Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

Frank T. Ferguson* and Joseph A. Nuth, III

Department of Chemistry, Catholic University, Washington, DC 20064, United States

ABSTRACT: The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 ± 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 ± 25) kJ·mol⁻¹ and (363.6 ± 4.1) kJ·mol⁻¹, respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

INTRODUCTION

The thermodynamics of the silicon—oxygen (Si—O) system are extremely important in understanding and improving the growth of silicon monocrystals grown by the Czochralski (Cz) method for the semiconductor industry. In these systems the transport of oxygen in the silicon melt to the crystal growth interface plays an important role in the final properties of the resulting silicon wafers. One of the challenges of growing larger crystals via the Czochralski process is the attack of the melt, forming deposits that would potentially fall back into the melt and subsequently the growing crystal. Data on the silicon—silica system and the vapor pressure of SiO over such a mixture can be useful in modeling and optimizing Cz—Si growth.

Another area in which the properties of the Si—O system are important is the formation of silicon monoxide gas. One of the most abundant species in the outflows of oxygen-rich, asymptotic giant branch (AGB) stars is believed to be silicon monoxide. Despite its relatively high abundance, previous models of these outflows indicate that silicon monoxide would not appreciably nucleate until approximately 600 K, well below the observed formation of silicate grains above 1000 K in these oxygen-rich stars. Therefore, other less abundant, but more refractory species were theorized to form a seed nucleus upon which silicon monoxide could later condense.

In a previous work, the vapor pressure and evaporation coefficient of silicon monoxide over amorphous silicon monoxide powder was measured. These data coupled with previous measurements of SiO vapor pressure showed that the actual vapor pressure of SiO at approximately 1000 K and below was much lower than the expression that had been previously used in modeling SiO nucleation and growth, thereby greatly increasing the possibility that SiO is the initial condensate in oxygen-rich stellar outflows.

In this earlier work, both the evaporation coefficient and the vapor pressure of SiO over SiO(\text{am}) were measured. In this present study, these same quantities are measured for the following reaction:

$$\frac{1}{2}\text{Si}(\text{cr}) + \frac{1}{2}\text{SiO}_2(\text{vit}) \rightarrow \text{SiO}_2(g)$$

In both the case of this silicon and silica reaction as well as the sublimation of amorphous silicon monoxide, the product is silicon monoxide gas. Brewer and Edwards reviewed the available thermodynamic and spectroscopic data on the silicon—oxygen system and concluded that the reaction given by eq 1 yields virtually pure silicon monoxide gas and that this gas is a monomer. Later, this thermodynamic assessment was experimentally proven by Porter et al. Using mass spectrometry, these authors were able to verify that the predominant species in the vapor over eq 1 was silicon monoxide.
The vapor pressure over the silicon-silica mixture is measured by the Knudsen cell. Closed-end sections of two different-sized, 99.8% alumina tubes were cut and inverted in a closed-fit, larger tube. A window in the Knudsen cell used in this work is constructed from the mixture of silicon and silica and measured with a type-B thermocouple sheathed in an alumina effusion orifice. The Knudsen cell used in this work is constructed from the mixture of silicon and silica and compared to these data with previous measurements.

Experimental Apparatus and Procedure

The vapor pressure over the silicon—silica mixture is measured by monitoring the mass loss from a Knudsen effusion cell using a thermogravimetric balance. The thermogravimetric balance used in this work, a Thermo-Cahn 2711, is capable of reaching temperatures of 1973 K. The furnace tube of this balance is connected to mechanical and turbomolecular pumping system that maintains the pressure $<10^{-8}$ Pa in the sample area. The resulting mass loss from the sample cell is continuously recorded with a computer connected to the balance. During an experimental run, the sample cell is suspended on the sample side of the furnace tube and centered within the furnace section of the reaction tube. This section is heated using six resistive heating elements. The temperature within the furnace is measured with a type-B thermocouple sheathed in an alumina tube and positioned approximately 0.5 cm below the bottom of the Knudsen cell.

The Knudsen cell used in this work is constructed from the closed-end sections of two different-sized, 99.8% alumina tubes as shown in Figure 1. A smaller inner tube with a drilled orifice is cut and inverted in a close-fitting, larger tube. A window in the outer tube is cut, and the orifice of the inner tube is positioned in this window. Although there is little clearance between the tubes, the tubes are also sealed at the top and the window areas with a zirconia-based adhesive (Resbond 904, Cotronics Corp.). All parts in the hot furnace zone are made of 902 alumina with the exception of this zirconia adhesive, and in this case the minimum amount necessary to seal the cell is used.

