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The absolute navigation design of NASA’s Orion vehicle is described. It has undergone
several iterations and modifications since its inception, and continues as a work-in-progress.
This paper seeks to benchmark the current state of the design and some of the rationale
and analysis behind it. There are specific challenges to address when preparing a timely
and effective design for the Exploration Flight Test (EFT-1), while still looking ahead
and providing software extensibility for future exploration missions. The primary onboard
measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange
and deltarange, but for future explorations missions the use of star-tracker and optical
navigation sources need to be considered. Discussions are presented for state size and
composition, processing techniques, and consider states. A presentation is given for the
processing technique using the computationally stable and robust UDU formulation with
an Agee-Turner Rank-One update. This allows for computational savings when dealing
with many parameters which are modeled as slowly varying Gauss-Markov processes. Pre-
liminary analysis shows up to a 50% reduction in computation versus a more traditional
formulation. Several state elements are discussed and evaluated, including position, ve-
locity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale
factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. An-
other consideration is the initialization of the EKF in various scenarios. Scenarios such
as single-event upset, ground command, and cold start are discussed as are strategies for
whole and partial state updates as well as covariance considerations. Strategies are given
for dealing with latent measurements and high-rate propagation using multi-rate architec-
ture. The details of the rate groups and the data flow between the elements is discussed
and evaluated.

I. Introduction

The Orion spacecraft is to be NASA’s next-generation Exploration vehicle for crewed missions beyond
low-Earth orbit (LEO). As such, it is being designed to be capable of operating outside the comfortable
confines of LEO. This introduces a variety of challenges, not least of which is the need for flexibility and
robustness to a variety of environments including cislunar operations, low lunar orbit, and LEO. This paper
seeks to benchmark the design of the Orion Absolute Navigation system, documenting the current state of
the AbsNav system, including the challenges that have been overcome. We will first discuss the philosophy of
the design and detail the architecture of the AbsNav system, then present the states in the filter, and finally
present some results as related to the Exploration Flight Test 1 (EFT-1). Whereas much of the focus and
effort over the past year has been directed toward EFT-1, the design is flexible enough to provide software
extensibility for future exploration missions.

This paper is organized as follows: first, the overall architecture is presented including the motivation for
the UDU formulation of the Extended Kalman Filter (EKF). Next, the rationale for the choice of the filter
states is given. In Section 4, the recursive UDU formulation is described along with the Agee-Turner rank-
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one update. In Section 5, typical filter performance for a EFT-1 flight is presented along with a discussion
of the implications of this performance. Finally, in Section 5, a few concluding comments are made.

II. The Architecture of the Orion Absolute Navigation System

The Orion Absolute Navigation System consists of inertial sensors and software that are used throughout
the mission, from before launch to post-landing. As such, the design has to be robust to various environments
and robust to various failures. The design consists of three Honeywell Orion IMUs (OIMUs), which are
descendants of the Honeywell MIMU design. In addition, there are 2 GPS receivers which provide both
PVT and pseudorange and deltarange measurements. Finally, there are two star trackers to provide periodic
attitude updates. This is shown in Figure 1. For EFT-1 however, the Absolute Navigation System was
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Figure 1. Orion Absolute Navigation Architecture

scaled-down to comprise 2 OIMUs and 1 GPS receiver. Because of the short duration of the flight (two
orbits), there will be no star tracker carried on-board. The EFT-1 configuration is illustrated in Figure 2.

The Absolute Navigation System consists of a high-rate Filtered Navigator (FILTNAV), which runs at 40
Hz and a slower rate Extended Kalman Filter (EKF), which runs at 1 Hz. The vehicle state is propagated
forward in time at 200 Hz (since the calling rate is 40 Hz, the input data is buffered) through the use of
sensed ∆V and ∆Θ data from the IMU. The output of FILTNAV is used to calculate values for use by the
rest of flight software. Additionally, the propagated state (position, velocity, and attitude) is sent to the
EKF, where it is the primary state propagation source. The state of the Filtered Navigator is re-synched to
the estimated state of the EKF at 1 Hz intervals via a delta update.

