Overview

- RAPID vs. DDS
 - What is RAPID
 - What is DDS

- DDS Components
 - DDS Comm Model
 - DDS Infrastructure

- RAPID Design
 - RAPID Messages
 - RAPID Services

- Impact on RoverSw
 - DDS and RoverSw
 - RAPID and RoverSw
What is RAPID

Rover API Delegate
- Interoperability layer for ETDD robots
- Originally implemented as robot-bridge
- Open-source

Inter-center standard
- Supported by (Tri-)Athlete, K10, LER
- Interest by ESA
- Targeted as NASA standard

Addressed functionality
- Robot telemetry
- Robot geometry
- High-level commanding and sequencing

Intelligent Robotics Group
What is DDS

Distributed System Middleware
- Publish/subscriber architecture
- Extended by relational data model
- Extensive QoS
- Orthogonal to CORBA
- Competitor of CORBA Notification Service

Open Standard (OMG hosted)
- Multiple vendors (RTI, Prismtech, Open-source)
- Push for interoperability (young standard)

Target Domains
- Distributed, embedded, real-time systems
- High throughput, low jitter
- Complex (non-uniform) network characteristics
DDS Communications Model

Multi-cast messaging core
- Data bus
- One-to-many communication
- Unreliable core protocol

Shared information space concept
- Data-type instances are entities of shared information
- DDS manages, how this information is shared within a domain
 - Distribution
 - Updates
 - Ownership
 - …
DDS Communication Entities

Domain
- Defines a shared information space
- Participant manages membership (protocol, ports, etc)

Partition
- Defines communication sub-groups within domain
- Publisher/Subscriber manages membership
 (among other resources such as threads/msg queues etc)

Topic
- Defines name and type of a set of data instance(s)
 - Unkeyed data: topic names a single datatype instance
 - Keyed data: topic manages set of instances, differentiated by key
- Communicates samples of instance(s) of one specified data-type
- DataWriter/-Reader reads/writes & manages samples of a topic

Fig © RTI
DDS Quality of Service (QoS)

QoS at every level
- Ports, Multi-cast groups, discovery, etc
- Sometimes more than you’d want to care about

Topic level QoS
- Reliability
 - Best effort
 - Reliable (TCP-like resending)
- Durability
 - Transient
 - While writer instance is available
- History
 - How many samples to store per instance
 - On writer-side required for reliability
 - Can be used on reader-side as histogram queue
- Filtering – reader triggered
 - Message-timeout filter for rate-filtering
 - Partitions for per-robot filtering
- Flow Control – writer triggered
 - Required to protect small links
 - Token-bucket filter
DDS Infrastructure (RTI)

DDS Core
- (CORBA) IDL defined data types
- Communication of data samples between publishers/subscribers of a domain

Routing Service
- Manage message replication between DDS domains
- Used to manage/restrict traffic on thin links (satellite etc)

RT-Connect & Recorder
- Linking of DDS topics/instances to SQL database tables and entries
- Can be used for logging
- Possible interface to GDS services

Analyzer and Monitor
- Run-time analysis: Connectivity, QoS mismatches, bandwidth etc
- Very powerful, very necessary
- Too little static analysis tools so far
RAPID Design

Config messages
- Subsystem configuration (typically static)
- Potentially verbose specification
- Reliable & durable
 ➢ Send once, subscribe and analyze on client startup

State messages
- Subsystem state changes
- Concise
- Reliable & durable
 ➢ Send on change, might be bursty

Sample messages
- Fixed (high) rate telemetry
- Mostly continuously changing parameters
- Best effort, transient
 ➢ Classic telemetry
RAPID Services

Telemetry
• Robot pose
• Robot joints
• Images & Point-clouds

FrameStore
• Classic tree of coordinate frames
• Tree-walking for coordinate transformations
• Local instance, updated from robot telemetry
• Provides location awareness between robots

Sequencer
• Synchronous command queue
• Designed for time-delayed teleop

Access Control
• Cooperative management of teleop access
RAPID Message Examples

<table>
<thead>
<tr>
<th>PositionConfig, PositionSample</th>
<th>ImageSensorState, -Sample</th>
<th>FrameStoreConfig</th>
<th>AccessControlState, QueueState</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Config: Coordinate frame of robot pose estimate</td>
<td>• State: Imager parameters</td>
<td>• Coordinate frame tree with initial values</td>
<td>• Current controller and control requests</td>
</tr>
<tr>
<td>• Sample: Pose estimate</td>
<td>• Sample: Image</td>
<td></td>
<td>• Queued and executed commands</td>
</tr>
<tr>
<td>JointConfig, -Sample</td>
<td>PointCloudConfig, -Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Config: Joint frames</td>
<td>• Config: Frame, data-format details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sample: Joint positions</td>
<td>• Sample: Point cloud</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DDS and RoverSw

Replacement for EC
- Notify Pipe Svc
- LogSvc and LogPlayer
- Telemetry-types mostly stay unchanged
 (some changes to header information)

Configuration and state related parts of GRI CORBA interfaces
- Readonly attributes become Config message
- Periodic SSubsystemState become reliable/durable

Not a good replacement for commanding
- No request/reply pattern
- No object oriented method-call
- Mix of CORBA & DDS is part of the COBA Component Model (CCM)
- It’s two big libraries to carry around
RAPID and RoverSw

KN rovers support it
 • knRapidSvc RAPID bridge
 • Resending GRI telemetry as RAPID telemetry
 • Redirecting RAPID commands to GRI interfaces
 • RAPID sequencing and access control protocols honored

Core RAPID services are part of IRG core technologies
 • FrameStore (C++) implementation part of VisionWorkbench/knSvcs
 • FrameStore (Java) implementation part of Verve/Eclipse
 • Updates of frames directly from GRI telemetry

Might replace telemetry messages where redundant
 • SJoints vs JointSample
 • SPose vs PositionSample