Diamond-coated drill bits are used to produce the small effusion orifices in the alumina cells. Because of their small size, very high speed rotational rates are needed, and the bit must be fed at extremely slow feed rates. In this work a high speed grinder (~85 000 rpm) was used, and it was fed using a computer controlled stage. This allowed the production of very clean orifices down to approximately 0.5 mm.

Before any experiments were performed, an equimolar mixture of silicon powder (100 mesh, Alfa Products) and silicon dioxide (Mathey "Specpure" grade) was prepared and stored in a sealed container. Samples for all of the runs in this work were taken from this same container. For an experiment, alumina tubes were cut to construct a cell as shown in Figure 1, and an orifice was then drilled in the smaller tube. To measure the orifice diameter, the cell was placed under a microscope and measured with the aid of a traveling stage of micrometer accuracy. After filling the cell with the Si/SiO$_2$ mixture, the cell was sealed with the zirconia cement and allowed to cure. After curing, the cell would be placed on the sample side of the balance within the furnace tube and evacuated for 24 h at room temperature. The sample was then heated to various temperatures, and the mass of the sample cell was continuously monitored, taking temperature and mass measurements twice per second.

In the same manner as was done for a previous study with silicon monoxide, after a run of 2 min, averages of the resulting large data set were taken for both the temperature and the mass. These data were then processed by a computer program to calculate the mass loss rates as a function of temperature. In this program, the temperature data were searched for regions where the temperature remained essentially constant. For these isothermal periods, the rates of mass loss were constructed from these 2 min averages. All of these values for these isothermal periods were then averaged, and the standard deviation of this mean value was then used as an estimate of the uncertainty in this mass loss rate and used in the calculation of the vapor pressure.

Vapor Pressure Calculation

The measured vapor pressure, P_{meas}, is related to the mass loss rate, \dot{m}, via the Hertz–Knudsen equation:

$$P_{\text{meas}} = \frac{\dot{m}}{W_{\text{eff}}} \sqrt{\frac{2 \pi R T}{M_w}}$$

where B is the cross-sectional area of the effusion orifice, R is the gas constant, T is the temperature of the gas, and M_w is the molecular weight of the effusate. The term W_{eff} is the Clusius correction factor for the cell orifice. If the cell wall thickness is t, then this factor is 1.0. If t is as typical, the wall in the vicinity of the orifice has some finite thickness, this short "pipe" can cause an impedance to the transmission of molecules from the cell. This factor, W_{eff}, accounts for this back-reflection of
some of the molecules and is based on the work of Clausing.18
For arbitrary geometries, this factor must be computed from
the Clausing integral equation. Berman developed a series
expansion approximation to this equation for capillaries, and
this formula has been used to calculate the Clausing factors for
the cell.19 For an effusion orifice of radius, \(a\), and wall thickness
("pipe" length), \(l\), the Clausing coefficient, \(W_t\), is given by
\[
W_t = Q_1 - Q_2
\]
where
\[
Q_1 = 1 + \left(\frac{L^2}{4}\right) - \left(\frac{L}{4}\right)(L^2 + 4)^{1/2}
\]
\[
Q_2 = \left[\left(8 - L^2\right)\left(L^2 + 4\right)^{1/2} + L^3 - 16\right]^{1/2}
\]
\[
\left/\left[72 - L(L^2 + 4)^{1/2}\right] - 288 \ln\left[L + \left(1^4 + 4\right)^{1/2}\right] + 288 \ln 2\right]\right.
\]
and
\[
L = l/a
\]

The accuracy of this equation has been verified by Monte Carlo
simulations,10 and this expression is reported to be better than
0.1% for 0 \(\leq L \leq 5\), a range common to Knudsen effusion
studies.21
As noted in the Introduction, silicon monoxide is expected to
have a low evaporation coefficient. Whitman and Motzfeldt
developed the following equation to account for such low
evaporation coefficients in Knudsen cells:22,23
\[
P_{eq} = 1 + f \left[\frac{1}{\alpha} + \frac{1}{W_t} - 2\right] P_m
\]

