
solver options described in Refs. 2-3.  The effect of 
subiteration convergence on temporal accuracy is quantified 
in the Results section. 

A 2nd-order accurate dual time-stepping algorithm is 
used to solve the RANS equations, and is based on the dual 
time-stepping methods described in Refs. 12-13.  The dual 
time-stepping algorithm is now described, and subiteration 
accuracy is discussed in the results section.   

The Navier-Stokes equations can be written in strong 
conservation-law form as 

  (1) 

where  is the vector of 
conserved variables; F, G, and H are the inviscid flux 
vectors; and  Fv, Gv, and Hv are the viscous flux vectors. 

An artificial time term is introduced to the governing 
equations in order to provide a relaxation (subiteration) 
procedure between physical time steps. 

   (2) 

where t corresponds to physical time and τ corresponds to 
artificial (pseudo) time.  

First-order accurate Euler implicit differencing is used 
for the artificial time discretization, while a second-order 
accurate three-point backward difference is used for the 
physical time discretization.  An implicit approximate 
factorization form of Eq. (2) in generalized coordinates is 
given by 
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where 
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In these equations, , where J is the 
transformation Jacobian, and A, B, and C are the inviscid 
flux Jacobians.  The variable k is the subiteration index, 
while the variable n is the time-step index.  Finally, 
!Q̂k = !Q̂k+1 " Q̂k .  Subiteration convergence implies that 

, which is second order accurate in time.   
A diagonalized implicit algorithm14 is used to solve this 

equation, and central differences are used to discretize the 
spatial derivatives. Upwind difference options are available 
in OVERFLOW, but were not used in this study. 

The central difference spatial accuracy consists of 
evaluating the convective terms with 6th-order central 
differences and 5th-order artificial dissipation.  This results 
in a 5th-order accurate discretization on the uniform 
Cartesian OB grids.  However, all viscous terms are 
evaluated with 2nd-order accurate central differences.  The 
grid metrics on the curvilinear NB grids are also 2nd-order 
accurate in space.  This discretization is referred to as 5th-
order spatial differencing throughout this paper.  Although 
the algorithm is still formally 2nd-order accurate in space, 
this differencing scheme has lower diffusion and dispersion 
errors, and an improved flow field resolution than a 3rd-
order approach.  Table 1 summarizes the convective central 
difference operators.  Further details are described by 
Pulliam.10   

Dynamic AMR Algorithm 

A dynamic AMR capability has been included in 
OVERFLOW, where Cartesian grids are automatically 
added in the rotor wake region to improve the resolution of 
the wake vortices.  This is done internally to the 
OVERFLOW code in a time-accurate manner with moving 
rotor blades.  This procedure is now briefly described. 

The concept of Level 1 grids and brick grids have 
already been introduced.  The brick grids are successively 
coarsened by factors of two from the original Level 1 grid, 
to extend the computational domain to the far field.  For 
example, if Δ1 is a user-specified spacing for the Level 1 
grids (baseline Cartesian wake grids), then the coarser brick 
grids have grid spacing of Δ2=2Δ1, Δ3=4Δ1, Δ4=8Δ1, and so 
on.  In a similar manner, if a Level 1 region is tagged for 
grid refinement, e.g., to better resolve a vortex core, then the 
grid spacing has the following form: Δ-1= 1

2Δ1, Δ-2= 1
4 Δ1,  

Δ-3= 1
8Δ1, and so on.  A sensor function based on the 

vorticity magnitude is used to identify where to refine the 
OB Cartesian grids.   

The dynamic AMR process is described in more detail 
by Buning and Pulliam,15 and Chaderjian and Buning.1  
Figure 1 is an example of a two-level AMR OB refinement 
for the TRAM rotor in hover.  

Turbulence Model 

The OVERFLOW code has a choice of algebraic, one-
equation and two-equation turbulence models2-3 that close 
the system of RANS equations.  The UH-60 rotor 
simulations presented in this study use the one-equation 
Spalart-Allmaras4 (SA) turbulence model.  The details of the 
SA turbulence model play an important role in controlling 
the TEV levels in the flow, the numerical diffusion of the 
rotor tip vortices, and the accurate prediction of FM.1  Some 
of the key features of this model are now discussed. 

