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This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring 

global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- 

by 22-Foot Subsonic Tunnel at the NASA Langley Research Center.  The system was 

designed to use a pulsed laser as an excitation source and PSP data was collected using the 

lifetime-based approach.  With the higher intensity of the laser, this allowed PSP images to 

be acquired using a single laser pulse, resulting in the collection of crisp images that can be 

used to determine blade pressure at a specific instant in time.  This is extremely important in 

rotorcraft applications as the blades experience dramatically different flow fields depending 

on their position.  Testing of the system was performed using the U.S. Army General Rotor 

Model System equipped with four identical blades.  Two of the blades were instrumented 

with pressure transducers to allow for comparison of the results obtained from the PSP.  

Preliminary results show that the PSP agrees both qualitatively and quantitatively with both 

the expected results as well as with the pressure transducers.  Several areas of improvement 

have been indentified and are currently being developed for future testing. 
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I. Introduction 

HE accurate determination of spatially continuous pressure and temperature distributions on aerodynamic 

surfaces is critical for the understanding of complex flow mechanisms and for comparison with computational 

fluid dynamics (CFD) predictions.  Conventional pressure measurements are based on pressure taps and 

electronically scanned pressure transducers or embedded pressure transducers.  While these approaches provide 

accurate pressure information, pressure taps/transducers are limited to providing data at discrete points.  Moreover, 

the integration of a sufficient number of pressure taps/transducers on a surface can be time and labor intensive and 

expensive. 

This is especially true in rotorcraft research, where the examination of pressure distributions on the blade is vital 

to advance analytical prediction methods for rotorcraft aerodynamics, acoustics, and interactional effects.  There has 

been considerable research involving pressure measurements on rotor blades.
1-4

 However, these measurements 

typically lack the spatial resolution necessary to capture phenomena such as the nascent tip vortex or dynamic stall.  

Instrumenting the blades with additional transducers to increase spatial resolution can quickly become prohibitive 

due to the cost and practicality of fitting a large number of sensors into a small area.  In addition, the added 

centrifugal loads of the pressure transducers can rapidly become unmanageable. 

Applying pressure sensitive paint (PSP) to the surface may enable high spatial resolution surface measurements 

on helicopter rotor blades, thus allowing more accurate analytical prediction methods to be developed.  The PSP 

technique
5-9

 exploits the oxygen (O2) sensitivity of luminescent probe molecules suspended in gas-permeable binder 

materials.  If the test surface under study is immersed in an atmosphere containing O2 (e.g. air), the recovered 

luminescence intensity can be described by the Stern-Volmer relationship
10 

 
2

)(1/0 OSV PTKII   (1) 

where I0 is the luminescence intensity in the absence of O2 (i.e. vacuum), I is the luminescence intensity at some 

partial pressure of oxygen PO2, and KSV is the Stern-Volmer constant, which is dependent on temperature (T). 

Since it is a practical impossibility to measure I0 in a wind tunnel application, a modified form of the Stern-

Volmer equation is typically used.  This form replaces the vacuum calibration (I0) with a reference standard 

 )/(*)()(/ REFREF PPTBTAII   (2) 

where IREF is the recovered luminescence intensity at a reference pressure, PREF.  The coefficients A(T) and B(T) 

are temperature dependent constants for a given PSP formulation and are usually determined beforehand using 

laboratory calibration procedures. 

For this work, the PSP data was acquired using a modified “lifetime-based” approach.
11-15

 In the traditional 

lifetime-based technique, excitation of the PSP is 

accomplished using a modulated light source (e.g. 

laser, flash lamp, or pulsed LED arrays).  A fast 

framing camera (intensified CCD or interline 

transfer CCD) is used to collect the excited state 

luminescence decay.  Typically the decay is 

approximated by acquiring two or more images at 

different delay times during and/or after the pulsed 

excitation and integrating photons for fixed periods 

of time (i.e. gate widths) that have been 

predetermined to maximize the pressure sensitivity, 

as demonstrated in Fig. 1.  The first image (Gate 1) 

usually consists of a short gate width and is 

collected either during the excitation pulse or shortly 

after it ends.  This can be thought of as the reference 

image because the excited-state decay has the least 

pressure sensitivity.  The second image (Gate 2) is 

taken at a later time after the excitation pulse and 

usually has a longer gate width, ensuring maximum 

pressure (and temperature) sensitivity.  More 

information on this lifetime technique can be found 

T 

 
Figure 1. Schematic representation of lifetime-based 

data acquisition showing excitation (blue) and 

measured emission (red).  The gate regions represent 

example Gate 1 (during excitation) and Gate 2 (after 

excitation). 
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in Watkins et al.
15