In this equation the impedence of the flow of molecules to the
effusion orifice height is included in the term given by \(W_t\), the
Clausing factor for the cell. The term, \(P_{eq}\), is the true,
equilibrium vapor pressure, \(\alpha\), is the evaporation coefficient,
and the term \(f\) is a factor related to the cell geometry and is
given by
\[
f = \frac{W_t B}{A k}
\]
where \(A\) is the cross-sectional area of the cell and \(k\) is the ratio
of the effective evaporation surface area to the cell cross-
sectional area. Therefore, the product \(A k\) gives the actual
evaporation surface area. In general, \(k\) is very difficult to
accurately quantify and will depend upon a variety of factors
including the packing of the sample, how finely divided the
sample is, and so forth. In this current work, the value of \(k\)
assumed to be 1.
In experiments with low evaporation coefficients, this value,
\(\alpha\), can be estimated by rearranging eq 7 to
\[
P_m = P_{eq} - P_m f \left[\frac{1}{\alpha} + \frac{1}{W_t} - 2\right]
\]
Therefore, if a series of effusion experiments are made with
cells of different orifice sizes and the data were plotted on a
diagram as \(P_m\) versus \(P_{eq}\) and fit to a straight line, the resulting
intercept should yield the equilibrium vapor pressure, \(P_{eq}\), while
the value of the evaporation coefficient, \(\alpha\), may be computed
from the slope.

A few of additional notes should be made regarding eq 9.
First, for orthocylindrical cells, the value of \(W_t\) is 0.5, and the
value \((1/W_t) - 2 = 0.0\). In this work, the value of \(W_t\) is
close to 0.5 so the sum of these two terms contribute very little
in the sum to the parentheses of eq 9, especially for cases where \(\alpha\)
is very small. Next, as mentioned earlier the value of \(f\) was
assumed to be 1. For values of \(k > 1\), the value of \(\alpha\) will be
smaller, and the evaporation coefficients reported in this work
are, strictly speaking, \(k\) \(\alpha\) factors, and this should be noted
when comparing evaporation coefficient data from other work.

\section*{Results}

The rate of mass loss from several different effusion cells was
monitored over time at several specific temperatures. After

\section*{Estimation of experimental uncertainties}

The estimated uncertainties in the current work are similar to
those for a previous work with silicon monoxide, and the reader
is referred to this work for more detail.7 As noted in the
previous section, values of the equilibrium vapor pressure and
evaporation coefficient are taken from plots of \(P_m\) versus \(P_{eq}\) at
particular temperatures for different effusion orifices. Unc-
certainties in these quantities arise from the measured
temperature, the measured mass loss rate, and cell geometry
(cell wall thickness, orifice diameter).

Typical uncertainties for a type-B thermocouple in the
experimental temperature range are ± 5 K and these values are
used in this work. As in the case of experimental runs with
silicon monoxide, the accuracy of the thermocouple was checked
against the melting point of a sample of pure copper with
the thermocouple falling within this ± 5 K-band of the
fused copper temperature.7

Factors related to cell geometry include the orifice diameter,
the depth of the effusion orifice, and the interior cell geometry.
The effusion orifice was measured using a microscope and an
accurate, moveable stage, and these measurements were
estimated to be accurate to within ± 0.02 mm. The wall
thickness at the effusion orifice was constant for all the cells
used and was measured with a similar uncertainty as \(1.27 ± 249
0.02\) mm. To calculate the Clausing factor for the effusion cell
used in the Whitman-Motzfeldt equation, the distance from
the top of the evaporating material to the effusion orifice must
be known. These interior measurements are not accurately
known. Fortunately, the results are not sensitive to these values,
especially in the case of very low evaporation coefficients. In
this work as well as in previous experiments with silicon
monoxide powder, the height from the top of the evaporating
material to the effusion orifice was estimated as \((10 ± 2)\) mm
while the evaporating surface area was just taken as the internal
cross-sectional area of the inner tube with a diameter of \((6.3 ± 260
0.2)\) mm.

