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Task 1: 

Landing Footprint Generation 



• Motivation 

• A landing footprint provides an estimate of the 
flyable boundary for a vehicle given initial 
conditions 

• Current research for re-entry guidance is moving 
towards onboard trajectory generation 

• Generation of a landing footprint will clearly 
define possible landing sites in the event of a 
vehicle malfunction 

• It is critical for the algorithm to be executable in 
near real-time and provide a realistic estimate of 
the footprint, taking into account vehicle 
limitations 



• Problem Set-Up 

• Entry Dynamics 

• ()' = _ COs(y) cos( l/J) (.!.) 
rcos(cp) D 

• cp' = _ COS(Y)rSin('l/J) (~) 

• r' = - sin(y) (~) 

Saraf, A., Leavitt, J. A., Mease, 
K. D., and Ferch, M., "Landing 
Footprint Computation for 
Entry Vehicles," AIAA 2004-
4774, 2004. 

• ",/.' = cos(l/J) tan(cp)cos(y) + ( 1 ) (LSin(a)) + c 
0/ r v 2 cos(y) D l/J 

• y' = (g - :2) eO;~Y)) (~) - (;2) (~ cos(cr)) + Cy 

• Derivatives taken with respect to energy, E = V2 _ mu 
2 r 

• Control variables are angle of attack and bank angle 



• Problem Set-Up 

• Lift and Drag 

L = >(r)V2(~)CL(a'M) 

D = >(r)V2(~)CD(a'M) 
• Taking the derivative of Drag twice yields: 

L 1 
D cOS(J == b CD" - a) 

(
C

ff 

C'2) (C' 2) 4D 1 (1 29 ) ( V2) ( 1 29 ) a=D ....!2._.....!2.... +D' ....!2+_ --+- -+- g-- + -+- C 
C c2 C V2 V4 DV2 h V2 r h V2 Y D DDs s 

b = _~(~+ 29 ) 
V2 h V2 s 

• Re-arrange and solve for bank angle 

10"1 = cos-1 (~L CD" - a)) 



. The Algorithm 

• Method the algorithm 
employs requires the 
computation of upper, 
lower, and intermediate 
drag profiles 

• These drag profiles are 
used to create the 
boundary points of the 
footprint 

• To do this, a nominal 
angle of attack profile 
is required 
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· The Algorithm 

• Computing the Flyable Upper Drag Boundary: 

• Path Constraints: 
70 

• Dynamic Pressure: 
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. The Algorithm 

• Flyable lower drag boundary 
• Determined by the equilibrium glide condition: y' = 0 and 

(J=O 

o = (9 - :2) (;2) G) - (;2) G) 

( V2) CD ( V2) 
L = 9 - --:; -7 Dmin = CL 9 ---:; 

• Intermediate drag values are interpolated from the maximum 
and minimum drag profiles 

• D(E) = Dmax(E) + c(Dmin(E) - Dmax(E)) ~ 
Jijf 
~9 



• Simulated HTV-2 Data 

Angle of Attack Profile Altitude Profile 



• Simulated HTV-2 Data 

Velocity Profile 



• Drag Profile Results 
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• Further Results 
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• Resulting Footprint 



• Future Work 

• The lower drag boundary can be improved upon by adding 
the constraint that y < 0.01 to reduce phugoid motion 

• A feedback linearization based flight path controller is 
used: 

L KyV 1 (V2) 2wV 
D cosO" = D (Yre! - y) + D g - --:;:- cosy - D cosljJcos¢ 

• Obtain the correct constraint parameters to obtain an 
accurate drag curve, and thus a more accurate footprint 

• Improve the speed of the algorithm 

• Paper claims 2 seconds, written in C 

• My result: 39.5 seconds for the footprint presented, 8.48 
seconds to compute the drag profiles presented 
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Task 2: 

OTIS Trajectory Simulations 



• OTIS Overview 

• OTIS: Optimal Trajectories by Implicit Simulation 

• Largely 3DOF Simulation software that treats the 
inputted vehicle as a point-mass 

• Aerodynamics, propulsion, and reference area 
data are inputted to define the vehicle 

• Capable of explicit and implicit integration, as well 
as multi-phase trajectory problems 

• Implicit integration techniques are used to optimize 
a user-specified parameter along a chosen 
trajectory 



e F-15 MIPCC Modeling 

• MIPPC: Mass Injected Pre-Compressor Cooling 

• A mixture of LOX and water are injected into the 
engine at high altitudes and Mach numbers, 

• Theoretically provides increased performance by 
cooling the compressor face and providing 
increased mass flow 
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• Standard F-15 OTIS Sim 

• Engine data for the Pratt & Whitney F1 00-1 00 was 
obtained from the Status Engine Estimated Steady State 
Performance Deck 

• Data extracted was for maximum throttle over a wide 
range of altitudes 

• Aerodynamic data was obtained from flight test data 
presented in graphs provided in the paper by Haering and 
Burcham for a range of Mach and altitudes 

• Data was extracted from graphs using the MATLAB 
program Ascribe by David Berger 

• Data was formatted and placed in an external file called 
by the main OTIS input file 



• OTIS Calibration to F15 Streak Eagle 

Min Time to Climb Results -~20 



• MIPCC Modified F-15 OTIS Simulation 

• Thrust and ISP data was inputted 
in accordance with predicted 
apparent Mach and Altitude 

• MIPCC model was then run up to 
Mach 4 at a variety of altitudes 

• Explicit path used to verify 
Implicit integration 

• Energy was the chosen 
parameter to be optimized 

V2 
• e == - + alt 
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• From OTIS, specific power 
curves and sample trajectories 
were outputted 
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• MIPCC Modified F-15 Sim: Results 

• The study has been completed and the results are 
projected to appear in a NASA Technical Memorandum 
publication: 

• Kloesel, K.J., Clark, C.M., Hathaway, R., Berger, D., 
"MIPCC Enhanced F-4 and F-15 Performance 
Characteristics," NASA Technical Memorandum, 
(projected) 2011. 

-~22 



• HTV-2 OTIS Simulation 

• Work in progress ... 

• Explicit OTIS simulation complete 

• Trajectory begins at specified velocity, altitude, and 
weight and completes in the inputted time 

• Implicit OTIS simulation still left to finish 

• Boundary conditions need to be added so that final 
energy state matches known data 

-~23 
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Task 3: 

Tour in the Engine Shop 
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The Engine Shop 

• Provided hands-on experience 

• During my two weeks ... 

• Removed a mixer, AlB liner, 
pilot valves, distributer 
valves, spray bars, nozzle 
flaps, and a damaged flame 
holder, from an F404 engine 

• Aided in boroscoping 850, 
852, and SOFIA 

• Watched an engine test run 
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Questions? 
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