The SA model uses the Boussinesq approximation to 
relate the Reynolds stresses to a kinematic turbulent eddy 
viscosity and the mean strain-rate tensor.  The TEV is given 
by the expression 

 ! t = !! fv1  
The SA turbulent transport equation for the turbulence 
variable  !! , is given by 
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where D Dt  is the material time derivative.  The right hand 
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and the diffusion by 
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The constants Cb1, Cb2, Cw1, ! , s, and functions fv1, fv2, fw, 
are described by Spalart and Allmaras.4  The damping 
function, fv1, reduces nt near a solid wall.  The turbulent 
length scale, d, is defined as the distance to the nearest wall.   

The SA model was originally developed for boundary-
layer flows, where d is a reasonable length-scale estimate of 
the largest energy-bearing turbulent eddies.  In vortex 
dominated flows, such as in a rotor wake, the distance from 
the vortex core to the nearest wall can be very large, even 
several rotor radii, and produce very large TEV.  This has 
the effect of greatly diffusing the wake vortices and reduces 
the predicted FM.   

Shur et al.16 introduced a correction for rotating and 
curved flows, which is referred to as the SARC correction.  
The SARC correction not only improves the boundary-layer 
profiles for highly curved flows, but also helps reduce the 
TEV in the vortex wake cores.  The SARC correction is 
used in the present reported results.  It is also noted that in 
the rotor wake, where the length scale d→large, the 
dissipation term D→0.  So there is no significant TEV 
dissipation in the rotor wake.  TEV can therefore be locally 
produced and diffused, but not dissipated.  The lack of TEV 
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dissipation in the wake can be a problem, especially for 
hover simulations, even with the SARC correction.   

An additional degree of realism can be realized by the 
use of Large Eddy Simulation (LES).  LES is a computation 
where the largest turbulent eddies are resolved with small 
grid spacing, ∆, and the subgrid-scale (SGS) eddies are 
modeled.  Smagorinsky17 first postulated a SGS model for 
the Reynold’s stresses based on the following expressions 
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where Sij is the resolved mean strain rate, nt is the 
Smagorinsky eddy viscosity given by 

 
! t = Cs"( )2 SijSij  (9) 

and Cs is the Smagorinsky coefficient.  In this expression, 
∆=(∆x ∆y ∆z)1/3, i.e., the geometric mean of the grid cell 
spacing.  LES is beyond the scope of all but the most 
fundamental of turbulent flow computations. However, 
Spalart et al.5 suggested Detached Eddy Simulation (DES) 
as a more practical alternative.   

DES can be viewed as a blending of a RANS 
turbulence model in boundary layers, and coarse-mesh LES 
in regions of flow separation, or where the largest eddies are 
to be grid resolved.  This is accomplished in the SA model 
by replacing the distance to the nearest surface (d) by  
 d = min d,CDES!( )  (10) 

where ∆=max(∆x, ∆y, ∆z), and CDES=0.65.  So the SA 
RANS model becomes the SGS model.  Moreover it is easy 
to see that when production balances dissipation (Eqs. 5-6), 
e.g., when ∆ is small, then nt simplifies to a Smagorinsky-
type model.  So the SA-DES model behaves like an LES-
type model when the grid spacing is sufficiently small. 

The primary use of Eq. 10 in the present rotor 
simulations is to obtain a more realistic turbulent length 
scale in the rotor wake.  This insures the magnitude of TEV 
is controlled so that in BVI cases, an excessively large TEV 
does not infiltrate the blade boundary layers and artificially 
reduce the FM through an increased CQ.  However, with the 
introduction of finer AMR grids, the largest eddies in the 
turbulent wake are beginning to be resolved.   

At this point a few cautionary comments on the 
application of DES are in order.  First, it is a common 
mistake to claim a DES simulation by simply turning on Eq. 
10.  Note that “RANS” grid spacing in the wall-parallel 
direction will not cause Eq. 10 to switch to the DES length 
scale.  In other words, one is still left with a pure RANS 
result. 

A second danger occurs when using excessive grid 
refinement near a solid wall, or a boundary layer gradually 
approaching separation.  The intended use of DES is to be in 
RANS mode throughout the boundary layer, where the 
turbulent scales can be very small, and LES mode outside 
the boundary layer, where the turbulent scales are larger, 
e.g., separated flow.  This occurs when the wall-parallel 
spacing ∆|| > δ.  If the wall-parallel grid spacing is much 
smaller than the boundary layer thickness (∆|| ≈ d/20 is a 
plausible starting point), then LES resolution applies within 
the upper portion of the boundary layer, and very close to 

the wall the RANS model acts as an appropriate sub-grid 
model.  In-between these two examples, the grid spacing is 
ambiguous, being neither RANS nor LES.  In these cases 
the turbulent shear stresses are too small within the 
boundary layer due to inadequate grid support for the full 
range of turbulent length scales.  This modeled stress 
depletion (MSD) can trigger premature separation, and give 
non-physical results.   