 

Over the last several years, the U.S. Army Aeroflightdynamics Directorate, Joint Research Program Office, and 

the NASA Subsonic Rotary Wing Project have partnered to develop the PSP measurement technique for use on rotor 

blades.  This work included an initial proof of concept work in 2003
16

 which resulted in the development of 

instrumented pressure blades for more extended testing in 2008.
17

  From these results, a new PSP system based on 

the previously described system was developed with several modifications for use with rotating test articles and 

successfully demonstrated for a rotorcraft in hover.
18

  This paper will detail these modifications as well as present 

some preliminary data from the deployment of this system in the 14- by 22-Foot Subsonic Tunnel (hereafter 

abbreviated 14x22) in 2011. 

II. Experimental 

A. Paint Formulation and Calibration 

The two blades that were painted with PSP were coated with a porous polymer formulation that has been 

described previously.
19-20

  This binder can routinely measure dynamic pressure fluctuations at 5 kHz and has been 

demonstrated to potentially measure fluctuations up to 20 kHz (depending on a variety of factors, including 

thickness and luminophore).  A more detailed review of this formulation and other PSP formulations capable of 

operating at elevated frequencies can be found in Gregory et al.
21

  The oxygen sensitive luminophore chosen was 

platinum meso-tetrakis(pentafluorophenyl) porphine (abbreviated Pt(TfPP)), which is a common luminophore for 

PSP applications.  A typical application of the PSP involved initially applying the porous polymer binder to a 

basecoat (usually white to maximize intensity collection efficiency) using conventional spraying techniques.  After 

the binder dries, a solution of the luminophore is then typically over-sprayed onto the binder.  This helps to ensure 

that the luminophore is resting on the surface for maximum interaction with oxygen (thus increasing the frequency 

response).  The disadvantage of this is that the luminophore can degrade fairly quickly.  However, this can be 

alleviated by simply over-spraying with additional luminophore solution.  For this work, it was found that over-

spraying once a day before running was sufficient for data acquisition. 

Calibration of the paint formulation was performed separate from the wind tunnel in a laboratory calibration 

chamber.  This chamber is only capable of measuring pressure and temperature sensitivities; no attempt to determine 

the frequency response of this paint was attempted.  However, as mentioned above, previous testing has shown that 

this formulation can respond to 5 kHz, well above the frequency range needed for this test.  For calibrations, the PSP 

was applied to 3-inch diameter aluminum coupons that were then placed in the calibration chamber.  Illumination of 

the PSP and acquisition of the luminescent intensity was accomplished using the same system as used in the tunnel. 

The PSP formulation was calibrated over a pressure range of 41 to 101 kPa (6 to 14.7 psia) at temperature 

ranging from 25 to 60 
o
C (77 to 140 

o
F).  A calibration model for the coating was derived by solving Eq. (2) for 

normalized pressure in terms of the normalized temperature and the gate intensities acquired from the images as 

described in the previous section.  The calibration data showed a multi-dimensional dependence on both pressure 

and temperature, which can be attributed to the complex nature of oxygen diffusion into the paint binder.
7-9

 A linear 

least squares algorithm was used to fit the data to a modified and expanded version of Eq. (2) above assuming a 

second order relationship in both temperature and pressure 
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where P and PREF are the pressures, T and TREF are the temperatures, G1 and G2 are the intensities in the 

respective gates (analogous to IREF [G1] and I [G2]), and axy are the calibration coefficients.  A typical calibration is 

shown in Fig. 2. 

B. Model and Facilities 

The rotor blades that were tested have been constructed from carbon fiber, fiberglass, and aromatic nylon fiber 

honeycomb trailing-edge core.  Each blade has been painted with a white basecoat to enhance the PSP luminescent 

output (by scattering the luminescence away from the surface and back to the camera) as well as to seal the blade to 

protect the blade structure from the solvents used in the painting process.  The blades are constant chord with a 

swept-tapered tip and a 14 degree linear twist distribution, using the RC family of airfoils.
22-23

  The upper portion of 
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Fig. 3 shows the distribution of airfoils and the 

dimensions of the blades (in inches).  Of the four 

blades, two are pressure instrumented using Kulite 

pressure sensors.  The first instrumented blade has two 

rows of chord-wise transducers, with rows located at 

the 93% and 99% radial stations.  The second has one 

chord-wise row at 93% radius.  Each row has 10 

pressure transducers located on the upper surface, as 

shown in the lower portion of Fig. 3. 

