BRIC-17 - Mapping spaceflight-induced hypoxic signaling and response in plants

Current Project team:

- Simon Gilroy (PI, presenter)
- Dr. Won-Gyu Choi
- Dr. Sarah Swanson
Background

• Plants grow relatively ‘normally’ in microgravity

• Plants do show changes that suggest:
 » Altered growth and development that is normally entrained to gravity
 » Induction of stress responses

• Lack of buoyancy-driven convection may lead to reduced oxygen levels in unstirred regions such as the root zone
Goals

• Define global changes in gene expression patterns in Arabidopsis plants grown in microgravity
 » using whole genome microarrays

• Compare to mutants resistant to low oxygen challenge
 » using whole genome microarrays
 » Also measuring root and shoot size

Outcomes

• Provide fundamental information on plant responses to the stresses inherent in spaceflight
• Potential for informing on genetic strategies to engineer plants for optimal growth in space
Goals

• Define global changes in gene expression patterns in Arabidopsis plants grown in microgravity
 » using whole genome microarrays

• Compare to mutants resistant to low oxygen challenge
 » using whole genome microarrays
 » Also measuring root and shoot size
Goals

• Define global changes in gene expression patterns in Arabidopsis plants grown in microgravity
 » using whole genome microarrays

• Compare to mutants resistant to low oxygen challenge
 » using whole genome microarrays
 » Also measuring root and shoot size

Many stress responses, including low oxygen stress, are signaled by changes in calcium ions in plant cells.
Selecting candidate genes for study

- Mined publicly available databases for genes showing altered expression in response to reduced oxygen on Earth

- Filtered for genes:
 - expressed in roots
 - related to Ca2+ signaling

- Independently confirmed changes in expression of candidates by qPCR analysis

![Pie chart showing the distribution of candidate genes:
- Ca2+ Transporters: 6.3%
- Kinases: 12.5%
- CaM like: 50.0%
- Other: 28.1%
- Total: 32 genes]
Mutants in the Ca$^{2+}$ transporters ACA1 and CAX2 are resistant to low oxygen stress 4 days after 0% O$_2$ treatment.
Experimental profile

1) Load seeds (wild-type and mutants) into PDFUs dry and ungerminated
2) Transport to orbit in BRIC in ungerminated state
3) Germinate on the ISS by injecting water
4) Grow for ~8 days in dark under ambient station conditions
5) Fix *in situ* by injecting RNAlater preservative
6) Freeze and store
7) Sample return (cold)
8) Ship frozen to UW Madison for analysis
Analysis

1) Image subset of seedlings
2) Dissect into root and shoot samples
3) Isolate preserved RNA/perform DNA microarray analysis (UW Madison)
4) Compare to ground-based controls at fixed oxygen levels to define possible level of low oxygen challenge on orbit
Wicking System for germination on orbit

- Allows experiment to be supplied dry as ungerminated seeds
- Stable for several weeks
- Facilitates dissecting root from shoot
- Preserves position of each seedling allowing different mutants and wild-type to be placed on same plate – improves robustness of analysis
Goals

• Define global changes in gene expression patterns in microgravity
 » using whole genome microarrays

• Compare to mutants resistant to low oxygen challenge
 » using whole genome microarrays
 » Also measuring root and shoot size

Outcomes

• Provide fundamental information on plant responses to the stresses of spaceflight

• Potential for informing on genetic strategies to engineer optimal plant growth in space