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ABSTRACT 

In this paper, an integrated approach for gear health prognostics using particle filters is presented.  The presented 
method effectively addresses the issues in applying particle filters to gear health prognostics by integrating several 
new components into a particle filter: (1) data mining based techniques to effectively define the degradation state 
transition and measurement functions using a one-dimensional health index obtained by whitening transform; (2) an 
unbiased l-step ahead RUL estimator updated with measurement errors.  The feasibility of the presented prognostics 
method is validated using data from a spiral bevel gear case study. 

 

1. INTRODUCTION 

 Over the past years, both physics based and data 
driven approaches for drivetrain component health 
prognostics have been developed.  Examples of physics 
based approaches included:  Bechhofer et al. (2008), 
He et al. (2007), Qiu et al. (2002), Li et al. (2000), and 
Ray and Tangirala (1996).  Some recent developments 
in data driven approaches has also been reported in the 
literature: Dong and He (2007), Hung et al. (2007), and 
Bechhoefer et al. (2006).  Physics based approaches 
need specific system knowledge and theory relevant to 
the monitored components in order to perform 
prognostics.  The data driven approaches do not 
necessarily need to understand the physics of the 
monitored applications.  Thus the complexity of 
designing the data driven prognostic methodology is 
greatly reduced, especially for new and complex 
components.  Both physics based and data driven 
approaches have their own advantages and 
disadvantages for component health prognostics.  
Therefore, developing integrated prognostics 
approaches that combine the advantages of both the 
physics based and data driven approaches becomes 

attractive to condition based maintenance practitioners.  
A recent development is the use of particle filter to 
combine both physics based and data driven approaches 
for prognostics.     
          
 Applications of particle filters to prognostics have 
been reported in the literature, for example, remaining 
useful life (RUL) predication of a mechanical 
component subject to fatigue crack growth (Zio and 
Peloni, 2011), on-line failure prognosis of UH-60 
planetary carrier plate subject to axial crack growth 
(Orchard and Vachtsevanos, 2011), degradation 
prediction of a thermal processing unit in 
semiconductor manufacturing (Butler and Ringwood, 
2010), and prediction of lithium-ion battery capacity 
depletion (Saba et al., 2009).  The reported application 
results have shown that particle filters represent a 
potentially powerful prognostics tool due to its 
capability in handling non-linear dynamic systems and 
non-Gaussian noises using efficient sequential 
importance sampling to approximate the future state 
probability distributions.  Particle filters were 
developed as an effective on-line state estimation tool 
(see Doucet et al., 2000; Arulampalam et al., 2002).  In 
order to apply particle filter to RUL prediction of a 
mechanical component such as gears, a few practical 
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implementation problems have to be solved: (1) define 
a state transition function that represents the 
degradation evolution in time of the component; (2) 
select the most sensitive health monitoring measures or 
condition indicators (CIs) and define a measurement 
function that represents the relationship between the 
degradation state of the component and the CIs;  (3) 
define an effective l-step ahead RUL estimator.   

f k

hk

 In solving the first problem, research on using 
particle filters for mechanical component RUL 
prognostics has used Paris’ law, crack growth rate per 
loading cycles,  to define the state transition function 

 (Zio and Peloni, 2011; Orchard and Vachtsevanos, 
2011).  As an empirical model, Paris’ law can be 
effective for defining a state transition function that 
represents a degradation state subject to fatigue crack 
growth.  For other type of failure modes such as pitting 
and corrosion, effective alternatives for defining the 
state transition function should be explored.   

f k

 Regarding the second problem, on the surface, it 
doesn’t seem to be a problem to use multiple CIs to 
define a measurement function for particle filter as it 
allows information from multiple measurement sources 
to be fused in a logical manner (Zio and Peloni, 2011).  
In particle filter analyses, measurements are collected 
and used to update the prior state distribution via Bayes 
rule so as to obtain the required posterior state 
distribution.  Subsequently, various kinds of 
uncertainties arise from different sources that are 
correlated.  In most real applications, no single CI is 
sensitive to every failure mode of a component.  This 
suggests that defining the measurement function hk w
have some form of de-correlated sensor fusion.   

ill

      For the third problem, in order to apply particle 
filter to estimate the RUL, an l-step ahead estimator has 
to be defined.  Both biased and unbiased l-step ahead 
estimators have been reported by Zio and Peloni  
(2011) and Orchard and Vachtsevanos (2011).  
However, as pointed out by Zio and Peloni (2011), one 
issue related to these estimators is that state estimation 
and prediction must be accompanied by a measure of 
the associated error. 