The forward flight testing was conducted in the 

14x22 facility at NASA Langley Research Center.  The 

tunnel is an atmospheric, closed return tunnel with a 

test section 4.4 m (14.5 ft) high, 6.6 m (21.75 ft) wide, 

and 15.2 m (50 ft) long.  The tunnel can reach a 

maximum velocity of 106 m/s (348 ft/s) with a dynamic 

pressure of 6.9 kPa (144 psf).  The achievable Reynolds 

number of the tunnel ranges from 0 to 7.2 x 10
6
 per 

meter (0 to 2.2 x10
6
 per foot).  Test section airflow is produced by a 12.2 m (40 ft) 9 bladed fan driven by an 8.9 

MW (12,000 Hp) main drive. 

The rotor blades were mounted to the General Rotor Model System (GRMS) and a modified ROtor Body 

INteraction (ROBIN) fuselage.  GRMS is a generic rotor drive system that allows testing of different rotor and 

fuselage configurations.  GRMS is powered by two 55.9 kW (75 Hp) water-cooled electric motors that drive a 

5.47:1 transmission.  Two six component strain gage force and moment balances are contained within GRMS to 

enable separate measurement of rotor and fuselage loads.  The rotor hub is a four bladed fully articulated hub.  One 

blade cuff is instrumented to measure cuff pitch, lead lag, and flapping.  Additional instrumentation on GRMS 

includes an encoder to provide 1/rev and 1024/rev timing signals and accelerometers to monitor machine health.  

The fuselage is similar to the original ROBIN fuselage with the exception of a rear ramp section.  The ROBIN 

fuselage is an analytically defined representative generic helicopter fuselage that has been used in previous work.
18

   

The modified ROBIN fuselage used in this test uses the same family of super-ellipse equations as the original 

ROBIN fuselage while employing a modified set of coefficients to generate the ramp section. 

 

Figure 3. Rotor blades for use with PSP. The upper diagram shows the distribution of the airfoils and the 

dimensions of the blades (in inches). The lower diagram shows the rotor instrumentation locations. 

 
Figure 2. Calibration of PSP formulation for 

various temperatures and pressures. 
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All PSP instrumentation was mounted on the ceiling of the 14x22 so that illumination and image acquisition 

were performed though Acrylite™ OP-4 windows.  OP-4 is a brand of acrylic plastic that can transmit UV light.  It 

also has a high clarity, transmitting ~90% of visible light. Two instrumentation/illumination packages were mounted 

above the test tesction ceiling to enable measurements at two locations on the rotor disk. The wind tunnel test 

configuration is shown in more detail in Fig. 4. 

C. Instrumentation 

For this test, the light emitting diode (LED) based arrays used in the previous work were exchanged for 

frequency doubled Nd:YAG lasers (532 nm).  A laser-based illumination system was used to attempt to acquire the 

PSP images needed in one single laser pulse as opposed to several hundred LED flashes (with one flash per 

revolution).  This would provide instantaneous pressure data on the blade while also alleviating issues with the 

dynamic nature of rotorcraft flight (i.e. blade lead-lag and flap motion).  The laser employed was a rugged, compact 

dual laser head system originally designed for Particle Image Velocimetry (PIV) applications.  Because of this, the 

lasers have been pre-aligned so that the laser path from each head is co-linear and the timing can be manipulated so 

that both heads fire at the same time.  The lasers employed had a nominal power of 150-200 mJ per pulse per head. 

PSP data images were acquired using a specialized interline transfer camera.  This was developed specifically for 

use in PIV applications and operated by masking every other line of the chip, allowing for charge to be transferred 

quickly (~200 ns transfer time) from the unmasked to the masked region for either storage or readout.  This allows 

for the rapid collection of image pairs with a minimal time delay between images (the interline transfer time above).  