For an isothermal period, the mean mass loss rates of the 2
min averages described earlier were used as the mass loss rate
in eq 2, and the uncertainty in this quantity is estimated as the
standard deviation of the measured value. Typically, the
predominant source of uncertainty in the calculation of \(P_m\) in
eq 2 is the mass loss rate. Nonetheless, the uncertainties in all
of these measured observables, (temperature, mass loss rate,
and cell geometry), on \(P_m\) are considered, and these estimates
are added in quadrature as described in the earlier publication
for silicon monoxide.7
Table 1. Experimental Data for SiO Vapor Pressure Measurements over a Mixture of Silicon and Silica

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>β</th>
<th>W_p</th>
<th>m</th>
<th>t</th>
<th>f</th>
<th>P_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>0.3</td>
<td>0.65</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.439 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>0.5</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>0.7</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>0.9</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>1.1</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>1.3</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>1.5</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>1.7</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>1.9</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>2.1</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>2.3</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>2.5</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>2.7</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>2.9</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
<tr>
<td>143</td>
<td>3.1</td>
<td>0.35</td>
<td>0.15</td>
<td>15.4</td>
<td>21000</td>
<td>0.550 ± 0.050</td>
<td>0.0140</td>
</tr>
</tbody>
</table>

(continued)
Table 1. continued

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>B</th>
<th>m</th>
<th>t</th>
<th>s</th>
<th>f</th>
<th>P_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>mm</td>
<td>cm2</td>
<td>mg</td>
<td>s</td>
<td>mg·min$^{-1}$</td>
<td></td>
<td>Pa</td>
</tr>
<tr>
<td>1579</td>
<td>1.08</td>
<td>0.00925</td>
<td>0.479</td>
<td>14.18</td>
<td>1800</td>
<td>0.4726 ± 0.0030</td>
<td>0.0140</td>
</tr>
<tr>
<td>1579</td>
<td>1.24</td>
<td>0.01217</td>
<td>0.510</td>
<td>15.62</td>
<td>1800</td>
<td>0.5123 ± 0.0060</td>
<td>0.0194</td>
</tr>
<tr>
<td>1579</td>
<td>1.72</td>
<td>0.02334</td>
<td>0.583</td>
<td>14.83</td>
<td>1500</td>
<td>0.5927 ± 0.0041</td>
<td>0.0428</td>
</tr>
<tr>
<td>1589</td>
<td>1.08</td>
<td>0.00925</td>
<td>0.479</td>
<td>10.72</td>
<td>1200</td>
<td>0.5533 ± 0.0042</td>
<td>0.0140</td>
</tr>
<tr>
<td>1589</td>
<td>1.24</td>
<td>0.01217</td>
<td>0.510</td>
<td>11.91</td>
<td>1200</td>
<td>0.5944 ± 0.0086</td>
<td>0.0194</td>
</tr>
<tr>
<td>1589</td>
<td>1.72</td>
<td>0.02334</td>
<td>0.583</td>
<td>16.83</td>
<td>1500</td>
<td>0.5729 ± 0.0077</td>
<td>0.0428</td>
</tr>
<tr>
<td>1589</td>
<td>1.08</td>
<td>0.00925</td>
<td>0.479</td>
<td>15.16</td>
<td>1500</td>
<td>0.5648 ± 0.0094</td>
<td>0.0140</td>
</tr>
<tr>
<td>1589</td>
<td>1.24</td>
<td>0.01217</td>
<td>0.510</td>
<td>16.89</td>
<td>1500</td>
<td>0.5743 ± 0.0080</td>
<td>0.0194</td>
</tr>
<tr>
<td>1608</td>
<td>1.72</td>
<td>0.02334</td>
<td>0.583</td>
<td>16.83</td>
<td>1200</td>
<td>0.837 ± 0.013</td>
<td>0.0428</td>
</tr>
<tr>
<td>1608</td>
<td>1.08</td>
<td>0.00925</td>
<td>0.479</td>
<td>13.52</td>
<td>1200</td>
<td>0.573 ± 0.011</td>
<td>0.0140</td>
</tr>
<tr>
<td>1608</td>
<td>1.24</td>
<td>0.01217</td>
<td>0.510</td>
<td>15.13</td>
<td>1200</td>
<td>0.7544 ± 0.0098</td>
<td>0.0194</td>
</tr>
</tbody>
</table>

"Listed in the table are the run temperature, T/K, the diameter of the cell orifice, d/mm, the area of the effusion orifice, B/cm2, the Clauzis factor for the orifice, W_0, the total mass lost during the isothermal period, m/mg, the duration of the isothermal period, t/s, the computed loss rate and its estimated uncertainty, w_i/mg·min$^{-1}$), the factor, f, as given by eq 8 for each cell, and the value of the apparent, measured vapor pressure, P_0/Pa, as given by eq 2 for each run. The area of the evaporating surface, A, for all cells was taken as the internal cross-sectional area of the cell (0.317 cm2), and the Clauzis factor for all the cells, W_0, was 0.412.