This situation can be avoided by making sure the grid 
spacing parallel to the wall is larger than the attached 
boundary layer thickness.  However, Spalart et al.6 introduce 
a correction called Delayed Detached Eddy Simulation 
(DDES).  This algebraic formula prevents the inadvertent 
use of LES mode within a boundary layer, ensuring that the 
RANS model is active throughout that region.  Details of 
the DDES modification are given in Ref. 6. 

DDES is used throughout this paper, even though the 
wall-parallel grid spacing used is not so small as to require 
DDES.  Nonetheless, DDES has been used as a precaution.   

Numerical Results 
The goal of this research is to demonstrate 

OVERFLOW’s new high-order spatial differencing, the 
AMR process, and the use of the SA-DES turbulence model 
on the UH-60 flexible-blade rotor in forward flight and 
hover.  Loosely coupling the OVERFLOW and CAMRAD 
II codes is needed to account for the UH-60’s flexible rotor 
blades.  However, this research emphasizes  high-order 
spatial differences and high resolution OB wake grids as 
part of a multidisciplinary process.  A forward flight and 
hover condition will be presented in this paper.   

NASA and the US Army, as a part of the UH-60 
Airloads program, maintain an extensive flight-test 
database18 for level flight and transient maneuvers. The 
database provides aerodynamic pressures, structural loads, 
control positions, and rotor forces and moments. This 
database is extensively used for the validation of both 
aerodynamic and structural models. The test matrix provides 
a range of flight conditions.  Flight counter C8534 is a high-
speed level-flight case that is explored in this paper. The 
advance ratio is µ = 0.37, the freestream Mach number is 
M∞=0.236, and the tip Mach number is Mtip=0.64.  
Reference 18 mentions that many investigations have been 
performed on this flight-test counter to understand unsolved 
analysis problems for the advancing blade azimuthal phase 
lag and under-prediction of blade pitching moments. A 
fuselage was not included in these simulations.  

A hover flight condition is also explored.  Wind tunnel 
measurements were obtained at the United Technologies 
Research Center (UTRC) wind tunnel.19 This data is 
generally accepted as being the most reliable and 
comprehensive hover data, and includes wake trajectory, 
blade loading, blade deformations, and performance 
measurements.  Wind tunnel measurements were also 
obtained at the Duits-Nederlandse Windtunnel (DNW).20  
The CFD simulations correspond to the UTRC wind tunnel 
test, where Mtip=0.628, CT/σ =0.102, σ=0.0825, and 
FM=0.734.  The blade deformations were also measured 
and used in the CFD simulations in an uncoupled manner. 



 

Forward Flight (C8534) 
Flow simulations are carried out using a 2nd-order 

accurate dual-time sub-iteration method described in the 
Flow-Solver Algorithm section.  It is therefore important to 
establish the time step and number of sub-iterations to 
insure temporal sub-iteration convergence and proper 
resolution of the relevant frequencies.  The approach taken 
here is to examine how these two parameters affect the 
normal force and pitching moment coefficients over one 
period (¼ revolution for this four-bladed rotor).  An 
OVERFLOW solution was first obtained using the grid 
shown in Fig. 5 with an uncoupled CAMRAD II motion file 
(from CAMRAD’s aerodynamics model).  This is the 
starting point for this time-accuracy study. 

A baseline time step, ∆t=¼ deg rotor rotation, is used 
based on previous experience.1,7  Figure 6 shows how the 
number of dual-time sub-iterations (Ni) affects the 
convergence of the dual-time algorithm, the total normal 
force (CN), and total pitching moment (CM) coefficients over 
¼ rotor revolution.  The dual-time sub-iteration convergence 
drops with increasing Ni, with decreasing effectiveness at 
the larger values.  The percent RMS difference between the 
CN and CM waveforms and their waveforms at 100 sub-
iterations does not show a monotone decrease with the 
number of sub-iterations until Ni=35.  This is the beginning 
of the asymptotic region, and corresponds to a dual-time 
sub-iteration drop of about 2.5 orders in magnitude, 
somewhat lower than the 2-order drop rule of thumb.  
Favorable CFD comparisons that are not in the asymptotic 
range may simply be fortuitous and can potentially get 
worse with more convergence.  The percent RMS difference 
in CN and CM is less than 1% when Ni=40.  Figure 7 shows 
how the number of sub-iterations affects the CN waveforms.   