The camera employs a CCD chip with an active area of 1600 x 1200 pixels with peak quantum efficiency greater 

than 50% at 650 nm.  The camera has 14-bit digitization as well as on-board memory that will allow it to rapidly 

store images on the camera, making it possible to run multiple cameras simultaneously from the same computer 

platform.  The camera was binned to 800 x 600 pixels to improve collection efficiency as well as increase data 

collection rates. 

Due to the testing and safety requirements, it was necessary to have nearly full remote control of pan and tilt as 

well as focus of the cameras during the test.  The cameras were mounted onto a commercial pan/tilt head that was 

capable of being controlled at distances of several hundred feet.    Due to the size of the CCD chip (2/3 inch) and the 

need for maximum light collection efficiency (or maximum aperture), remote focus and zoom lenses were 

impractical.  Instead, large aperture SLR lenses were used to maximize collection efficiency.  Custom designed and 

built systems were utilized to enable remote focusing during the test. 

 
Figure 4. Wind tunnel configuration of model with instrumentation.  The measurement locations are 

depicted in the lower image. 
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D. Data Acquisition 

All image acquisition was accomplished using the lifetime-based approach, which was found to be essential in 

previous test.
16-17

 However, these previous tests employed LED-based arrays and functioned by on-chip 

accumulation of several images to build the necessary data.  This was shown to suffer from excessive blurring due to 

flapping and lead lag of the blade.  Thus, a method to acquire the data in one single rotation was needed to account 

for this.  Using the high powered pulse laser provided sufficient levels of illumination and operating the cameras in 

the double exposure mode described above allowed the acquisition of the two gate images from one laser pulse.  In 

addition, there was a requirement to synchronize the actual PSP data acquisition with the wind tunnel dynamic data 

acquisition system to be able to compare the dynamic pressure transducer measurements with the PSP at the correct 

azimuth positions.  Timing for the acquisition was accomplished using a custom designed and built system based on 

a configurable counting board and software interface (Rotor Azimuth Synchronization Program, or RASP
24

) and the 

signals from the 1/ref and 1024/rev encoders on the GRMS.  The RASP allowed for accurate and reproducible 

alignment of the blades with a specific azimuth location in the rotor disk.  Programmable delay generators were also 

used to synch the camera acquisition with the flash lamp and Q-switch firing of each laser head.  The overall control 

of the data acquisition was accomplished via an external signal sent from the wind tunnel dynamic data acquisition 

system.  Each individual firing of the Q-switch was also recorded by the dynamic data acquisition system to enable 

comparison between the pressure transducer data with the PSP data at the same rotor azimuth.  A simplified diagram 

of the timing setup is shown in Fig. 5. 

The actual acquisition of the PSP data was acquired using a double frame imaging technique in which a short 

exposure image was taken followed immediately by a longer exposure image, as described by Juliano et al.
25

  The 

longer exposure image was started after the interline transfer time of the pixels (200 ns) and lasted as long as it took 

for the first image to be read into the on-board RAM of the camera.  With the arrangement, data could be acquired 

approximately every 400 ms, and with the current rotor speed, this corresponds to one PSP image pair acquired 

every 8 revolutions.  For an image pair, the camera was set for an initial exposure time of slightly more than 200 µs, 

corresponding to the optimal delay between flash lamp and Q-switch firing.  The initiation of the camera exposure 

also triggered the programmable delay generator to trigger the flash lamp and Q-switch at the desired times.  These  

times were set to ensure that the laser flash occurred just before the end of the first exposure, exciting the paint.  

Then the second image was collected so that the remainder of the excited state decay occurred in this frame.  A 

diagram of the nominal PSP imaging process is shown in Fig. 6. 

For this test the rotor shaft angle was maintained at -3 degrees and there was no yaw in the model.  PSP images 

were acquired on the Advancing Blade Side (ABS) at an approximate rotor azimuth of 98 degrees and on the 

Retreating Blade Side (RBS) at an approximate rotor azimuth of 258 degrees.  The ABS is the side where the blade 

is advancing into the freestream velocity and the RBS is the side where the blade is moving in the same direction as 

the freestream.  All data were acquired from the same blade and rotation speed was 1150 rpm. 

 
Figure 5. Timing schematic for controlling up to four 

separate laser/camera systems (though only two were 

used in this test).  LC880: Programmable logic gate 

controller for throttling data acquisition; DAQ: 

Laser/camera system; DDAS: Dynamic Data 

Acquisition System. 
 

