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Landing Footprint Generation
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@I\/Iotivation

A landing footprint provides an estimate of the
flyable boundary for a vehicle given initial
conditions

» Current research for re-entry guidance is moving
towards onboard trajectory generation

* Generation of a landing footprint will clearly
define possible landing sites in the event of a
vehicle malfunction

* |t is critical for the algorithm to be executable In
near real-time and provide a realistic estimate of
the footprint, taking into account vehicle
limitations
E
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@/Problem Set-Up

* Entry Dynamics Saraf, A., Leavitt, J. A., Mease,
, _ cos(y) cos(y) (1 K. D., and Ferch, M., “Landing
* 0 =- rcos(P) (E) Footprint Computation for

: Entry Vehicles,” AIAA 2004-
1 )
. ¢ = — ) snW) (5) 4774, 2004.

r

r' = —sin(y) (%)

o A cos(y) tan(¢)cos(y) 1 Lsin(o)
Y= r T (V2 cos(y))( D ) T Cl'b

v =(9-7) () ) - (7) Geos@) + ¢,
* Derivatives taken with respect to energy, E = V; — %‘

» Control variables are angle of attack and bank angle
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@/Problem Set-Up

« Liftand Drag

1 S
L= E,o(r)V2 (E) Cp(a, M)

D—1 2(2 M
= 5PV (=) Cpa M)

« Taking the derivative of Drag twice yields:

L
7, C0So = E(D” —a)

=D A o o B c;)+2 4D+ 1 1+2g V2
“="\c, 2 C, vZ) vE pve\n, T vz)\9 T

__Lt(L, 2%
b__V2<hS+V2>
« Re-arrange and solve for bank angle

D
lo| = cos™? (ﬁ (D" — a))



@The Algorithm

* Method the algorithm
employs requires the
computation of upper, ’°
lower, and intermediate
drag profiles

« These drag profiles are
used to create the
boundary points of the
footprint

» To do this, a nominal L
angle of attack profile
IS required
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@The Algorithm

« Computing the Flyable Upper Drag Boundary:
« Path Constraints:
* Dynamic Pressure:

S
D < Qmax (%) CD

* Normal Acceleration:

Drag (tt152 )

A
D < max

sina + Ecosa ,
 Heating: of

. 2
1 (Qmax
D < _( CVk VZSCD
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@The Algorithm

» Flyable lower drag boundary

« Determined by the equilibrium glide condition: y' = 0 and
oc=0

r=(6-5) (22) @)~ () Eeos) + 6
-(-DEHE-EE

= (5-2) % Dy = 2(5-2)

r

 Intermediate drag values are interpolated from the maximum
and minimum drag profiles

* D(E) = Dpgx(E) + c(Dipin(E) — Dy (E)) P‘
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@ simulated HTV-2 Data
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@ simulated HTV-2 Data
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Drag Profile Results
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@Further Results
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@Resulting Footprint
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@Future Work

* The lower drag boundary can be improved upon by adding
the constraint that y < 0.01 to reduce phugoid motion

» Afeedback linearization based flight path controlleris
used:

L K,V 1 2 20V

_ My
) COSO = 5y (yref — y) + D (g — T) CoSy — N cosypcosp

« Obtain the correct constraint parameters to obtain an
accurate drag curve, and thus a more accurate footprint

* Improve the speed of the algorithm
« Paper claims 2 seconds, written in C

* My result: 39.5 seconds for the footprint presented, 8.48
seconds to compute the drag profiles presented
|~



OTIS Trajectory Simulations
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@ oTIs Overview

« OTIS: Optimal Trajectories by Implicit Simulation

« Largely 3DOF Simulation software that treats the
iInputted vehicle as a point-mass

« Aerodynamics, propulsion, and reference area
data are inputted to define the vehicle

« Capable of explicit and implicit integration, as well
as multi-phase trajectory problems

 |Implicit integration techniques are used to optimize
a user-specified parameter along a chosen
trajectory
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@ F-15 MIPCC Modeling

 MIPPC: Mass Injected Pre-Compressor Cooling

« A mixture of LOX and water are injected into the
engine at high altitudes and Mach numbers,

* Theoretically provides increased performance by
cooling the compressor face and providing
increased mass flow

Water

— =
MIPCC Injection ‘1



@Standard F-15 OTIS Sim

* Engine data for the Pratt & Whitney F100-100 was
obtained from the Status Engine Estimated Steady State
Performance Deck

« Data extracted was for maximum throttle over a wide
range of altitudes

« Aerodynamic data was obtained from flight test data
presented in graphs provided in the paper by Haering and
Burcham for a range of Mach and altitudes

« Data was extracted from graphs using the MATLAB
program Ascribe by David Berger

« Data was formatted and placed in an external file called
by the main OTIS input file
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@/OTIS Calibration to F15 Streak Eagle
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@ Mipcc Modified F-15 OTIS Simulation

Thrust and ISP data was inputted
In accordance with predicted
apparent Mach and Altitude

MIPCC model was then run up to
Mach 4 at a variety of altitudes

« Explicit path used to verify
Implicit integration

 Energy was the chosen
parameter to be optimized
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From OTIS, specific power
curves and sample trajectories
were outputted
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@& MIPCC Modified F-15 Sim: Results

* The study has been completed and the results are
projected to appear in a NASA Technical Memorandum
publication:

« Kloesel, K.J., Clark, C.M., Hathaway, R., Berger, D.,
“MIPCC Enhanced F-4 and F-15 Performance
Characteristics,” NASA Technical Memorandum,

(projected) 2011.
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@ HTV-2 OTIS Simulation

 Work in progress...
« Explicit OTIS simulation complete

« Trajectory begins at specified velocity, altitude, and
weight and completes in the inputted time

« Implicit OTIS simulation still left to finish

« Boundary conditions need to be added so that final
energy state matches known data
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Tour in the Engine Shop
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@/The Engine Shop

* Provided hands-on experience
e During my two weeks...

« Removed a mixer, A/B liner,
pilot valves, distributer
valves, spray bars, nozzle
flaps, and a damaged flame
holder, from an F404 engine

« Aided in boroscoping 850,
852, and SOFIA

« Watched an engine test run




Questions?
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