      In this paper, an integrated prognostic approach 
using particle filters for gear health prognostics is 
presented.  In particular, in presenting the method, the 
three integration issues will be addressed: (1) define the 
state transition function using data mining approach; 
(2) use an one-dimensional health index (HI) obtained 
by a whitening transform to define the measurement 
function; (3) an l-step ahead RUL estimator 
incorporated with a measure of the associated error.  

The feasibility of the presented method is validated 
using fatigue testing data from a spiral bevel gear case 
study performed in the NASA Glenn Spiral Bevel Gear 
Test Facility.        

2. THE METHOD 

 The general framework of the integrated gear health 
prognostics approach using particle filter is shown in 
Figure 1. 

Figure 1.  Integrated gear prognostics framework using 
particle filter 

 As shown in Figure 1, to predict the RUL of the 
gears, condition monitoring data that reflect the gear 
health degradation need to be collected and correlated 
with health indicators (HI) to build the gear health state 
transition function f in a particle filter.  Inductance 
type oil debris sensors have been used to monitor the 
health of gearbox mechanical components (Dempsey, 
2002).    Inductance type, oil debris sensors count 
particles and approximate debris size and mass based 
on disturbances of a magnetic field caused by passage 
of a metallic particle.  As the oil debris sensor data such 
as oil debris mass (ODM) generally provides a gear 
degradation indication it can be used to build the gear 
degradation state transition function  by mining the 
ODM data.  Typical statistical analysis based data 
mining techniques such as autoregressive integrated 
moving average (ARIMA), double exponential 
smoothing, and etc. can be used.    

k

f k

      Vibration sensors have been the most commonly 
used sensors in mechanical systems health monitoring 
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applications.   Condition indictors (CIs) are obtained 
from vibration data and used for mechanical fault 
detection and diagnosis.  For example, the current 
health and usage monitoring systems (HUMS) installed 
in helicopters utilize a large number of vibration based 
condition indictors.  As pointed out in (Bechhoefer et 
al., 2011), there is no single CI that is sensitive to every 
failure mode of a gear.  Some form of sensor fusion is 
required for the condition based maintenance system of 
gears.  Combining multiple CIs into one health index 
(HI) is an attractive sensor fusion approach for gear 
health prognostics.    
     
     In the framework presented in Figure 1, a one-
dimensional HI obtained by the applying a Cholesky 
decomposition based whitening transform and 
statistical generation models is used to define the 
measurement function hk y correlating the gear health 
degradation data with the one-dimensional HI using a 
double exponential smoothing approach.  Based on the 
defined functions f k  and hk , an -step ahead RUL 
estimator with measurement error is used in particle 
filter to provide accurate prediction of RUL.  The 
generation of the one-dimensional HI and the l-step
ahead RUL estimator used in particle filter are 
explained in the following sections.  A detailed analysis 
of these methods for this application can also be found 
in reference Ma 2011. 

 b

l

2.1 The One-Dimensional Health Index  

The concept of using Cholesky decomposition 
to develop an one-dimensional gear health index and 
its threshold setting based on a probability of false 
alarm was first reported in Bechhoefer et al. (2011).  
Cholesky decomposition is a linear transformation 
that can de-correlate a covariance matrix.  To 
develop the one-dimensional health index, a set of 
correlated CIs are first de-correlated by applying the 
Cholesky decomposition.  The Cholesky 
decomposition of Hermitian, a positive definite 
matrix results in A = LL*, where L is a lower 
triangular, and L* is its conjugate transpose. By 
definition, the inverse covariance is positive definite 
Hermitian.  Let F be a set of correlated CIs.  It then 
follows that: 

1* �LL ��                  (1) 
and

TFLY ��                  (2) 
where Y is a vector of n independent CIs with unit 
variance and  .  The Cholesky 
decomposition, in effect, creates the square root of the 
inverse covariance. This in turn is analogous to 
dividing feature by its standard deviation (the trivial 

case of one feature). In turn, Eq. (2) creates the 
necessary independent and identical distributions 
required to define the health index for a function of 
distributions. 