Figure 8 shows how the CN and CM waveforms 
converge with time step when Ni=40.  Percent RMS 
differences are formed between the CN and CM waveforms 
and their respective waveforms at ∆t=1/32 deg.  This 
reference time step is very small and considered more than 
adequate for the present flow simulations.  Both the CN and 
CM waveforms are in the asymptotic range (monotone 
convergence) when ∆t≤¼ deg.  Based on the results shown 
in Figs. 6-8, flow simulations for the rest of this paper use 
∆t=¼ deg, and Ni=40.   

Now that the dual-time stepping parameters have been 
established for 2nd-order time accuracy, loosely coupled 
Overflow/CAMRAD II simulations are carried out for two 
different OB wake-grid resolutions.  Adaptive mesh 
refinement is used in both cases to insure the rotor wake is 
covered by the desired grid resolution.  The baseline case 
(AMR0) is shown in Fig. 9, where the wake is resolved by 
an OB grid spacing ∆=10% ctip.  Note that the rotor is 
embedded within a tight “box grid”, and the AMR process 
finds the vortical wake and automatically adds additional 
grids with the same resolution.  This overset grid system 
uses 960 grids with a total of 61 million grid points.  This is 
more computationally efficient than selecting a large “box 
grid” to cover the entire wake region.  Moreover, this 
eliminates the need to estimate the wake position prior to 
computing the flow.  The second AMR wake resolution is 

four times finer, adding two more levels of refined Cartesian 
grids to the wake.  So the wake is now resolved by 
Cartesian grids with grid spacings ∆=10%, 5%, and 2.5% 
ctip.  This grid system, which has about 18,500 grids and 754 
million grid points, is shown in Fig. 10 and designated as 
AMR2 (for two levels of refinement).   

The loosely coupled AMR0 case began from impulsive-
start conditions and ran for 4.5 rotor revolutions.  This 
allowed ample time for the wake to develop and the rotor 
loads to be established.  The AMR2 case started from the 
AMR0 result at 3 revs and run an additional 5 revs.  
OVERFLOW and CAMRAD II exchanged data in a loose 
coupling manner every ¼ revolution.  Figures 11-13 show 
the blade pitch, flap, and lag angles, including the 1st 
harmonics, for each loose coupling step for the AMR2 grid 
system.  These plots also include the first 3 revs (11 
coupling steps) of the AMR0 case, which served as the 
starting point for the fine-grid AMR result.  The blade 
control angles are converged in the AMR0 result by the 3rd 
revolution (11 coupling steps).  Continuing with the AMR2 
result did not alter the blade control angles in any significant 
manner.   

Figure 14 shows the RMS difference between the CN 
and CM waveforms between successive coupling steps.  The 
normal force coefficient shows a 1.5 order drop while the 
pitching moment coefficient shows almost a 2.0 order drop.  
Both the AMR0 and AMR2 grids systems are equally 
converged.  It is not possible to converge these flows further 
as the force/moment differences are quite small, and change 
slightly with time due fluid dynamic nonlinearities.  Figure 
15 shows that the converged sectional normal force and 
pitching moment coefficients at r/R=0.865 are virtually 
indistinguishable between coupling steps for both grid 
systems.   

Figure 16 shows the rotor wake system for the baseline 
AMR0 grid system.  The tip vortices and some of the blade 
trailing-edge shear layers are rendered with iso-surfaces of 
the Q-criterion.  The vortex core diameters are much larger, 
and the core vorticity is greatly diffused, compared to the 
physical vortex cores.  This is because the grid spacing, 
∆=10%ctip, is about the size of the physical vortex cores.  
The simplified hub sheds a stream of eddies that engulf the 
inboard portion of the rotor blade at ψ=0°, and convect 
downwind.    