The timing of this is rather involved and is seen in Figure 3. A few things need to be stated in order to
understand the figure. First, in the Orion Flight Software (FSW) there are minor frames and major frames.
There are 40 minor frames for each major frame; hence each minor frame is 0.025 seconds in duration and
a major frame lasts for 1 second. Secondly, the data exchange between the major and minor frame occurs
immediately prior to the beginning of the major frame. This does introduce some difficulties associated with
real-time passage of data between two rate groups which need to be carefully considered.

There are several elements of the data transfer which need to be made clear. First, the 40 Hz ∆θ’s, ∆V ’s,
State Transition Matrices (STM) (Φ(tk, tk−1)), and the state at time tk (XFN

k ) are transferred between
FILTNAV and EKF at the major cycle boundary. At the same time, the correction to the state at time
tk−1 (∆Xk−1), the gravity (g), and the gravity gradient (G) are sent to FILTNAV. FILTNAV then uses the
STM (Φ(tk, tk−1)) to propagate the corrections to the current time (tk) along with it’s state (XFN

k ) so that
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Xk = XFN
k + Φ(tk, tk−1)∆Xk−1.

Initialization of FILTNAV and EKF occurs in a predetermined sequence to allow passing data structures
to populate correctly before processing occurs. This is shown in Figure 4.Initialization Sequence
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Figure 4. EKF and FILTNAV Initialization Diagram

II.A. Dynamics Modeling

In general we have the vehicle experiencing a central body gravity field with third body (Sun and Moon,
if around the Earth) and non-conservative forces such as drag. Usually, the accelerometer measures these
non-conservative forces, assuming they are large enough to exceed the accelerometer thresholds. With this
in mind, the equations of motion are

ṙ = v (1)

v̇ = g(r) + ad + athirdbody (2)

The gravity acceleration, g(r), includes not only the two-body acceleration but the non-spherical gravity
field that is usually modeled in terms of spherical harmonics.

We assume that the drag acceleration is large enough to be sensed by the accelerometers (as) so that the
velocity equation becomes

v̇ = g(r) +
(
TI
Bref

)
k

T
Bref

B TB
C aCm (3)

where
(
TI
Bref

)
k

is the transformation from the body frame to the inertial frame at the beginning of the

cycle, T
Bref

B is the transformation from the body frame during the cycle to the body frame at the beginning
of the cycle, and TB

C is the transformation from the (IMU) case frame to the body frame.
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II.B. Accelerometer Modeling

The accelerometer may be misaligned relative to the IMU reference frame. This is due to the fact that the
accelerometers are not mounted orthogonal to each other and these errors are expressed in terms of small
angles as:

Ξa =

 0 ξaxy ξaxz
ξayx 0 ξayz
ξazx ξazy 0


The accelerometer scale factor represents the error in conversion from raw sensor outputs (accelerometer

digitizer pulses) to useful units. In general we model the scale-factor error as a first-order Markov process.
It is a diagonal matrices given as

Sa =

 sax 0 0

0 say 0

0 0 saz


Similarly, the bias errors are modeled as as first-order Gauss-Markov processes as

ba =

 bax
bay
baz


So, the accelerometer measurements, aCm are modeled as:

aCm = (I3 + Ξa) (I3 + Sa)
(
aC + ba + υa

)
(4)

where I3 is a 3 × 3 identity matrix, the superscript C indicates that this is an inertial measurement at the
‘box-level’ expressed in case-frame co-ordinates, and aC is the ‘true’ non-gravitational acceleration in the
case frame. The quantity υa is the velocity random walk, a zero-mean white sequence on acceleration that
integrates into a velocity random walk, which is the ‘noise’ on the accelerometer output. If we assume that
the errors are small, then to first-order

(I3 + Ξa) (I + Sa) ≈ I + Ξa + Sa

So, the linear accelerometer measurements (in the case frame) are:

aCm = (I3 + Ξa + Sa)
(
aC + ba + υa

)
(5)

II.C. Gyro Modeling

We construct a gyro model in terms of the bias, scale factor and non-orthogonality. We assume that the
xaxis of the gyro is chosen as the reference direction with the x − y plane being the reference plane; the y
and z axes are not mounted perfectly orthogonal to it. Hence