 

 
Figure 6. Schematic representation of data 

acquisition using dual frame imaging and laser 

pulse excitation.  Laser pulse width and delay 

between images is exaggerated to show difference. 
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E. Data Analysis 

Data analysis for this work followed the standard procedure for analysis of PSP data acquired using the lifetime-

based data acquisition procedures with some exceptions.  Usually the lifetime-based data analysis is simply dividing 

Gate 1 by Gate 2 to form an IREF/I image.  However, the chosen paint formulation (the porous polymer) displays a 

significant change in performance that is tied to the application process.  This phenomenon has been observed 

previously in many PSP formulations
26-28

 but is very pronounced in this formulation.  Essentially, the excited state 

lifetime of the Pt(TfPP) shows heterogeneity with application, where the lifetime can change dramatically based on 

the relative localized concentration of the probe.  To solve this, a single wind-off image set was acquired 

immediately after the overspray.  Since the overspray was done each morning, this wind-off image set was also 

acquired each morning.  The wind-off image pair served as a further reference for the lifetime data and can account 

for much of the non-homogeneity effects.  The basic data analysis used the following protocol: 

 

1. Background correction of all images and deblurring of appropriate images 

2. Registration of wind-on images Gate 1 and Gate 2 to the second gate image of the wind-off pair 

3. Creating a “ratio of ratios” image using the wind-off image pair 

4. Mapping the resultant image to the surface grid using the previously determined three dimensional coordinates 

of registration marks added to the blade 

5. Final calibration of the image to convert to pressure.  This was accomplished using hybrid calibration
9
 by 

performing an a priori calibration using Eq. (3) and correcting any bias error using the pressure transducers. 

III. Results and Discussion 

A. Improvements from Using Laser-Based Data Acquisition 

An initial concern with using a pulsed laser for illumination was the pulse-to-pulse repeatability of the laser 

itself.  For the lasers used in this test, the stated power stability is +/- 4%, which could results in pressures errors up 

to 6%.  However, since all data is taken in a single laser pulse through the interline transfer technique, the variation 

of the laser pulse power is not a concern.  The benefits from using the laser-based data acquisition technique were 

apparent from the start.  The greatest improvement was the clarity of the images.  This is depicted in Fig. 7, which 

shows a comparison of a raw image taken using the LEDs and integrating over multiple revolutions and a raw image 

from this test.  Because of the multiple revolutions that were required for the LED-based approach, the image has 

noticeable blur around the pressure transducers, especially when compared with the laser-based data acquisition 

technique.  While  the laser-based acquisition technique 

significantly reduces the blur caused by acquiring data over 

multiple rotations, it can not compensate for rotational blur. 

The rotational blur is due to the exposure time of the 

second gate image and the motion of the blade. The second 

image is acquired after the laser pulse and is effectively the 

length of the luminescent decay, on the order of 5-10 

microseconds (for this formulation). Thus, the exposure 

time of the second image is two to three orders of 

magnitude longer than the exposure time of the first image 

(the exposure time of the first image is governed by the 

laser pulse, which is ~ 10 ns wide). As a result of this, there 

is a rotational blur imparted to the Gate 2 image which is 

most evident at the trailing and leading edges, though does 

have an effect across the surface as well. 

Juliano, et al.,
29

 have developed a method to 

deconvolute this type of blurring from an image by using a 

Point Spread Function (PSF) for the blur.  Construction of 

the PSF for the blurred rotor blade was constructed by first 

assuming the luminescent intensity decay was first order 

 /
0 * teII   (4) 

 
Figure 7. Raw images from LED-based (left) and 

laser-based (right) data acquisition techniques 

showing the reduced blurring. 
 

 



 

American Institute of Aeronautics and Astronautics 
 

 

8 

where I is the intensity, I0 is the initial intensity at the excitation peak, t is time, and τ is the excited state lifetime 

of the luminescent material. The blade rotates as a solid body, wherein the distance moved (Δx) at a point is 

proportional to the angular velocity, ω, and its radius from the center r (Δx = ωrΔt). The motion was treated as 

rectilinear: the angle moved by the blade during 10τ was only 0.01 radian (less than 1
o
), so the width of the path 

traced by a point on the blade was sub-pixel (but about 20 pixels long at the tip). By combining I(t) and Δx(t), the 

PSF can be defined as 

 )/(
0 * rxeII   (5) 

Application of this PSF to the second image greatly reduced the blur as seen in Fig. 8.  The effects of the 

deblurring algorithm on the recovered PSP results are shown in Fig. 9.  Visual inspection of the images in Fig. 9 

show that the most dramatic effect of the deblurring technique is on the trailing edge.  This is also shown in the 

graph of Fig. 9, which is a comparison of a chord of PSP data.  The deblurring technique greatly reduces the 

anomolaous high pressure region at the trailing edge and shows little effect over the rest of the blade.    All data 

analyzed was deblurred using this technique. 

