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Abstract15

Both sensor calibration and satellite retrieval algorithm play an important role in the ability to 16

determine accurately long-term trends from satellite data. Owing to the unprecedented 17

accuracy and long-term stability of its radiometric calibration, the SeaWiFS measurements 18

exhibit minimal uncertainty with respect to sensor calibration. In this study, we take 19

advantage of this well-calibrated set of measurements by applying a newly-developed aerosol 20

optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of 21

AOD, and to identify emerging patterns and trends in global and regional aerosol loading 22

during its 13-year mission. Our results indicate that the averaged AOD trend over global 23

ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but24

opposite in sign to that observed by AVHRR during overlapping years. On a smaller scale, 25

different trends are found for different regions. For example, large upward trends are found 26

over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission 27

and transport processes over the whole region as well as over downwind oceanic regions. In 28
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contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well 1

as in the associated dust outflow over the north Atlantic. Additionally, we found decreasing 2

trends over the eastern US and Europe, and increasing trends over countries such as China 3

and India that are experiencing rapid economic development. In general, these results are 4

consistent with those derived from ground-based AERONET measurements.5

6

1 Introduction7

The impact of natural and anthropogenic sources of air pollution on Earth’s weather and 8

climate systems and their long-term tendencies have gained increasing attention from the 9

scientific community in recent years. Indeed, tropospheric aerosols not only perturb the 10

radiative energy balance by interacting with solar and terrestrial radiation (Ramanathan et al., 11

2001) but also by changing cloud properties and lifetimes (Rosenfeld et al., 2008). 12

Furthermore, the Intergovernmental Panel on Climate Change (IPCC, 2007) report indicates 13

that the aerosol cooling effect could have partially counteracted warming from greenhouse 14

gas increases over the past few decades. However, there are large uncertainties in the 15

estimation of climate forcing from aerosols due to their complex nature and short lifetime. In 16

order to achieve a better understanding of the spatial and temporal variability of aerosol 17

distributions on both a regional and global scale, long-term satellite measurements of high 18

fidelity are required.  From this increased understanding we can then accurately evaluate 19

aerosol effects in the climate models.20

Despite its importance, deriving the small signal that represents the long-term trend in aerosol 21

distribution from the large seasonal cycles and natural year-to-year variability which result 22

from large-scale meteorology is highly challenging. In order to use satellite measurements to 23

determine aerosol trends with the required level of robustness, several key elements must be 24

addressed. They include: 1) accuracy, precision, and stability of the sensor calibration, 2) 25

potential for sampling bias due to insufficient temporal or spatial coverage, 3) potential for 26

algorithm bias (i.e., differences in the cloud screening scheme, temporal changes in the 27

aerosol or surface properties that deviate from assumptions used in the retrieval algorithm), 4) 28

sufficient length of the data record, and 5) potential effects of any measurement time drift due 29

to the diurnal cycle of atmospheric aerosol loading. Early satellite sensors, such as the 30

Advanced Very High Resolution Radiometer (AVHRR), provide a longer data record for 31

trend determination compared to later, more advanced satellite sensors such as the Sea-32
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viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging 1

Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and others. 2

However, due to the limited number of spectral bands and the lack of onboard calibration for 3

these early sensors, the uncertainty associated with trends calculated using measurements 4

from them can be significant.5

Among the suite of NASA’s Earth Observing System (EOS)-era satellites, the SeaWiFS 6

instrument was primarily designed to measure ocean color; since its launch in 1997, it has 7

been the major source for providing a comprehensive global data set of such measurements. 8

However, the unprecedented set of well-calibrated radiances measured in the wavelength 9

range from the visible (412 nm) to the near infrared (865 nm) also make it well-suited to 10

providing information about atmospheric aerosols [McClain et al., 1998]. In this study, we 11

will attempt to estimate trends in aerosol optical depth (AOD) at 550 nm over land and ocean 12

using SeaWiFS measurements from 1997 to 2010 using a new SeaWiFS aerosol dataset that 13

has been produced as part of NASA’s MEaSUREs project. 14

We begin in Section 2 by evaluating the performance of the sensor calibration and aerosol 15

retrieval algorithm throughout the entire SeaWiFS mission. Section 3 describes our 16

methodology for trend determination. This is followed, in Section 4, by a discussion of the 17

resulting annual and seasonal trends from SeaWiFS and comparisons to ground-based 18

measurements from the Aerosol Robotic Network (AERONET, Holben et al., 1998). A 19

summary and conclusions based on our study are given in the closing section.  20

21

2 Satellite data and their uncertainties for trend analysis22

Since 90% of the top-of-the-atmosphere (TOA) radiance received by a satellite sensor over 23

ocean comes from contributions of the atmosphere such as Rayleigh and aerosol scattering, 24

less than 10% of the signal is attributable to the ocean itself. Consequently, the level of 25

accuracy, precision, and long-term stability needed in radiometric measurements from such a 26

sensor is much higher for ocean color retrievals than those needed for corresponding land or 27

atmospheric products. As a result of rigorous on-orbit calibration techniques developed using 28

a combination of lunar and solar diffuser measurements and vicarious procedures, the NASA 29