ωCm = (I3 + Γ + Sg)ωC + bg + εg (6)

where

Γ
∆
=

 0 0 0

γyx 0 0

γzx γzy 0

 , Sg
∆
=

 sgx 0 0

0 sgy 0

0 0 sgz

 , bg
∆
=

 bgx
bgy
bgz

 (7)

If we let ∆g ∆
= Γ + Sg, we can express the actual angular velocity in terms of the measured angular velocity

as

ωC = (I3 −∆g)ωCm − bg − εg (8)
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II.D. GPS Modeling

The Orion EKF processes GPS pseudorange and deltarange measurements during its 1 Hz processing cycle.
The psuedorange measurement model is formed by

hPR = ||RI
SV − (RI

ant/nav + RI
nav)||+ bc + νPR (9)

where RI
SV is the inertial position of the GPS satellite at the time of transmission, RI

nav is the inertial position
of the Orion navigation frame expressed in the inertial frame, RI

ant/nav is the transformation between the
receiving antenna location and the Orion navigation frame, bc is the receiver clock bias, and νPR is the white
process noise. It is assumed in this formulation, however, that the measurements are already corrected for
ionospheric errors.

The Orion GPS receiver utilizes a single L1 frequency, and is thus susceptible to measurements with
ionospheric delay. Options were evaluated for modeling the GPS ionosphere in different flight regimes to
balance signal availability, expected delay, and filter measurement weighting. Additionally, various signal
masking schema were considered. Without some sort of compensation, pseudorange errors in LEO can grow
to over 80 meters. The traditional model used to compensate for ionosphere errors in a single-frequency
GPS was developed by Klobuchar in 1975.1 For LEO, we’ve shown this model will remove about 50% of the
pseudorange error. Additionally, the residual ionosphere error signature is less like a bias and more like noise,
allowing better filtering performance. The Klobuchar model is relatively simple to implement, but it does
assume a “thin-shell” ionosphere concentrated at 350km, so it can overcorrect at higher altitudes. Using the
IRI2007 model as a truth reference, the residual ionosphere mis-modeling with Klobuchar compensation is
demonstrated in Figure 5. Another classic compensation for ionospheric effects is to mask certain portions
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Figure 5. GPS Ionosphere Model Errors at 450km Orbit

of the observable sky that have the most severe effects. There are two implementations for this, one based
on elevation angle, the other based on height above the Earth-limb. The difficulty with this method is that
for higher altitudes the number of available satellites becomes restricted. From a filter standpoint, it is
preferable to process all the available measurements if their error bounds can be accurately categorized. For
this reason, a third option was considered that uses an analytic model based on elevation or earth limb. The
proposed method was as follows, bounding the error with a weight (W ) based on four analytic coefficients
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(α, β, γ, θ).

W = 5 + exp[(
ln γ − lnβ

α
)(E− θ) + lnβ] (10)

where below 700km the term (E) is the GPS satellite elevation above the local horizon in degrees and the
coefficients are prescribed as (40,35,2,0). Above 700km, (E) is the height of the GPS signal above the Earth-
limb and the coefficients are prescribed as (250,205,13,350). Additionally, Klobuchar correction is applied
below 450km. While this method is appealing from a filtering standpoint, the performance improvement has
not yet been judged to outweigh the additional code complexity and computational burden. The method that
is currently implemented uses a modified version of the original Klobuchar model within the GPS receiver
with appropriate uncertainties based on the “thin-shell” model.

II.E. The Filter States

Filter performance is affected by many factors: sensor measurement errors, data rates, tuning, and others.
Foremost among these is the number and type of states that are modeled. If too many states are chosen, the
filter is slow; if not enough states are modeled, the filter will perform poorly. The Orion EFT-1 Extended
Kalman Filter has 11 states and 24 ECRV (Exponentially Correlated Random Variable) parameters.