An additional benefit of the laser-based data 

acquisition is the greater increase in efficiency.  Acquiring 

a data image over multiple revolutions required data 

acquisition times on the order a minute to acquire a single 

image pair.  This precluded many of the advantages in 

signal-to-noise that can be achieved with averaging.  

Additionally, the comparison with pressure transducers 

would become tenuous as only an ensemble average could 

be used over that time frame, severely mitigating any 

dynamic effects that may exist.  Alternatively, with the 

laser-based data acquisition technique, an image pair can 

be obtained in single laser flash, corresponding to a single 

rotation.  Now, the comparison with pressure transducers 

is much cleaner as the image is collected at a single point 

in time.  Additionally, with the current setup, as many as 

30 image pairs could be obtained in a single test point 

collection from the rotorcraft dynamic data acquisition 

system, which required approximately 15 seconds. 

 
Figure 8. (Left) Original Gate 2 image showing 

the rotational blur. (Right) Same image after the 

deblurring technique described by Juliano, et al. 

 

 
Figure 9.  Comparison of PSP results obtained without (Original) and with (Deblurred) the application of 

the deblurring algorithm. The dashed line in the figures represents the location of the chord used for the 

comparison in the graph at the right. 
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B. Forward Flight Test Results 

As mentioned in the Data Analysis section 

above, a single wind-off image pair was needed to 

correct some anomalies that happen with this 

particular paint formulation (the porous polymer 

PSP).  In the wind-off image pair collected for this 

work, there was a contamination element that 

occurred near the pressure transducers.  To protect 

the pressure transducers from clogging or becoming 

damaged during the painting process, a thin strip of 

Kapton tape was placed over the transducer rows.  

While this would necessarily limit some of the data 

in regions directly at the transducers, another effect 

was seen.  This is shown in Fig. 10.  In the first gate 

image (left), the effect is not really noticeable.  

However, in the second gate image (right) there are 

significant variations at the transducer row at 99% 

chord.  This image contains most of the excited state 

decay, thus any variations in the lifetime should be 

convoluted with the actually excitation field.  It is 

currently postulated that this is a contamination from 

the adhesive of the tape that is dissolved during the 

overspray process (in which the Pt(TfPP) is applied 

in a solution of 2-butanone [MEK]), which may have 

been applied a bit too heavily at the tip (resulting in a 

“wetter” overspray).  Additionally, the wind-off 

image pairs were acquired almost immediately after 

the overspray, so the solvent may not have been 

allowed to dry sufficiently. 

An attempt to mitigate this issue was made by simply “cloning” this area of the paint with small regions near the 

99% chord row.  A comparison of the wind-off IREF/I image before and after the “patching” is shown in Fig. 11.  

Ideally, this image should have a uniform appearance, but lifetime variations in the paint (again, usually caused by 

application) can be seen.  In the original image (left), these variations at the 99% chord are extreme.  Patching (right) 

can remove much of this effect.  Obviously this can bias the results in this region, so further study on the effects 

needs to be carried out as well as strategies to mitigate the effect from happening in the first place.  All data analysis 

was accomplished using the patched reference images. 

For the hybrid calibration mentioned in the Data Analysis section, the location of the pressure transducers was 

virtually moved on the surface grid away from the taped regions.  If the pressure transducers would have been 

covered with only a small piece of tape individually, this probably would not have needed to be done.  However, the 

tape strip afforded the maximum protection to the 

transducers, as well as significantly reduced the 

amount of time needed for application.  For the final 

data analysis, the transducers were virtually moved 

toward the hub about 0.3 inches (0.5%R).  This move 

was also structured to maintain the same locations in 

x/c as were in the original.  This moved the 

transducers a significant (> 5 pixels) distance from 

the transducer to allow their use in calibration (the 

spatial resolution in the blade is ~0.03”/pixel) while 

keeping a close proximity to their actual location.  All 

PSP comparison to the measured pressure from the 

transducers was carried out in this region.  