Figure 17 shows the rotor wake system for the AMR2 
grid system, where the finest OB Cartesian grids are 4x finer 
than the AMR0 grid system.  Note that the vortex cores are 
much smaller in diameter than the baseline system.  Fine 
details of the blade trailing-edge shear layers are clearly 
seen, and the interaction of these wake shear layers with the 
vortex cores produces some vortical worms, similar to the 
TRAM rotor in hover.1  The turbulent eddies shed from the 
rotor hub are smaller and have greater detail than the coarse-
grid result.   

A comparison between the computed sectional pitching 
moment and normal force coefficients with flight-test data 
at four radial blade stations is shown in Figs. 18-19.  The 
computed values are in good overall agreement with the 
measurements.  The mean normal force and pitching 



 

moment coefficients evaluated over one rotor revolution 
agree with the flight-test values within 2.1% and 2.5%, 
respectively.  The AMR0 and AMR2 M2Cm and M2Cn are 
virtually identical.  This is not surprising since there is no 
significant BVI to affect the rotor loads.  Higher grid 
resolution in the vortex wake may improve the rotor load 
prediction when there is significant BVI.  High resolution 
wakes can also be important in studying interactional 
aerodynamics between the rotor vortices and other vehicle 
components, including the prediction of vehicle vibration 
and sound levels.   

Hover 
OVERFLOW is used to simulate the UH-60 rotor in 

hover, and the results are compared with UTRC19 and 
DNW20 wind-tunnel data.  The CFD simulation corresponds 
to the UTRC wind-tunnel test, where Mtip=0.628, 
CT/σ=0.102, σ=0.825, and FM=0.734.  The UTRC 
measured blade deflections are used to model the flexible 
rotor blades.  So there is no loose coupling between 
OVERFLOW and CAMRAD II for this case.   

The wind-tunnel UH-60 rotor model, unlike the flight-
test rotor, does not have an outboard trim tab.  The near-
body grids used in the previous forward-flight simulation 
have a trim tab, and will be used for the hover computations.  
Two different OB wake resolutions will be used: 1) AMR0, 
where ∆=10%ctip; and 2) AMR1, where ∆=10% and 5%ctip.  
Note that only one level of grid refinement is used here.  
The rotor wake will be resolved up to 2 rotor radii below the 
rotor disk.  Using two levels of refinement would yield a 
grid system in excess of 1 billion grid points.  One AMR0 
result without a blade trim tab will be simulated and 
compared with the trim tab results to determine how the 
trim tab may affect the computed results and comparison 
with experiment.   

Figure 20 shows the baseline AMR0 grid at the y=0 
plane.  There are about 1800 grids with a total of 78 million 
grid points.  The Cartesian grids are capturing the tip 
vortices but do not capture the hub wake very well.  This 
under-resolved center region falls below the vorticity 
magnitude sensor threshold.  Figure 21 shows the AMR1 
grid.  The finer resolution captures both the tip vortices and 
the hub wake with about 7700 grids and 302 million grid 
points. 

The AMR0 case starts from impulsive start and runs for 
22 revolutions.  Unlike forward flight, hover simulations 
have lower, self-induced flow, which takes longer to 
develop.  The AMR1 case starts from the AMR0 result at 17 
revs and runs an additional 5 revs for a total of 22 revs.  
Figure 22 shows the time evolution of the FM, its running 
mean (based on 1 rev period), and the standard deviation.  
At 22 revs, the FM running mean has settled to a value 
where the 3rd digit is stationary.   

Figure 23 shows a plot of the UTRC and DNW FM 
measurements verses thrust coefficient.  The UTRC data is 
considered by many to be more reliable than the DNW data, 
which was smoothed due to variability in the data.  The 
DNW FM also tends to be high.  The uncertainties in the 
measured FM are unknown.  Three OVERFLOW FM 

solutions are also shown on the figure, corresponding to 
AMR0 without a trim tab, AMR0 with a trim tab, and 
AMR1 with a trim tab.  All three are summarized in Table 
2, along with the accepted UTRC value for FM.  All three 
computed FM are within 0.001 of each other, and differ 
from the UTRC value by 2%.  This is a good comparison 
with the measured data in light of the lack of knowledge of 
the measurement uncertainty.   

Figure 24 compares the sectional thrust coefficient with 
the UTRC wind-tunnel data.  Overall, all three solutions are 
in good agreement with the data and each other.  The trim 
tab grids show a small oscillation in Ct at the trim tab edges.  
This is due to coarse radial grid spacing at the trim tab 
edges.  It is also interesting to note that the Ct is slightly 
lower along the trim tab than the no-trim-tab result and wind 
tunnel data.  These differences are small.   