Ocean Biology Processing Group (OBPG) Calibration and Validation Team achieved an 30

extraordinary level of absolute accuracy (1-2%), precision (0.1%) and, most importantly, 31
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long-term stability (0.3% over the 13-year mission) for the TOA radiances from SeaWiFS 1

(Eplee et al., 2011). 2

The SeaStar platform carrying SeaWiFS was launched with a nominal center-of-swath 3

equatorial overpass time of around noon for the daytime (descending) node. This drifted 4

slowly through the mission into a later orbit, although remained before 12:30 pm until 2005; 5

the time reached a maximum around 2:40 pm in July 2010, after which an orbit raising 6

maneuver was performed to return the orbit slowly closer to noon. Smirnov et al. (2002) 7

investigated the diurnal cycle of AOD at various AERONET sites. Over this range of local 8

times, the change in mid-visible AOD was found to be of order of a few percent or less of the 9

daily mean AOD for most aerosol types; the most rapid diurnal variability was generally in 10

early morning or late afternoon. This suggests that the drift in SeaWiFS orbit time is unlikely 11

to introduce significant artifacts into derived trends.12

The SeaWiFS product used in this study is based upon the SeaWiFS v003 dataset that is 13

available from http://disc.gsfc.nasa.gov/dust.  This dataset spans the time period September 14

1997 to December 2010 and is the result of an effort funded by NASA’s MEaSUREs project 15

to produce a long-term aerosol data record from SeaWiFS. This aerosol retrieval system 16

utilizes a combination of the Deep Blue algorithm over land (Hsu et al., 2004, 2006) and the 17

SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm over ocean (Sayer et al., 2012a). The 18

Level 2 products are derived with a horizontal resolution of approximately 13.5 km at nadir 19

and include spectral AOD, Ångström exponent, and single scattering albedo (for dust 20

aerosols) over land and spectral AOD, Ångström exponent, and fine mode fractional aerosol 21

volume over ocean. Level 3 (gridded) products are available for daily and monthly averages at 22

both 0.5° x 0.5° and 1° x 1° resolutions. Figure 1 shows an example of the resulting 23

seasonally-averaged AOD at 550 nm throughout the 13 year mission using this newly-24

developed product. In this study, we used the Level 3 1° x 1° spatial resolution monthly mean 25

SeaWiFS AOD data at 550 nm to calculate aerosol trends that could be efficiently compared 26

with other satellite products.  27

A detailed validation of the global SeaWiFS AOD using the collocated v003 Level 2 products 28

against the cloud-screened and quality-assured Level 2 AERONET measurements (Holben et 29

al., 1998, Smirnov et al., 2000) and other satellite products is presented for land in Sayer et al. 30

(2012a) and for ocean in Sayer et al. (2012b). Briefly, on a global basis, over one standard 31

deviation (68%) of AOD matchups were found to agree within an absolute expected error of 32
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0.03+15% over ocean and 0.05+20% over land at 550 nm. Since a change in the quality of the 1

retrieval with time could mask or amplify any true change in AOD, it was also imperative to 2

make an assessment of the temporal stability for this dataset.  We therefore calculated the 3

differences in 550 nm AOD between SeaWiFS and AERONET data as a function of year over 4

ocean and land separately; the results are depicted in Figure 2 (methodology and general 5

validation results are presented by Sayer et al., 2012a,b). Only the best quality SeaWiFS data, 6

with a quality assurance (QA) of 3 over land and a QA of 2 and 3 over ocean, are included in 7

our analyses (as recommended in the aforementioned references). Also, in order to ensure the 8

consistency of AERONET measurement locations throughout the SeaWiFS lifetime, only 9

AERONET sites with records lasting for most or all of the SeaWiFS time series are 10

considered, as otherwise an apparent change in comparison statistics could simply be the 11

result of changes in regional sampling. 12

For retrievals over land, the stations used in our analysis are Alta Floresta, Avignon, 13

Banizoumbou, Beijing, Bondville, Bratts Lake, the CART site, Dakar, Dalanzadgad, GSFC,14

HJ Andrews, Ilorin, IMS METU-Erdemli, Ispra, Kanpur, MD Science Center, Mongu, Sede 15