The code for this FITEXY subroutine was taken directly from ref 24. Another advantage of using this routine is that it provides uncertainty estimates for both the slope and intercept, and these were used to compute the estimated uncertainties in the final quantities. Plots of each isotherm were made, and the weighted fits were compared to unweighted fits to verify that the final data were not incorrectly influenced by the weighting factors. In approximately half of the data points, the unweighted and weighted results were essentially identical, and in the remaining fraction, the results were only modestly different.

These derived values are given in Table 2. In constructing the Whitmann—Motzfeldt plots, the data from Table 1 reduces 311

<table>
<thead>
<tr>
<th>T</th>
<th>α</th>
<th>P_{eq}</th>
<th>$\Delta_{m}H^\circ$(298.15 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>Pa</td>
<td>kJ/mol$^{-1}$</td>
</tr>
<tr>
<td>1433</td>
<td>0.0089 ± 0.0040</td>
<td>5.7 ± 0.2</td>
<td>363.8 ± 4.7</td>
</tr>
<tr>
<td>1443</td>
<td>0.0082 ± 0.0020</td>
<td>7.4 ± 0.1</td>
<td>363.0 ± 2.3</td>
</tr>
<tr>
<td>1453</td>
<td>0.0086 ± 0.0021</td>
<td>8.3 ± 0.6</td>
<td>363.9 ± 2.3</td>
</tr>
<tr>
<td>1462</td>
<td>0.0086 ± 0.0021</td>
<td>9.8 ± 0.1</td>
<td>364.2 ± 2.4</td>
</tr>
<tr>
<td>1472</td>
<td>0.0082 ± 0.0021</td>
<td>12.0 ± 2.5</td>
<td>364.0 ± 2.6</td>
</tr>
<tr>
<td>1481</td>
<td>0.0085 ± 0.0025</td>
<td>13.7 ± 3.2</td>
<td>364.5 ± 2.9</td>
</tr>
<tr>
<td>1491</td>
<td>0.0069 ± 0.0020</td>
<td>19.1 ± 4.6</td>
<td>362.7 ± 3.0</td>
</tr>
<tr>
<td>1500</td>
<td>0.0070 ± 0.0019</td>
<td>22.3 ± 5.1</td>
<td>362.9 ± 2.9</td>
</tr>
<tr>
<td>1510</td>
<td>0.0068 ± 0.0019</td>
<td>26.6 ± 6.1</td>
<td>362.9 ± 2.9</td>
</tr>
<tr>
<td>1520</td>
<td>0.0067 ± 0.0018</td>
<td>31.3 ± 7.1</td>
<td>363.0 ± 2.9</td>
</tr>
<tr>
<td>1530</td>
<td>0.0066 ± 0.0018</td>
<td>37.3 ± 8.4</td>
<td>363.2 ± 2.9</td>
</tr>
<tr>
<td>1540</td>
<td>0.0068 ± 0.0018</td>
<td>42.1 ± 9.0</td>
<td>363.7 ± 2.8</td>
</tr>
<tr>
<td>1559</td>
<td>0.0066 ± 0.0017</td>
<td>51.9 ± 12</td>
<td>363.3 ± 3.0</td>
</tr>
<tr>
<td>1569</td>
<td>0.0067 ± 0.0017</td>
<td>57.0 ± 12</td>
<td>364.2 ± 2.8</td>
</tr>
<tr>
<td>1570</td>
<td>0.0063 ± 0.0028</td>
<td>69.3 ± 31</td>
<td>363.8 ± 6.2</td>
</tr>
<tr>
<td>1579</td>
<td>0.0059 ± 0.0027</td>
<td>82.1 ± 39</td>
<td>363.5 ± 6.8</td>
</tr>
<tr>
<td>1589</td>
<td>0.0059 ± 0.0027</td>
<td>94.6 ± 46</td>
<td>363.9 ± 7.0</td>
</tr>
<tr>
<td>1598</td>
<td>0.0056 ± 0.0027</td>
<td>111.3 ± 59</td>
<td>363.6 ± 7.9</td>
</tr>
<tr>
<td>1608</td>
<td>0.0054 ± 0.0027</td>
<td>128.7 ± 74</td>
<td>363.7 ± 8.8</td>
</tr>
</tbody>
</table>