Figures 25-26 show vorticity magnitude contours on the 
y=0 plane for the AMR0 and AMR1 trim tab grid systems.  
The finer grid result looks more developed with much 
greater detail.  Figures 27-28 show a cut-away view of the 
vortex wake system, where vortical flow is rendered using 
iso-surfaces of the Q-criterion.  The difference in vortical 
resolution is dramatic, even though the AMR1 grid is only 
twice as fine as the AMR0 grid.  The AMR0 and AMR1 
results illustrate the unique application of DES to rotor 
wake simulation.  In the case of the coarser wake grid 
resolution (AMR0, Fig. 27) the DES length scales serves to 
reduce the TEV down to more realistic values than the pure 
RANS length scale.  This application improves the FM 
prediction in BVI cases from the pure RANS approach, and 
does not cause additional degradation of the tip vortices.  It 
is clear from Fig. 27 that even the largest turbulent 
structures are under resolved.  However, the application of 
DES on the finer wake grid (AMR1, Fig 28) illustrates how 
DES can be used to resolve the larger turbulent scales. 

The UH-60 results in Fig. 28 exhibits a proliferation of 
vortical worms that is similar to DES simulations of the 
Tram Rotor,1 see Fig. 3.  These turbulent worms are caused 
by the blade tailing-edge shear layers moving downward at 
a greater rate than the tip vortex helix.  When a shear layer 
passes by a vortex core, it is partially entrained into the 
vortex core.  As the vortex tubes in the shear layers wrap 
around the vortex cores, they are stretched and increase in 
vorticity magnitude because of conservation of angular 
momentum.  The size of these worms are similar to the 
TRAM worms, being slightly larger in diameter due to the 
coarser UH-60 wake grids.  The TRAM wake grid was 
resolved to ∆=2.5% ctip. 

All CFD simulations were run on the NASA Pleiades 
Supercomputer system using Intel 2.93GHz Westmere 
nodes.  Each node has 12 cores with 24 GB of memory.  
The computer runtimes for the forward flight and hover 
cases are summarized in Table 3. 

Conclusions 
The OVERFLOW Navier-Stokes code has been loosely 

coupled with the CAMRAD II comprehensive code to 
simulate the viscous flow for a flexible UH-60 rotor and 
simplified hub in forward flight.  OVERFLOW also 



 

simulated the UH-60 rotor in hover using a blade deflection 
file obtained from wind tunnel measurements.  All 
simulations used 2nd-order dual-time accuracy, 5th-order 
central differencing, Cartesian Adaptive Mesh Refinement 
(AMR) in the rotor wake, and the Spalart-Allmaras 
Detached Eddy Simulation (DES) hybrid turbulence model.  
A number of key findings are summarized below. 

• Time accuracy was established within the 
asymptotic range. 

• The loose coupling process converged rapidly, even 
when using AMR  

• AMR successfully found and resolved the rotor tip 
vortices and wake shear layers up to 4x finer than 
the baseline wake grid spacing. 

• AMR can be used with a fixed wake grid spacing to 
more efficiently capture the rotor wake without 
apriori knowledge of the wake shape.   

• The computed mean CN and CM for forward flight 
(C8534) agreed with experiment to 2.1% and 2.5%, 
respectively. 

• Computed FM agreed with experiment to 2%.  
Computations with and without a trim tab had little 
affect on the FM and sectional thrust coefficient. 

• Complex turbulent wakes and shear layers were 
captured, including the production of vortical 
worms through a process of wake shear-layer 
entrainment into the tip vortices and vortex 
stretching.  This is similar to the TRAM results 
reported in Ref. 1. 

• AMR in the rotor wake had little affect on the rotor 
loads for the weak BVI cases examined in this 
paper.    
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Table 1  Convective central difference operators. 
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Overflow Grid Resolution FM 
AMR0 with trim tab 0.719 

AMR1 with trim tab 0.718 

AMR0 without trim tab 0.720 

UTRC Wind Tunnel 0.734 

Table 2  Computed and measured FM. 

