Multi-Vehicle Cooperative Control Research
NASA Dryden Flight Research Center
1998 - 2012

- 14% reduction in drag due to wingtip upwash of the lead airplane
 - Initial tests flown manually
 - Pilots reported extended-duration formation flight to be reasonable physically but mentally exhausting

- Autonomous Formation Control
 - Enables performance optimization
 - Alleviates pilot fatigue
 - INS/GPS Relative Navigation
 - Large formations (4 or more aircraft) require cooperative control for string stability
Networked UAV Teams (NUAVT) 2004-2005

- Algorithms for Forest Fire Monitoring
- Bird Android (BOID) Path Planning
 - Flocking
 - Velocity Matching
 - Collision Avoidance
 - Obstacle Avoidance
 - Target Seeking
- Cooperative Search and Real-Time Task Replanning
- 4D Navigation
Energy Efficient Flocking of Small UAVs
2005

- Dynamic Mission Planning for a Cooperative Multi-Vehicle Coastal Patrol Mission (Simulation Study)
 - Offshore pipeline leak detection
 - Marine wildlife observation
 - Wetlands monitoring
 - Wildfire detection

- Integrated Concepts for Energy Efficiency
 - Cooperative thermal soaring
 - Formation flight for drag reduction

1. Initial propulsion charge = 12 minutes
2. All planes locate thermals within 10 minutes
3. Max altitude > 7,000 ft
4. End task due to low altitude
5. Min altitude = 1,600 ft after 80 minutes
Autonomous Aerial Refueling Demo (AARD) 2005-2007

- First ever autonomous hose-and-drogue style aerial refueling
 - DAPRA / Sierra Nevada Corporation / NASA
 - Boeing 707-300 tanker with unmodified, production refueling system (32-inch dia. basket)
 - NASA F/A-18B surrogate UAV
 - autonomous modes: rendezvous, plug, hold, unplug, miss / re-attempt
 - safety pilot on-board for takeoffs, landings and emergencies
 - GPS-based relative navigation combined with optical tracking of the basket
Cooperative Autonomous Thermal Soaring
2007-2008

- Implemented BOID-like rules to mimic three cooperative behaviors observed in migratory hawks (Kerlinger, 1985):
 1. Random Encounter
 2. Local Enhancement
 3. Climb Rate Feedback

- Paper study
 - Followed 2004 NASA flight experiments into single-aircraft autonomous soaring (Allen, 2005)
Optimized Formation Flight
2003, 2008-Present

- Vortex-Induced Navigation Experiment (VINE)
 - estimation of relative position between aircraft based upon sensed aerodynamic disturbances

- Peak-Seeking Relative Position Optimization
 - estimate gradient and curvature of fuel savings vs. position

- Peak-Seeking Optimization of Spanwise Lift Distribution in Asymmetric Upwash Fields
 - optimize the roll trim solution