The first set of ‘dynamic states’ are: position (3 states), velocity (3 states), attitude (3 states), clock
bias and clock drift (2 states). We explicitly include the attitude as a state in order to properly model
the coupling inherent in a strapdown IMU (particularly during accelerated flight). The 24 parameters are
modeled as first-order Gauss-Markov processes and use a much more efficient computational algorithm for
the update of the covariance matrix. It is noteworthy that the ECRV parameters for accel/gyro misalignment
and nonorthogonality are only minimally observable, but are included in the filter as a means of informing
the filter that the sensor parameters are time-varying; in addition, they provide an additional set of tuning
parameters to obtain better performance – in the form of the time constants associated with the first-order
Gauss-Markov processes and the process noise associated with each sensor parameter. Since the IMU has a
‘high g / low g’ switch, separate accelerometer biases for low-G and high-G are included in the filter. As well,
the computational burden associated with the three additional accelerometer bias states is small because of
the way Gauss-Markov states are incorporated.

So, the 24 sensor states in the filter, modeled as first-order Gauss-Markov processes, are as follows:
High-g accelerometer bias (3 states), Low-g accelerometer bias (3 states), Accelerometer scale-factor (3
states), Accelerometer misalignment (6 states), Gyro bias (3 states), Gyro scale-factor (3 states), Gyro
non-orthogonality (3 states).

In passing, we mention that the accelerometers are not mounted orthogonal to each other and these
misalignments are modeled as a six-parameter small angle vector. The accelerometer scale factor represents
the error in conversion from raw sensor outputs (accelerometer digital pulses) to useful units.

For the gyros, we assume that the x-axis of the gyro is chosen as the reference direction with the x-y
plane being the reference plane, the y and z gyros not being mounted perfectly orthogonal to it. We use
only three parameters to model this non-orthogonality.

All of these IMU states are estimated in the case-frame in order to avoid a mixing of time constants
between the various parameters.

III. The UDU Formulation of the Orion Absolute Navigation System

The UDU formulation of the Kalman Filter has been used in aerospace engineering applications for
several decades. Bierman and Thornton2 and Bierman3 introduced an elegant UDU formulation in order
to improve the computational stability and efficiency of large navigation filters, originally used in a batch
formulation. However, this formulation lent itself to sequential implementations, well-suited for platforms
where both computational stability and numerical efficiency were at a premium.

Due to the fact that there are three EKF’s operating on Orion, each one slaved to one IMU, and the large
number of states, it was decided to use the UDU formulation of the EKF for the Orion Absolute Navigation
System.

The UDU formulation has, as it’s heritage, the singular value decomposition (SVD), in which any m×n
matrix can be decomposed into two unitary matrices and a single diagonal matrix. For our case, we are
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concerned with the decomposition of the covariance matrix, which is a real, symmetric, positive definite
matrix. Such a matrix, P, can be decomposed by means of an upper triangular, orthogonal matrix U, and
a diagonal matrix D, containing the singular values of P, as

P = UDUT (11)

III.A. The Time Update

The efficiency and robustness of the UDU formulation have been harnessed in the time-update of the co-
variance matrix. This takes on particular import because of the partitioning of the overall state into the
dynamic states and the parameters modeled as first-order Gauss-Markov processes. In general, there are two
techniques used to propagate the covariance in an Extended Kalman Filter. One way is to integrate the co-
variance matrix using the Ricatti equation, perhaps taking advantage of the symmetry and only integrating
n(n−1)

2 terms. However, the most common method of propagating the covariance matrix is to use the STM;
and the UDU formulation is particularly well-suited for this. This offers particular advantages in the case of
the Orion Absolute Navigation Filters since the vast majority of the states (24) are first-order Gauss-Markov
states; since the dynamics of these states are uncoupled, the state transition matrix is expressed analytically.
Additionally, the STM for the dynamic states (the position, velocity, attitude, and GPS clock states) are
computed using a first-order approximation; this is particularly appropriate in the 40 Hz rate-group. Care
is taken in the computation of the state transition matrix in the 1 Hz rate-group where additional terms are
incorporated.