Case Grid Points 
(millions) 

No. Cores hr/rev 

C8534 AMR0 61 1536 5.4 
C8534 AMR2 754 3072 23.8 
Hover AMR0 78 1536 5.8 
Hover AMR1 302 4608 10.1 

Table 3  Computer run time for forward flight and 
hover cases using 2.93 GHz Intel Westmere nodes. 

 
Figure 1.  Vorticity magnitude on the y=0 cutting plane. 
AMR wake grid spacing:  ∆S=10% ctip, 5% ctip, and 
2.5% ctip.   TRAM rotor, Mtip=0.625, θ=14°, Re=2.1 
million, Ref. 1. 

 
Figure 2.  Figure of merit variation with CT for the TRAM 
rotor in hover.  Baseline wake grid spacing:  ∆S=10% ctip. 
Mtip =0.625, Re=2.1 million, Ref. 1. 
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Figure 3.  Cut-away view of vortex wake.  AMR wake grid 
spacing:  ∆S=10% ctip, 5% ctip, and 2.5% ctip.  TRAM rotor, 
Mtip=0.625, θ=14°, Re=2.1 million, Ref. 1. 



 

 

 

 
Figure 4.  Loose coupling procedure with OVERFLOW and CAMRAD II. 

 

 
 (d) Body grids embedded into Cartesian wake grid. 

Figure 5. UH-60 rotor/hub grid system. 



 

 

 

 
 

 
Figure 6.  Convergence history of the dual-time algorithm, 
CN and CM with dual-time sub-iterations. 
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Figure 7.  Normal force coefficient waveforms. 
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Figure 8.  Convergence history of the CN and CM with 
time step. 
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Figure 9.  Baseline AMR0 grid system, ∆=10% ctip, 960 grids, 61 million grid points, C8534. 

 
Figure 10.  AMR2 grid system, ∆=10%, 5%, and 2.5% ctip, 18,500 grids, 754 million grid points, C8534. 

 
Figure 11.  Loose coupling convergence history of the 
AMR2 blade pitch angles. 
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Figure 12.  Loose coupling convergence history of the 
AMR2 blade flap angles. 
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Figure 13.  Loose coupling convergence history of the 
AMR2 blade lag angles. 
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Figure 14.  Loose coupling convergence history of the 
total normal force and pitching moment coefficients. 

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30

C
N
 Norm AMR0

C
M
 Norm AMR0

C
N
 Norm AMR2

C
M
 Norm AMR2

R
M

S 
D

iff
er

en
ce

 (∆
 It

er
at

io
n)

Loose Coupling Iteration

 
Figure 15.  Loose coupling convergence of the sectional normal force and pitching moment coefficients at 
r/R=0.865. 



 

 

 

 

 
Figure 16.  Baseline AMR0 vortex wake.  Vortices rendered with the Q-criterion, C8534. 

 
Figure 17. AMR2 vortex wake.  Vortices rendered with the Q-criterion, C8534. 

 
Figure 18.  Pitching moment coefficient variation (mean removed) with azimuth angle at various radial stations. 



 

 

  
 
 
 
 
 
 
 
 
 
 

 
Figure 19.  Normal force coefficient variation (mean removed) with azimuth angle at various radial stations. 

 
Figure 20.  Baseline AMR0 grid system, ∆=10% ctip, 
1845 grids, 78 million grid points, hover. 

 
Figure 21. AMR1 grid system, ∆=10% and 5% ctip, 
7700 grids, 302 million grid points, hover. 



 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
Figure 22.  ARM1 FM.  Grid spacing: ∆=10% and 5%ctip, 7700 grids, 302 million grid points. 
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Figure 23.  Comparison of OVERFLOW FM with 
wind-tunnel data, Mtip=0.238. 
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Figure 24.  Comparison of OVERFLOW sectional 
thrust coefficient with wind-tunnel data, Mtip=0.238. 
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Figure 25.  Vorticity magnitude contours on the y=0 
plane.  AMR0 tab grid system, ∆=10% ctip, hover. 

 

Figure 26.  Vorticity magnitude contours on the y=0 
plane.  AMR1 tab grid system, ∆=10% and 5% ctip, 
hover. 

 
Figure 27.  Cut-away view of vortex wake using the    
Q-criterion. AMR0 tab grid system, ∆=10% ctip, hover. 

 
Figure 28.  Cut-away view of vortex wake using the    
Q-criterion. AMR1 tab grid system, ∆=10% and 5% ctip, 
hover. 