The evaporation coefficient, α, Equilibrium Vapor Pressure, P_{eq}/Pa, and Enthalpy of Reaction, $\Delta_{m}H^\circ$(298.15 K), for SiO Derived from the Measurements Using Three Different Knudsen Cell Orifice Sizes

The table in the previous section, the uncertainty in the mass loss rate, m, and its associated uncertainty are calculated from the averaging procedure noted earlier. In addition, the length of the isothermal periods and the total mass lost during the time are given in columns 6 and 7, respectively, of Table 1. Although the mass loss rates calculated from these starting and ending values should be extremely close to the values reported in column 7 of the table, there may be slight differences between the two. Several different cells were used in these experiments with orifice diameters ranging from (0.57 to 2.19) mm. The values of the measured vapor pressures, P_{eq}, and their uncertainty estimates are given in column 9 of the table.

The uncertainty in these values of P_{eq} varies based mainly on the uncertainty in the mass loss measurement. When constructing the Whitmann—Motzfeldt plot of P_{eq} versus P_{eq} for the different cells, this results in a varying uncertainty in both the x and y coordinates of the graph. Therefore, an appropriate method to use in this case is to compute the uncertainty in both coordinates. Weighting factors were constructed from the uncertainty, σ_0 in each coordinate and given by w_i where

$$w_i = 1/\sigma_0^2$$ (10)

down to the 19 points given in Table 2. A minimum of three points were used for each of the final values given in this table. Shown in the table are the isothermal temperature, the evaporation coefficient, and the equilibrium vapor pressure. A plot of the evaporation coefficient values and their associated uncertainties.
uncertainty is given in Figure 2. These values range from approximately 0.005 to 0.009, and there appears to be a slight decrease in these values with temperature. On the basis of the relatively large uncertainty in these values, it would likely be hazardous to ascribe any significance to this trend. For this reason, it is more reasonable to report a single value of (0.007 ± 0.002) for this temperature range.

In 1958, Gunther estimated the evaporation coefficient for the silicon/silica reaction to be approximately 4 × 10^-3, and this value is shown in the graph as the dashed-dotted line over the experimental temperature range reported by Gunther. The values reported in this work are of the same, low order of magnitude as those of Gunther but are slightly higher. In 1992, Rocabois et al. studied both the evaporation coefficient and the equilibrium vapor pressure over amorphous silicon monoxide and mixtures of silicon and silica. One focus of this work was to study the stability of nominally amorphous silicon monoxide. Rather than being a stable compound, research suggested that silicon monoxide exists as an intimate mixture of silicon and silica over very small domains. Data were taken by these authors using multiple Knudsen cells and mass spectrometry.

Measured evaporation coefficients for the silicon/silica mixture were much smaller than those for the amorphous silicon monoxide. For vitreous silica, these values ranged from 2 × 10^-4 to 8 × 10^-3, over the temperature range (1073 to 1489) K, while those for amorphous silicon monoxide were approximately an order of magnitude higher. In addition to 325 vitreous silica, Rocabois et al. also studied the evaporation coefficients for the reaction of silicon with cristobalite, finding even lower values of the evaporation coefficient for this reaction. In this case, they reported a constant evaporation coefficient of (1.1 ± 0.5) × 10^-3 over the temperature range (1172 to 1404) K. Rocabois et al. provided a fit to their evaporation coefficient data for their vitreous silica and silicon data, and this fit is shown as the solid line in Figure 2. There is some overlap between the data range covered by Rocabois et al. and the results presented in this work, and there seems to be reasonable agreement between the magnitude of the evaporation coefficient in this range, although the two sets of data seem to follow very different temperature trends.