0)( �Yncorrelatio

 Assuming that the distributions of the CIs follow a 
Gaussian distribution, then three statistical HI 
generation models can be developed: (1) the Gaussian 
order statistic; (2) the sum of n Gaussian; and (3) the 
total energy of n Gaussian.  These three models are 
explained as follows (Bechhoefer et al. 2011): 
(1) When the HI is defined as the Gaussian order 

statistic, it can be generated as following: 
� �
� �� � � �34.041.3

5.034.max 	�	�

���

Y

mFLY

HI

T

              (3) 

where m is the mean of F. Subtracting the mean and 
multiplying by L transforms the features into n, Z
distributions (zero mean, IID Gaussian distributions). 
(2) When the HI is defined as the sum of n Gaussian, it 

can be generated as following: 

� �� 
	���

��

�
n
i i

T

HI 115.015.0352.8
5.0 Y

FLY

�                    (4) 

(3) When the HI is defined as the total energy of n
Gaussian, it can be generated as following: 


�

��

�
n
i i

T

HI 1
2

368.3
5.0 Y

FLY
                 (5) 

2.2 RUL Prediction using Particle Filters 

2.2.1 Particle filter for state estimation 

     Applying particle filters to state estimation will 
be discussed first.  Particle filters are used to 
estimate the state of a dynamic system using state 
and observation parameters. The state transition 
function represents the degradation in time of the 
gears.  The observation or measurement represents 
the relationship between the degradation state of the 
component and the CIs. 
   
     Consider a system described by the discrete time 
state space model: 

),( 11 �xfx ��� kkkk                (6) 
� ��xhz kkkk ,�                   (7) 

where: 
����� nnn

k xx :f is the state transition function 
�k is an independently and identically distributed (iid)

state noise vector of known distribution 
����� nnn

k zx �:h is the measurement function 
�k is an iid measurement noise vector 
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 The problem of state estimation is to estimate the 
dynamic state in terms of probability density 
function (pdf)

xk

� �zx kkp :0 , given the measurement up to 
time k.  The initial distribution of the state � �x0p  is 
assumed known. 

 The Bayesian solution to the state estimation 
problem normally consists of two steps: prediction and 
update.  In the prediction step, the prior probability 
distribution of the state at time k, starting from the 
probability distribution 

xk

� �z 1:01 �� kkxp  at time k-1, is 
obtained as: 
� � � � � �

� � � � xzxxx

xzxzxxzx

11:01

11:011:011:0

                  

,

���

������

��

��

kkkkk

kkkkkkkk

dpp

dppp
    (8) 

 In the update step, at time k, a new measurement 
is collected and used to update the prior distribution to 
obtain the posterior distribution of the current state 
as:

zk

xk

� � � � � �
� �zz

xzx
zx

1:0

1:0
:0

�

��
kk

kkkk
kk p

pzp
p                 (9) 

where the normalizing constant is: 
� � � � � � xxzzxzz kkkkkkk dppp �� �� 1:01:0              (10) 

 Obtaining exact state estimation solutions for Eq. 
(8) and Eq. (9) is not realistic for most cases.  
Therefore, particle filter is used to obtain the heuristic 
solutions.  The prediction at time k can be 
accomplished by particle filter by performing the 
following two tasks: (1) sampling N number of random 
samples (particles) from the probability 
distribution of the state noise � and (2) generating 
new set of samples using Eq. (6).  In the 

update step, each new sampled particle is assigned a 

weight based on the likelihood of the new 
measurement at time k as: 

Nixi
k ,...,1,1 ��

1�k

Nixi
k ,...,1, �

xi
k

wi
k

zk

� �
� �


�
�

N
i

i
kk

i
kki

k
xp

xp
w

1 z

z
              (11) 

 Then the approximation of the posterior distribution 
� �zx kkp :0  can be obtained from the weighted samples 

� �Niwx i
k

i
k ,...,1,, �  (Doucet et al., 2000). 

2.2.2 Particle filter for RUL prediction 

 In order to apply particle filter to estimate the RUL, 
an l-step ahead estimator has to be developed.  An l-
step ahead estimator will provide a long term prediction 
of the state pdf � �zx klkp :0	  for , where T
is the time horizon of interest.  In making an l-step 
ahead prediction, it is necessary to assume that no 
information is available for estimating the likelihood of 
the state following the future l-step path , that 
is, future measurements  cannot be 
used for making the prediction.  Therefore, one can 
only project the initial condition 

kTl �� ,...,1

xk	1

kT �� ,...,1
lk	:

llk	 ,z

� �zx kkp :0  using state 

transition pdf � � lkkj 		� ,...,1,1p jj �xx  along all 
possible future paths weighted by their probability 

� � xxx 11 1 �
	
	� �� j

lk
kj jj dp .  By combining Eq. (6) and Eq. 

(9), an unbiased l-step ahead estimator can be obtained 
(Zio and Peloni, 2011; Orchard and Vachtsevanos, 
2011): 

� � � � � � �� � ��
�	

�

	

	�
�	

1

1
:01:0 ...

lk

kj
j

lk

kj
kkjjklk dppp xzxxxzx   (12) 

In theory, an unbiased estimator would give the 
minimum variance estimation.  However, solving Eq. 
(12) can be either difficult or computationally 
expensive.  A particle filtering approximation 
procedure of the l-step ahead estimator is provided in 
(Zio and Peloni, 2011). 