Boker, Sevilleta, Skukuza, Solar Village, and Wallops. Figure 2 shows that the median and 16

mean AOD difference between SeaWiFS and AERONET for these sites is generally small17

and negative; therefore, for a typical case, SeaWiFS is likely to have a slightly low bias. The 18

lines are reasonably stable over time, suggesting that the quality of the dataset does not 19

change throughout the SeaWiFS mission. The intercept of the best-fit line of the mean error 20

against time is -0.016 (±0.007), with a gradient of 0.0003 (±0.0009) per year (both in units of 21

absolute AOD).  Therefore, the temporal bias is not statistically different from zero at the 22

95% level (quoted fit uncertainties are the one-sigma, i.e. 68%, confidence limits). Variation 23

from year-to-year appears smooth, with no abrupt changes.24

Over ocean, fewer sites are available, particularly for the early part of the time series, so only 25

the years 1999-2010 are considered, from the AERONET sites at Arica, Capo Verde, Dakar, 26

Helgoland, IMS METU-Erdemli, La Parguera, Nauru, Shirahama, and Venise. The intercept 27

of -0.008 (±0.005) and gradient of -0.0014 (±0.0008) per year of the best-fit line are not 28

significantly different from zero at the 95% confidence level (the gradient is significant at the 29

90% level, but is small in magnitude).30

These results give confidence that the SeaWiFS aerosol dataset is suitable for the analysis of 31

changes in AOD over this period. This does, of course, rely on the assumption that the 32
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evaluation at these sites is a good representation of the whole globe, although in the absence 1

of long-term aerosol measurements at every location, this cannot be assessed directly.2

3

3 Methodology4

In order to show changes in spatial and temporal distribution of aerosol loading, linear trends5

were calculated based on the 1° x 1° spatial resolution monthly mean SeaWiFS AOD data, 6

from September 1997 to December 2010. These monthly datasets are calculated as the simple 7

mean of the daily mean AOD for each month; the daily mean is computed from all those 8

retrievals of sufficiently high QA (2 or 3 over ocean, 3 over land). In order to remove the 9

large influence of the annual cycle, the data were first deseasonalized by obtaining the time 10

series of AOT anomaly for each grid cell. The anomaly is defined as difference between 11

monthly variation and climatology (i.e. the month-wise average over all the years). A least-12

squares fit was applied to the AOD anomaly time series to get the slope coefficient of the 13

linear regression that represents annual trend (AOD/year).14

The statistical significance of the linear regression was assessed using the analysis of variance 15

procedure which involves testing the F statistic and associated p value. The F statistic is 16

referred to as the ratio between mean-squared error of regression and mean-squared error of 17

residuals. The associated p-values (less than 0.05) are indicated as "dots" on global trend 18

distribution maps for regions that are statistically significant at the 95% confidence level, and 19

the null hypothesis (that the regression coefficients are not statistically different from zero) 20

can be rejected.21

As least-squares regression can be sensitive to outliers, autocorrelation, and heteroscedasticity 22

of errors in the input data, linear AOD trends were also estimated using the non-parametric 23

Theil-Sen (aka ‘median gradients’) method, which is an estimator robust to these difficulties 24

(Theil, 1950, Sen, 1968). Global trends calculated using the Theil-Sen method were within 25

approximately 10% of the least-squares regression values for all the sensors considered, 26

suggesting the least-squares model is appropriate for this situation. As the least-squares 27

regression technique more readily provides uncertainty estimates, only the least-squares 28

results are used hereafter.29

30
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4 Results and discussions1

4.1 Correlations between SeaWiFS AOD anomaly with ENSO and NAO2

In order to estimate global and regional trends in AOD, we need to first examine the inter-3

annual variability of the aerosol distribution and its relationship with large-scale climatic 4

variations such as the El Niño/La Niña-Southern Oscillation (ENSO) and the North Atlantic 5

Oscillation (NAO). These large-scale meteorological processes could perturb the aerosol 6

distributions through changes in aerosol emissions by altering the precipitation and soil 7

moisture or in aerosol transport via varying the atmospheric circulation. The correlation 8

coefficients (R) are calculated between deseasonalized monthly SeaWiFS AOD anomalies 9

and the Multivariate ENSO Index (MEI; Wolter and Timlin, 1993, 1998) from 1997 to 2010. 10