III.A.1. The Modified Gram-Schmidt Orthogonalization

In particular, the modified Gram-Schmidt Orthogonalization, as detailed in Bierman3 is used to update
the dynamic states. The adjective modified serves to denote the fact that the ordinary Gram-Schmidt
orthogonalization often results in basis vectors which are not quite orthogonal, caused by round-off errors.
The modified Gram-Schmidt orthogonalization process obviates this difficulty by ensuring that every step
in the orthogonalization process results in orthogonal basis vectors. It is functionally and mathematically
equivalent to the classic Gram-Schmidt orthogonalization.

For a large number of states, most of which might be biases (or Gauss Markov processes), much of this is
wasted considering the sparseness of Φ, the state transition matrix. The modified Gram-Schmidt algorithm
uses [1.5n3

x + 0.5n2
x(2mx − 1)], and [0.5n2

x(3nx + 1) + nxmx(nx + 1)] mulitplies and [(nx + mx)(nx − 1)]
divides. For nx = 35 and mx = 35 (the number of states affected by process noise), we use 85,750 adds and
88,200 multiplies – quite a large number of computations.

But we can do better! We can vastly improve (reduce) on the number of computations by ‘factoring’
the states into ‘states’ and ‘parameters’. This is the motivation for separating the overall states into states
and (Gauss-Markov) parameters. These time-update to the parameters are handled differently. In fact, the
dynamic states (position, velocity, attitude and clock states) are updated via the modified Gauss-Markov
process; the time update equations are expanded so that the Agee-Turner time update is used to perform
the update to the Gauss-Markov states.

III.A.2. The Agee-Turner Rank-One Time Update

We recall that most of the states are sensor first-order Gauss-Markov states. If the modified Gram-Schmidt
algorithm is used without taking advantage of the fact that the sensor states are not coupled with one
another, we incur wasted computations. Therefore, we take advantage of an algorithm introduced in 1972
by Agee and Turner4 of the White Sands Proving Ground to significantly reduce the computations involved
in time update of the covariance associated with the sensor states.

III.A.3. The Inclusion of Process Noise

Navigators use process noise to tune the filter. For the Orion Absolute Navigation Filter, the process noise
enters covariance update via the dynamic states and the sensor parameters. For the position and velocity,
the process noise enters via the velocity state; the process noise represents the uncertainty in the dynamics,
chiefly via mis-modeled accelerations. Since the accelerometer measure non-inertial forces, gravity is modeled
via a high-order gravity model. For the Orion Absolute Navigation filter, Earth’s gravity is modeled by an
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8 × 8 gravity field; higher-order spherical harmonics are neglected and hence are included in the velocity
process noise. Additionally, since the attitude rate states are not part of the filter, the attitude process noise
enters via the gyro angle random walk. Likewise, during powered flight, velocity process noise enters into
the velocity channels. Of course, the sensor parameters are modeled as first-order Gauss-Markov processes
and bring with them corresponding process noise parameters which are used in the tuning of the filter. The
GPS clock model brings with it a clock bias and clock drift process noise which affect the GPS clock states.

The Gram-Schmidt orthogonalization assumes that the process noise is diagonal. However, this is clearly
not the case. A Cholesky square-root free factorization is performed on the process noise associated with
the dynamic states; once this is done the machinery associated with the UDU factorization can proceed
unhindered.

III.A.4. The Computational Burden of the Time Update

So, what is the computational cost of using the UDU time update? It is observed that the UDU factorization
time update, with all the above modifications, use following arithmetic operations:

Adds : 1.5n3
x + n2

xmx + n2
xnp − 0.5n2

x + np + nx(np + 1)np +

np∑
k=1

k2

Multiplies : 0.5n2
x(3nx + 1) + nxmx(nx + 1) + (5.5 + 5nx + n2

x)np +
1

2
(2nx + 5)n2

p +

np∑
k=1

k2

Divides : (nx +mx)(nx − 1) + np

For nx = 9, mx = 9, np = 26, we will utilize 16,407 adds, 19,338 multiplies, and 170 divides. In con-
trast, if we did the MGS on all 35 states (nx = 35, mx = 35 and np = 0), we would use 85,750 adds, 88,200
multiplies, and 34 divides. Finally, if the covariance were updated (without any consideration given to the
structure of Φ from ΦP̄ΦT , with nx = 35, mx = 35, we would have 84,525 adds, 85,750 multiplies and no
dividesa.