 Assume that the state represents a mono-
dimensional health indicator and RUL is the time 
remained before its crossing of a pre-specified critical 
value

xk

� .  At each time lk 	  projected l steps from 
current time k, estimating � �z kl :0RUL �p̂  is equivalent 

to estimating � �zx lkp̂ ��	 k:0 .   

 Note that in computing the l-step ahead RUL 
estimator using particle filter, at each updating step, a 
weight is computed according to Eq. (11) without 
considering any measurement of the associated errors.  
Define the estimated measurement at time k
computed from Eq. (7).  Then a weighting process in 
particle filter that takes into account the measurement 
errors can be defined as: 

ẑk

� �� �
� �� �
 �

�
�

�
N
i

i
kkk

i
kkki

k
xp

xp
w

1 ˆ

ˆ

zz

zz
               (13) 

 In the integrated prognostic approach using particle 
filter presented in this paper, the l-step ahead RUL 
estimator expressed in Eq. (12) is computed using the 
weights defined by Eq. (13). 
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3. SPIRAL BEVEL GEAR CASE STUDY 

 In this paper, data collected from a spiral bevel gear 
case study conducted in the NASA Glenn Spiral Bevel 
Gear Test Facility are used to validate feasibility of the 
presented method.   

3.1 Experimental Setup and Data Collection 

 A detailed description of the test rig and test 
procedure is given in (Dempsey et al., 2002).  The rig 
(as shown in Figure 2) was used to quantify the 
performance of gear material, gear tooth design and 
lubrication additives on the fatigue strength of gears.  
During the testing, vibration CIs and oil debris data 
were collected in order to detect the pitting damage on 
the spiral bevel gears. 

Figure 2.  The bevel gear test rig and bevel gears 
(Dempsey et al., 2002) 

 The tests consisted of running the gears under load 
through a “back-to-back” closed loop torque 
regenerative system.  Accelerometers were installed on 
the right and left side of the gearbox per Figure 2.  
Vibration data was collected once per minute using a 
sampling rate of 100 kHz for 2 seconds duration.  Shaft 
speed was measured by an optical sensor once per each 
gear shaft revolution, generating time synchronous 
averages (TSA) on the gear shaft (36 teeth). The pinion, 
on which the damage occurred, has 12 teeth.  The tests 
were performed for a specific number of hours or until 
surface fatigue occurs.  In this paper, data collected 
from experiments 5 and 6 were used.  At test 
completion, destructive pitting could be observed on 
the teeth of the pinions (see Figure 3). 

(1) (2) 

Figure 3.  Damaged spiral bevel gears:  
(1) experiment 5, (2) experiment 6 

 TSA data was re-processed with gear CI algorithms 
presented in (Zakrajsek et al., 1993) and (Wemhoff et
al., 2007) to compute the following CIs: (1)  TSA: 
RMS, kurtosis (KT), peak-to-peak (P2P), crest factor 
(CF); (2) Residual RMS, KT, P2P, CF; (3) Energy 
operator RMS, KT; (4) Energy Ratio; (5) FM0; (6) 
Sideband Level factor; (7)  Narrowband (NB) RMS, 
KT, CF; (8) Amplitude modulation (AM) RMS, KT; 
(9) Derivative AM KT; (10) Frequency modulation 
(FM) RMS, KT.  However, not all the CIs generated 
from TSA data were good candidates for generating the 
HI.  For the purpose of prognostics, one is interested in 
selecting the CIs that have shown a good trending 
correlation.  In order to select the best CIs, correlation 
coefficients of the CIs with the time index were 
computed.  The following 6 CIs with correlation 
coefficients over 0.5 were selected for the HI 
calculation: (1) residual RMS, (2) energy operator 
RMS, (3) FM0, (4) narrowband kurtosis, (5) amplitude 
modulation kurtosis, and (6) frequency modulation 
RMS.  The HI used for this analysis was the order 
statistic defined by Eq. (3) as the order statistic gave a 
more consistent trending of the HI than other statistics. 

3.2 The Results 

 The ODM data and the HIs computed using the 6 
CIs from experiments 5 and 6 are plotted in Figure 4 
and 5, respectively. 