A plot of the equilibrium vapor pressure values from Table 2 is given in Figure 3 by the open circles. A fit to the equilibrium vapor pressure values is given by

\[\log_{10}(P/P_0) = (13.25 \pm 0.89) \left(\frac{17900 \pm 1300}{T/K} \right) \]

Figure 3. Comparison of silicon monoxide vapor pressure data over a mixture of silicon and silica. Shown in the figure are experimental data reported in this work, O, and a linear fit to these data, —, a fit to experimental data from Rocabois et al., — —, a fit to experimental data taken by Kubaschewski and Chart, ——, experimental data points from Huang et al., O, and a fit to data taken by Shornikov and Archakov, ——. Also shown for comparison is experimental data for silicon monoxide evaporation, □, reported in a previous study and a fit to these data, ▼.
over the temperature range (1433 to 1608) K and is shown as the solid line in Figure 3. This fit was weighted based on similar weighting factors as given in eq 10, but only for the y-values since the estimated uncertainty in the temperatures are equal. Due to the low evaporation coefficients of the silicon–silica mixture, the uncertainties in these fit parameters are more than twice as large as the uncertainties in the fit for silicon monoxide vapor pressure over silicon monoxide powder. Although there is considerable uncertainty in the equilibrium vapor pressure values, the linear fit to the data is very good.

The equilibrium vapor pressures have also been used to calculate the third law enthalpy of reaction values, and these are given in column 4 of Table 2. In computing these values, thermodynamic data for silicon and silicon dioxide were taken from the National Institute of Standards and Technology/Army, Navy, Air Force (NIST-JANAF) tables. It should also be noted that these heat capacity data used to generate the free energy functions for the third law analysis are identical to the values used in the study of nominal SiO(Si) vaporization. In addition, it is assumed that the uncertainty in these enthalpy values arises entirely from the uncertainty in the vapor pressure data. These values range from (363 to 365) kJ mol⁻¹ and do not seem to follow any temperature trend. Therefore, for this work the third law enthalpy of reaction at 298.15 K, \(\Delta_{\text{vap}} H^\circ (298.15 \text{ K}) \), is taken as (363.6 ± 4.1) kJ mol⁻¹. Using eq 11, the enthalpy of the reaction at a mean experimental temperature of 1521 K is (355 ± 25) kJ mol⁻¹. Again, using the heat capacity data for silicon and silicon monoxide as noted above, this gives the second law enthalpy of reaction at 298.15 K for the data as (355 ± 25) kJ mol⁻¹. There is considerable uncertainty in this second law value due to the large uncertainty in the slope of eq 11. These values are in fair agreement and certainly agree within the experimental uncertainty reported for each value.

A comparison with some of the most recent measurements of SiO vapor pressure is also given in Figure 3. In 1974, Kubaschewski and Chart measured the vapor pressure of SiO over a mixture of silicon and silica using a thermogravimetric and the Knudsen effusion method. Data were taken in the temperature range of (1270 to 1600) K, using different orifice diameters and extracting estimates of the evaporation coefficient and equilibrium vapor pressures in the same manner used in this work. These authors fit their vapor pressure data to the following equation:

\[
\log_{10}(P/P_a) = 13.613 - \frac{17850}{T/K} \tag{12}
\]

and this fit is shown by the dashed—dotted line in Figure 3. The slope of this fit and the current data from this work are very close, but the magnitude of the Kubaschewski and Chart vapor pressures are larger than in this work. Evaporation coefficients were not specifically reported in the work of Kubaschewski and Chart but can be extracted from their vapor pressure data. Shornikov and Archakov calculated the evaporation coefficient for the silicon + cristobalite mixture as (1.43 ± 0.16) x 10⁻¹⁰ from Kubaschewski and Chart's vapor pressure measurements. As previously mentioned, Rocabois et al. studied both the evaporation coefficients of silicon monoxide gas over silicon monoxide powder and mixtures of silicon/silica in 1992. Although they found large differences in the evaporation coefficients for both of these systems, the vapor pressures in both cases were essentially identical within the experimental uncertainty in their work. Individual vapor pressure values were not reported in their work, only graphs of fits to their data. The fit to their SiO vapor pressure data is shown as the long dashed line in Figure 3. In a previous study with silicon monoxide, very close agreement was found between the measured vapor pressures and data from Rocabois et al. with an overlap in the experimental temperature range. These data for the evaporation of silicon monoxide powder are shown as the square data points and a fit to these points (short dashed line) in Figure 3. For the current data for silicon and silica evaporation, the vapor pressures fall somewhat below these data for silicon monoxide powder, and agreement between the two is just at the edge of the estimated uncertainty between the two measurements.