III.B. The Measurement Update

For the Orion Absolute Navigation Filter, measurements are processed one-at-a-time. Both the delta-update
to the state and to the covariance are accumulated at a given epoch; only after all measurements at an epoch
are processed are the state and the covariance updated. This is done to preclude any dependence on the
order of measurement processing. This is, in effect, a linear update of the states and covariance by the
measurements.

With this in mind, all the measurement updates are, in effect, rank-one updates to the covariance matrix.
However, since this rank one update is of the form

UDUT = U

[
D− 1

α
vvT

]
U
T

noting the negative sign in the above expression which does not allow the methodology of the rank-one
time-update to be used for loss of numerical precision.5 We note that, in the above equation,

v = DU
T
HT

α = HUDU
T
HT + R

aFor arbitrary matrices, A and B of dimension n×m and m× p, respectively, the product

C = AB (12)

results in n(m− 1)p adds,nmp multiplies and no divides.
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and U and D are the a priori upper triangular and diagonal decomposition matrices of the covariance matrix
P.

Whereas the details of the rank-one measurement update are somewhat obscure, the resulting numerically
stable recursion avoids loss of precision involved in the differencing of two positive quantities which are of
similar size.

III.B.1. The Computational Burden of the UDU Measurement Update

Thus, taking advantage of the triangularity of the U matrix, for each measurement processed, the covariance
update results in 1.5n2

x − 0.5nx adds, 1.5n2
x + 1.5nx multiplies and 3nx − 1 divides.

For the normal, Joseph filter update (P = (I−KH) P̂ (I−KH)
T

+ KRKT ), for a scalar measurement,
we find that if we use efficient methods of calculating and storing quantities,3 we use 4.5n2

x + 3.5nx adds,
4n2

x + 4.5nx multiplies and 1 divide.

For the “Conventional” Kalman filter update (P = P̂−KHP̂), for a scalar measurement, we find that3

we use 1.5n2
x + 1.5nx adds, 1.5n2

x + 0.5nx multiplies and 1 divide.
Thus, for nx = 35, the covariance update due to measurement processing with the UDU factorization

uses 1820 adds, 1890 divides and 104 divides compared with 5635 adds, 5058 multiplies and 1 divide for the
efficient Joseph update. The “Conventional” Kalman update uses 1890 adds, 1855 multiplies, and 1 divide.

Hence there almost a factor of 2.5 improvement in the adds and multiplies using the triangular (UDU)
update compared with the Joseph update. This rivals the efficiency of the “conventional” Kalman Filter
update.

III.C. Consider Covariance Capability with the Orion Absolute Navigation System

‘Consider’ Analysis was first introduced by S. F. Schmidt of NASA Ames in the mid 1960s as a means
to account for errors in both the dynamic and measurement models due to uncertain parameters.6 The
Consider Kalman Filter, also called the Schmidt-Kalman Filter, resulted from this body of work. The
consider approach is especially useful when parameters have low observability. This, of course, is precisely
the situation of the Orion Absolute Navigation EKF.

In it’s essence, the consider parameters are not updated. In particular, the Kalman gain associated with
the consider parameters, p, is zero, i.e. Kp = 0. However, several comments are in order:

1. When using the Schmidt-Kalman filter, the a priori and a posteriori covariance of the parameters
(Ppp) are the same.

2. The a posteriori covariance matrix of the states and the correlation between the states and the param-
eters are the same regardless of whether one uses the Schmidt-Kalman filter or the optimal Kalman
update

The UDU formulation, while numerically stable and tight, is quite inflexible to making any changes in
the framework. At first blush, it would seem that the consider analysis would not fit into the framework.
However, all is not in vain. With some clever rearrangements, we can allow for a rank-one update to include
consider states in the measurement update. The measurement update, expressed in terms of the consider
covariance, is

P+
opt = P+

con −W (SKopt) (SKopt)
T

(13)

where S is an nx × nx matrix (defining nx
∆
= ns + np, where nx is the total number of states, np is the

number of consider states, and ns is the number of “non-consider” states) defined as

S
∆
=

[
0ns×ns 0ns×np

0np×ns Inp×np

]
(14)

Since we are processing scalar measurements, we note that W = 1
α is a scalar and Kopt is an nx × 1 vector.