Unfortunately, the largest contamination region also 

corresponds to this region.  However, due to the 

highly three-dimensional flow at the tip, it is not 

reasonable to move the virtual transducer line any 

 
Figure 11. Wind-off Gate 1/Gate 2 images. (Left) 

Original images showing contamination; (right) 

patched images showing nearly complete removal 

of the contamination. 
 

 

 
Figure 10. Raw wind-off images.  (Left) The First 

Gate image taken at the laser flash; (B) the second 

gate image encompassing the majority of the 

excited-state decay.  The contamination from the 

tape is most noticeable as the blue regions near the 

99% chord. 
 

 

 

Figure 12. Blade tip region detailing masked 

areas the original transducer locations (yellow 

spheres) and the transducer regions after moving 

inboard 0.3 inch (red spheres).  
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further from the true transducer line.  The effect of the Kapton tape as well as the original and virtually moved 

transducer locations are shown in Fig. 12. 

With the transducers virtually moved to a clear region, they can now be used to anchor the a priori calibration, 

which was calculated using an assumed temperature.  A comparison of the a priori calibration with the hybrid 

calibration is shown in Fig. 13.  The comparison between the pressure transducer measurements and the PSP data is 

also included and shows that the hybrid calibration does bring the PSP data closer in line to the transducers.  It 

should also be noted that the PSP data at the extremely low x/c locations is probably biased due to a combination of 

 
Figure 13.  Comparison of PSP data calibrated using the a priori calibration (left) with an 

assumed temperature and the hybrid calibration (right) using the pressure transducers to 

“anchor” the a priori calibration.  The comparison between the transducers and the PSP is shown 

below each image.  The black region on the blade is unmapped data. 
 

 

 

Figure 14.  PSP images acquired from the ABS.  The arrow represents the direction of the tunnel flow.  

The black regions on the blade are unmapped data. 
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Figure 16.  Average blade pitch during one 

revolution.  The vertical dashed lines represent the 

azimuths where PSP data was collected. 

 

unaccounted for blurring and the need for 

patching due to the contamination.  Because 

of the higher concentration of transducers in 

this region, the contamination region was 

much larger (as seen in Fig. 12) and this 

corresponds to the region of poor correlation 

between the PSP and the transducers.  Even 

with this, the PSP shows relatively good 

agreement with the transducers.  For 

consistency, all final calibrations were done 

using the hybrid calibration technique to 

anchor the a priori calibration. 

A representative set of data was acquired 

at a constant velocity of 138 knots (71.0 

m/s) and at four thrust coefficients.  A 

comparison of a PSP image at each thrust 

condition is shown in Fig. 14.  This is the 

ABS and shows good qualitative agreement 

with what should be expected.  It also shows 

that the pressure on the blade at this position 

has little dependence on the thrust coefficient.  The comparison between the pressure transducers and the PSP is also 

shown in Fig. 15, and shows the same result.  The PSP does not agree as well as the previous figure, most likely due 

to the smaller pressure changes on the blade as well as the reasons cited above (contamination and unaccounted for 

blur).  However, both the PSP and the transducers show the higher pressure region at the extreme leading edge with 

the pressure decreasing as the flow accelerates over the center of the blade, flowed by a gradual return to higher 

pressure at the trailing edge.  As with the PSP data, the pressure transducer measurements also show little 

dependence on the thrust coefficient. 

The reason for the relatively small variations in pressure with CT on the ABS is better illustrated by examining 

the ensemble averaged blade pitch during a revolution as shown in Fig. 16.  The approximate locations of the 

measurement are shown by the dashed lines, with the ABS taken at Ψ = 101
o
, the blade pitch for all of the cases is 

almost identical with only 0.6
o
 separating the CT = 0.004 and CT = 0.010 cases.  Thus, the nearly constant pressure 

distributions regardless of CT for the ABS is to be expected. 

However, the same cannot be said of the blade in the “retreating” position (the blade is moving in the direction 

of the air flow in the tunnel).  From Fig. 16 it is readily apparent that when Ψ = 258
o
 (the measurement location for 

the RBS), the pitch angle increases 

approximately 12
o
 through the thrust sweep.  