Later in 2000, Shornikov and Archakov published results from a study of the evaporation of silicon monoxide, focusing on the determination of the evaporation coefficients for amorphous silicon monoxide and mixtures of silicon and silica. Similar to Rocabois et al., these authors also used the Knudsen effusion combined with mass spectrometry. For a mixture of cristobalite and silicon, Shornikov and Archakov found the evaporation coefficient to be (1.65 ± 0.10) x 10⁻¹⁰, a value which compares very favorably with results from Kubaschewski and Chart (1.43 ± 0.16) x 10⁻¹⁰ and Rocabois et al. (1.1 ± 0.5) x 10⁻¹⁰.

Although the equilibrium vapor pressures for silicon monoxide were not reported by Shornikov and Archakov, they can be estimated using data presented by the authors in graphs of \(P_\text{SiO} \) and reported f parameters for their cells. These data were digitized for the four cells used to study the evaporation coefficients of the crystalline silica and silicon system. In constructing the Whitman-Motzfeld plot, the cell with the largest orifice diameter did not seem consistent with the remaining data so only the three cells with the smallest effusion orifices were used to estimate the equilibrium vapor pressure. This estimate of the vapor pressure from Shornikov and Archakov is given as the dotted line in Figure 3. These extrapolated, equilibrium vapor pressure values are approximately 20 % higher than the experimentally measured vapor pressures taken with the cell with the smallest effusion orifice. These values certainly lie within the experimental uncertainty of this work, yet have a slightly different slope.

Huang et al. studied the vapor pressure over a silicon and silica mixture at pressures much higher than those available via Knudsen effusion. Although the goal of this work was to estimate the equilibrium vapor pressure of SiO over this system to aid in modeling the evaporation rate of SiO in the Cx–Si system, these authors built an ampule of silica, placed an amount of 475 silicon within the ampule, and then evacuated and sealed the ampule. The ampule was then placed under a carbon heater within a vacuum chamber charged with an atmosphere of argon gas. As the ampule was heated, the silicon and silica would exert a vapor pressure that would distort the ampule. The outside argon pressure was then adjusted to eliminate the distortion of the cell, thus matching the SiO vapor pressure within the cell. These authors measured SiO vapor pressure at three temperatures with estimated uncertainties in these values of ± 130 Pa, and these values are shown in Figure 3 as the three points at the highest temperatures of the plot. Since the cell of Huang et al. was sealed, the pressure exerted on the walls of their ampule would equal the equilibrium vapor pressure of silicon monoxide over a mixture of silicon and silica, and the evaporation coefficients do not play a role in this system.

It is interesting to note that there is a reasonably good agreement on the equilibrium vapor pressure of silicon monoxide...
The evaporation coefficient and equilibrium vapor pressure of silicon monoxide gas over a mixture of silicon and vitreous silica has been studied using Knudsen effusion. The rate of mass loss of silicon monoxide gas was measured using a thermogravimetric balance. Due to the very low evaporation coefficient for this system, several experiments with Knudsen cells of different effusion orifice sizes were made, and the data taken at constant temperatures were plotted and extrapolated to zero orifice size to get equilibrium vapor pressures. Vapor pressure and evaporation coefficient data were measured over the temperature range of (1433 to 1608) K. The resulting evaporation coefficient, \((0.007 \pm 0.002)\), was very low and in reasonable agreement with measurements by other research groups. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as \((355 \pm 25) \text{kJ mol}^{-1}\) and \((363.6 \pm 4.1) \text{kJ mol}^{-1}\), respectively, and was in agreement within the uncertainty in the values. It is thought that amorphous silicon monoxide is not a true compound, but rather an intimate mixture of silicon and silicon monoxide.

Therefore, the kinetics of the evaporation reaction will depend upon the value of the evaporation coefficient, but the equilibrium vapor pressure for the (nominally) amorphous silicon: monoxide system and an ordinary mixture of silicon and silica should be identical. A comparison of the data for the current silicon and silica reaction with a previous experimental work with silicon monoxide powder shows that this is the case and provides further evidence that solid silicon monoxide is an intimate mixture of small domains of silicon and silica rather than a true compound.

CONCLUSION

AUTHOR INFORMATION

Corresponding Author

E-mail: frank.ferguson@nasa.gov

REFERENCES

27. Kupbashevski, O. J.; Chart, T. G. Silicon monoxide pressures due to the reaction between solid silicon and silica. J. Chem. Thermodyn. 1974, 6, 467–476.