Therefore SKopt is an nx × 1 vector. Therefore, solving for the consider covariance,

P+
con = P+

opt +W (SKopt) (SKopt)
T

(15)
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Eq. (13) has the same form as the original rank-one update i.e. P+ = P− + caaT . With this in mind, we
can use the (un-modified) rank-one update which is a backward-recursive update.4 If, for example, all the
consider parameters are in the lower part of the state-space, we can effectively reduce the computations by
ending the update when the covariance of the state of the last consider parameter is updated.

Therefore, the procedure is as follows: first perform a complete rank-one measurement update with the
optimal Kalman Gain (Kopt) according to the modified rank-one update – on the full covariance matrix.
Second, perform another rank-one update with a = SKopt and c = W , according to the (un-modified)
rank-one update (as in Table 1).

Therefore, since there is an additional rank-one update associated with the consider states and if no
rearrangement of the consider states are performed, then there will be an additional n2

x adds, and n2
x+3nx+2

multiplies, and nx − 1 divides per measurement.
The use of the ‘consider state’ option, if it is exercised, is likely to be used in ‘consider’ing the attitude

states, particularly during entry. The rationale for this is that in certain degenerate cases, when GPS
satellites are reacquired after entry blackout, the attitude could be adversely affected. So, to protect for this,
the ‘consider’ option may be exercised with respect to the attitude states.

IV. Performance of the Orion Absolute Navigation System

The performance of the Orion Absolute Navigation System is described in particular for the EFT-1
mission. This test flight consists of a low altitude orbit phase, a high altitude orbit phase, and a high energy
re-entry trajectory that is designed to be somewhat representative of a beyond LEO mission.

IV.A. Position and Velocity

After implementing all the changes detailed in the previous sections, the performance of the Orion Absolute
Navigation system was analyzed. A high-fidelity simulation environment, OSIRIS, was used to simulate the
performance of the AbsNav system. The flight phase of most concern to the Orion navigation team for the
EFT-1 mission is the terminal Earth approach, entry, descent, and landing. A simulation was performed
that begins at the apogee of a high-altitude orbit and continues to descend toward Earth’s atmosphere, with
the resulting navigation error presented in Figure 6. In the simulation, signals from the GPS constellation
gradually become visible over the first 1,000 seconds. A 100 second IMU outage is simulated around 1,900
seconds. The vehicle encounters the atmosphere at around 3,000 seconds where it experiences a measurement
blackout of approximately 200 seconds due to plasma attenuation of the L-band GPS signal. The simulation
terminates with parachute deploy, descent, and splashdown. Some noteworthy results seen in the figure
include

1. The initial variance and navigation error is large, simulating an extended outage of GPS measurement
availability as the Orion trajectory travels outside the terrestrial service volume.

2. Measurement underweighting allows for incorporation of individual GPS measurements as they become
available without overconverging the filter.

3. Errors and uncertainties grow rapidly during the plasma blackout as the vehicle experiences a highly
dynamic environment with no measurement updates

4. Performance returns quickly to steady-state after emergence from the plasma blackout, well in time to
support parachute deploy and touchdown accuracy needs.

IV.B. Attitude

Because the Orion Absolute Navigation filter design utilizes coupled attitude states, the performance of the
attitude estimate is to some extent tied to the overall capability of the filter. For this simulation, attitude
states are initially assumed uncorrelated with the position and velocity after long periods of no direct attitude
observability. The attitude error is shown in Figure 7. Some items of note in the figure include

1. The initial variance is large, simulating an extended period with no direct attitude observability as the
Orion trajectory travels outside region of IMU-sensed acceleration with no star-tracker updates.
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Figure 6. Nominal Position and Velocity Estimation Performance
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Figure 7. Attitude Estimation Performance
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2. A simulated trim burn around 2,000 seconds gives brief attitude observability and the filter uncertainties
reflect that improvement.

3. The full advantage of the coupled filter is realized after the plasma blackout when GPS measure-
ments are processed in the presence of IMU-sensed accelerations. The attitude uncertainties decrease
dramatically at that point.