 From Figure 4 and Figure 5, one can see that for 
both experiments 5 and 6, the computed HIs have 
shown a consistent increasing trend over time.  The 
ODM data obtained from both experiments 5 and 6 
have also shown the same increasing trend over time.   
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Figure 4.  ODM and HI plots of experiment 5 

Figure 5.  The ODM and HI plots of experiment 6 

     In this paper, rather than using Paris’ law to define 
the gear degradation state transition function f , the 
data mining approach is used.   Autoregressive 
integrated moving average data mining method was 
used to identify patterns in the data and forecast the 
gear degradation state.  Various ARIMA models were 
fitted on the ODM data of experiment 6.  The best 
fitted ARIMA model with a minimum root mean 
squared errors (RMSE) was determined to be   
ARIMA(1,1,1).  Let:  = true ODM value at time k,

 = predicted ODM value at time k.  Then the state 
transition function can be defined as: 

k

xk

xkˆ

kx
�

f k

� �
kx
	kkk

k

xx
x

�
�	�

�1�

��

ˆ1032
415.01415.10165.0

1

21

.0
     
  The plot of actual ODM values against the predicted 
ODM values is shown in Figure 6.  From Figure 6, it is 
obvious that the ARIMA(1,1,1) model, where (1,1,1) 
represents the order of the autoregressive, integrated, 
and moving average, is almost a perfect fit to the ODM 
data.  

Figure 6.  The actual ODM vs. the predicted ODM 
using ARIMA(1,1,1) model 

 To define the measurement function , the data 
mining approach is again used to fit a correlation model 
between the observation parameter, HI, and the state 
parameter, the ODM data.  Figure 7 shows the plot of 
HI against ODM for experiment 6. 

hk

Figure 7.  Plot of HI against ODM for experiment 6 

     The measurement function was fitted using a 
double exponential smoothing model.  This is a method 
to fit the data that weighs current observations more 
than previous observations (Montgomery et al., 2008).  
Figure 8 shows the predicted HI values using the 

hk
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double exponential smoothing model against the actual 
HI values.          Using the state transition function and the 

measurement function h defined by the ODM and HI 
data from experiment 6, the particle filter based l-step 
ahead RUL estimator was run on the data from 
experiment 5 using N = 1000 particles.  To compute the 
RUL, the critical value 

f k

k

� was set to ODM = 22 mg.  
This was determined by the amount of debris measured 
when damage was observed on one pinion tooth per 
experiment 5.  The predicted ODM values are shown as 
the blue line in Figure 9.  

7 

Figure 8.  Predicted HI values using double exponential 
model vs. the actual HI values 

�
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Predicted time point: 5600 

Step: l = 550 

Time
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Figure 9. Failure rate and remaining useful life distribution based on the predicted system degradation result  

In Figure 9, the red line is the pre-specified threshold.  
Note that in Figure 9, set r = k, then the probability of 
the remaining useful life less than 550 is computed as 
the same as the probability of the system is going to fail 
at future time point 5600 based on current measurement 
at time point 5050, that is, ������ � 		
��������� = 
�������� � �����������.  Updating the estimated pdf 
on the basis of the measurements collected every 100 
temporal steps, the estimated mean RUL and 
corresponding 90% confidence intervals are shown in 
Figure 10.    

RU
L

Figure 10.  The predicted mean RUL and
corresponding 90% confidence intervals using

estimator updated with error measurement

edicted mea

Time



 From Figure 10, one can see that the RUL 
prediction made by the integrated approach using 
particle filter is very close to the true RUL when the 
RUL is less than 200 temporal steps. 

4. CONCLUSIONS 

In this paper, an integrated approach for gear health 
prognostics using particle filters was presented.  The 
two fundamental challenges in applying particle filters 
to gear health prognostics has been addressed by the 
presented approach by integrating several new 
components into a particle filter: (1) data mining based 
techniques to effectively define the degradation state 
transition and measurement functions using an one-
dimensional health index obtained by a whitening 
transform; (2) an unbiased l-step ahead RUL estimator 
updated with measurement errors.  The feasibility of the 
presented prognostics method was validated using data 
from a spiral bevel gear case study.  The data were 
collected from gear surface fatigue tests subject to tooth 
pitting failure modes.  During the testing, both the 
vibration and ODM data were collected.  The vibration 
data were pre-processed with TSA and then re-
processed to compute the CIs.  Six CIs were selected 
based on their trending correlation coefficients to 
compute the HI.  An ARIMA model was fitted to 
experiment 6 data to define the gear degradation state 
transition function and a double exponential smoothing 
model was fitted to the HI and ODM data from 
experiment 6 to define the measurement function.  The 
gear degradation state transition function and the 
measurement function defined by the data mining 
models from experiment 6 were used to predict the 
RUL of the gear using the HI obtained in experiment 5.  
The results have shown that the integrated approach 
using particle filter gave a good RUL prediction 
performance.      
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