Thus, a much larger pressure dependence on CT 

should be expected.  Fig. 17 shows PSP data 

taken from this location.  The PSP data shows 

that there is a much larger dependence on the 

thrust coefficient, as evidenced by the lower 

pressure region near the leading edge of the 

blade.  Additionally, there is evidence of a flow 

phenomenon near the blade tip, such as a vortex 

shedding off the tip.  This is highly dependent on 

the thrust coefficient, and evidence of it can be 

seen from CT greater than 0.006.  The larger 

pressure differentials are also evident from the 

pressure transducer and PSP comparisons, which 

is shown in Fig. 18.  As with the previous data, 

the transducer agreement is very good (except 

near the leading edge).  However, the flow 

phenomenon that is seen in the PSP at the tip 

does not appear in the transducer data.  From 

visual inspection of the PSP data, it seems that 

the phenomenon flows just past the last pressure 

 
Figure 15.  ABS comparisons between PSP data and 

pressure transducer measurements from Fig. 13. 
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transducer, or possibly between two transducers.  This does show one of the greatest advantages to using PSP: the 

ability to visualize and measure global pressure distributions as opposed to localized pressure measurements as is 

acquired from pressure transducers. 

IV. Conclusions 

This study details a test of using PSP for the global pressure determination on the tips of rotorcraft blades in 

forward flight.  This test was performed using the General Rotor Model System installed in the 14- x 22-Foot 

Subsonic Tunnel at NASA Langley Research Center.  Two rotor blades were painted with a porous polymer PSP 

formulation capable of frequency responses on the order of 20 kHz.  The blades were instrumented with pressure 

transducers, with the actual blade used in the measurement instrumented with a row at 93% and 99% chord, 

respectively (though only the 99% chord was functional).  The blades were tested at various forward velocities and 

thrust coefficients. 

For this test, a laser-based data acquisition system was designed and deployed.  This system was capable of 

measuring a single blade through up to four 

different positions in the rotor disk through 

a single revolution.  This was accomplished 

by exciting the paint with the laser and 

using an interline transfer camera to take a 

pair of images.  With correct timing, the 

laser flash occurs at the end of the first gate 

with the majority of the excited-state decay 

being recorded by the second gate.  This is 

analogous to the traditional lifetime-based 

approach in which two images are 

collected, one during the excitation pulse, 

and one after the pulse.  However, with the 

power of the laser, all data could be 

acquired in one rotation with one laser 

pulse.  Thus, data collection is inherently 

more efficient as well as allowing the 

possibility of recording dynamic pressure 

data. 

 
Figure 18.  RBS comparisons between PSP data and pressure 

transducer measurements from Fig. 14. 
 

 

 
Figure 17.  PSP images acquired from the RBS.  The arrow represents the direction of the tunnel flow.  

The black regions on the blade are unmapped data. 
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Analysis of the data shows fairly good agreement (within 10%) of the pressure transducer measurements, though 

there are some issues that were encountered.  To protect the pressure transducers, Kapton tape was placed over the 

transducers.  However, some contamination regions near the taps are observed in the second gate image.  This has 

been postulated that during the application of the PSP, the solvent may have caused some of the adhesive to dissolve 

and leach into the binder, leading to some significant effects in this region.  This region was patched with nearby 

data to try and mitigate these results. Additionally, the temperature sensitivity of the PSP is a limiting factor in the 

accuracy of the data, though this can be lessened using the pressure transducer reading to correct the bias.  Finally, a 

method to try and account for the rotational blur was presented, which did show fairly good results.  However, if 

different paint formulations with longer excited-state lifetimes are used, this method may not be adequate, and even 

in this case, the extreme edges of the blade remain suspect. 

Even with these limitations, the data agreed both qualitatively and somewhat quantitatively with the expected 

results.  In addition, there is evidence of a vortex shedding or other flow phenomenon that can be seen dependent on 

both blade position (retreating or advancing) and thrust coefficient.  To date, this is one of the first successful tests 

of PSP on flexible rotating surfaces capable of measuring dynamic phenomena.  Further enhancements to the data 

analysis are currently being investigated, most notably on methods to reduce the rotational blur that occurs due to 

the finite lifetime of the paint in relation to the rotational speed of the blade.  Successful mitigation of this blur will 

result in better resolution at the leading edge as well as reducing the discrepancy between transducers and PSP at 

both the leading and trailing edges. 
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