IV.C. GPS Clock Estimates

When processing raw GPS observables, the clock bias and drift estimates play a crucial role in the perfor-
mance of the filter. The clock estimates and uncertainties become especially crucial when attempting to
process sparse GPS measurements after an extended measurement outage. The GPS clock error estimates
are shown in Figure 8. Some items of note in the figure include

1. The initial uncertainty grows when few GPS measurements are present. As more measurements become
available, the uncertainty begins to collapse.

2. With three satellites available, the drift estimate begins to converge. Once four satellites become
available, the bias estimate rapidly converges.

3. The high dynamics experienced during entry stress the drift estimate as sensed accelerations are inter-
preted as shifts in the drift rate of the clock.

V. Recent Developments and Challenges

V.A. Cross Channel Initialization

A heightened concern amongst the Orion navigation team arises from the increased probability of multiple in-
flight restarts of the EKF due to radiation hits, etc. One advantage of redundant flight computers, however,
is the ability to bootstrap a restarted EKF from its counterpart on the working computer. If the event
were infrequent or very low probability, then one could probably just get away with passing the position,
velocity, and attitude states across a restart, zeroing out the other states, and using canned variances that
are conservatively large. Doing this multiple times, however, will cause a large performance impact. For
this reason, the team has decided to additionally pass all the state variances as well as the PVA correlations
between the flight computers. Because this capability was added later in the design, the data size of the
cross-channel bus had been fixed and great lengths had to be taken to pack the needed information into the
existing space. For this reason, prior to passing, all variances were recast as single precision, all auxiliary
states except GPS clock bias were recast as single precision, and the upper 9x9 triangular PVA correlation
coefficients were recast as 16-bit integers scaled to 4 significant digits. This same initialization method is
used for a “warm” restart (one flight computer down) or for a “cold” restart (both flight computers down).
It was desired to use this same methodology for a ground state update as well, but the command interfaces
were too well defined by the time the navigation team realized this need. For a ground update, then, a
canned onboard covariance matrix is used, however the ground can specify an optional scale factor to apply
to the matrix to better reflect the uncertainty in the update.

V.B. Measurement Underweighting

Measurement underweighting has long been standard practice in manned on-board navigation since Apollo.7

This is used in lieu of a second-order measurement update which is used in the so-called second-order EKF,
which is more computationally expensive. Underweighting is needed when accurate measurements (such as
GPS) are introduced at a time when the a priori covariance (particularly of the position and velocity states)
matrix is large. In the case of GPS measurements, the update to the position and velocity states would
result in the covariance matrix associated with these states ‘clamping’ down too fast. The underweighting
factor slows down the rate at which the covariance decreases, introducing by essentially approximating the
second-order terms of the Taylor series which are not explicitly included in the EKF. Underweighting is
typically implemented during the Kalman Gain calculation by

K = PHT ((α+ 1)HPHT +R)−1
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Figure 8. GPS Clock Estimation Performance
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However, the implementation is complicated when using the UDU formulation described earlier in this paper.
The Orion team has implemented a simple new formulation to allow this, however. It is observed that the
effect of underweighting can also be described as simply additive measurement noise. In the Orion EKF, the
underweighting correction is simply added to the measurement noise prior to the UDU update.

RUW = R+ αHPHT

The result of applying underweighting is a robustness to cases where relatively accurate measurement updates
are processed in the presence of large nav errors and large uncertainties. An example is shown in Figure 9.
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Figure 9. Underweighting Effects on EKF Clock Bias and Drift Estimates

VI. Conclusion

The Orion Absolute Navigation System has matured greatly over the past year. While being rather
large in terms of the number of states, many of the states are sensor parameters which are modeled as first-
order Gauss-Markov processes. The UDU framework, coupled with the two different Agee-Turner rank-one
updates, provides for a computationally efficient and stable methodology, which while requiring a bit more
investment in the set-up, results in a larger payoff in the long-term. It has a ‘consider covariance’ capability
designed to allow flexibility for tuning and performance. In addition, it has a measurement underweighting
capability to provide a more robust filter architecture.
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