As shown in Figure 3(a), the most prominent regions of high correlation with ENSO 11

signatures are in the tropics near Indonesia and Central America. In Indonesia/Borneo, fires 12

are primarily used to clear vegetation waste associated with deforestation for agricultural 13

expansion and usually peak in the fall and spring season, when the air is relatively dry and 14

precipitation is low. These smoke plumes, which can often stretch over hundreds of 15

kilometers, are readily observed by satellites. The times series of SeaWiFS monthly AOD 16

anomaly along with ENSO index is shown in Figure 4 and indicates that the intensity of 17

resulting smoke is predominantly linked to El-Nino-induced droughts over this region; strong 18

peaks are seen in the years 1997-1998, 2002, and 2006.19

The amount of precipitation affects the interannual variability of biomass burning activities 20

and dust emission through changes in surface moisture; since these effects could be 21

accumulative, we also calculate the correlation coefficients between SeaWiFS AOD anomaly 22

and the ENSO index with various time lags. Figure 3b and 3c show these AOD anomaly 23

correlations with ENSO index leading by six months and one year, respectively. We note that 24

the intensity of biomass burning smoke in Central America is sensitive not only to the ENSO 25

induced rainfall changes during the peak burning season, but also to those accumulated 26

throughout several months prior to the start of burning (i.e., on a 6-month time lag as shown 27

in Fig. 3b). The lag time for South America appears to be even longer (i.e., 6 months to a 28

year) compared to that for Central America. Such time lags between ENSO and fire season 29

severity in South America have also been reported by Chen et al. (2011), with significant 30

lagged correlations emerging on a 3-7 month time scale. However, there seems to be little 31
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time lag observed over Indonesia between AOD anomaly and ENSO-induced drought. This is 1

probably indicative of the differences in agriculture/land clearing practices between South 2

America, Central America, and Indonesia. 3

The results shown in Figure 5 indicate that summertime Saharan dust loadings highly 4

correlate (R > 0.5 at 95% confidence) with the ENSO index from 6 months earlier over dust 5

source regions in northern Sahel, as well as over the Atlantic along the dust transport pathway 6

reaching as far as Barbados, West Indies. This is consistent with the findings of Prospero and 7

Lamb (2003) and Chiapello et al. (2005), who reported the close link between dust 8

concentrations observed in Barbados followed by the occurrence of major ENSO events and 9

the associated drought in Sahel. In contrast to the Sahara, which receives little rainfall each 10

year, dust emissions over the Sahel are apparently more influenced by the year-to-year 11

variability of the precipitation, as expected. Besides the transport route from the Sahel to 12

Barbados, the high ENSO/AOD correlation results shown in Figure 5 also indicate the 13

possibility of a widespread association between ENSO and dust transport in the western and 14

northern parts of the North Atlantic along the edge of the Saharan dust outflow regions. This 15

anomalous pattern also coincides with the main development region (MDR), primarily 16

between 10°-20°N, of tropical cyclone activity in the Atlantic. This is likely to be linked to 17

the effects of ENSO induced changes of the atmospheric dynamics and circulation on the 18

summer time Saharan dust transport into the Atlantic.19

The effects of the NAO on the Saharan dust distribution are also investigated as shown in 20

Figure 6. The NAO is one of the dominant factors of winter climate variability in the North 21

Atlantic region, spanning central North America and Europe. The NAO winter index used in 22

this study is based upon the difference of normalized sea level pressure between Lisbon, 23

Portugal and Stykkisholmur, Iceland (Hurrell, 1995). Based upon the results in Figure 6, a 24

sizeable and statistically significant (at 95% confidence) correlation (R>0.5) between is 25

apparent between the SeaWiFS AOD anomaly and NAO index over extensive areas 26

encompassing the western part of the North African continent into the North Atlantic. In 27

addition, we also observe a secondary branch of positive correlation that is statistically 28

significant along the pollution outflow of the eastern US across the most northern edge of the 29

Atlantic. We found no statistically significant correlation over this region for seasons other 30

than winter. This is consistent with the findings of Ginoux et al. (2004) and Chiapello et al. 31
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(2005) based upon the 17-year record of TOMS data (1979-2000, except for 1982 and 1993–1

1996).2

These results suggest that, while the NAO has a large influence on the wintertime dust 3

distribution over the Atlantic, significant variability of the AOD anomaly in this region is 4

controlled by the ENSO during the summer months. We also note that large scale 5

meteorological events such as ENSO and NAO appear to have larger impacts on the 6

interannual variability of aerosol distribution across the tropics, either in the dust-laden or 7

biomass burning smoke-dominated regions, than in the extratropical zones. Therefore, trend 8

determination in the tropical regions is more susceptible to the influence of these large-scale 9

climatic driving forces and consequently more difficult to derive, as compared to those 10

outside the tropics.11

4.2 Global trend12

Figure 7 shows comparisons of the time series of absolute AOD and AOD anomaly averaged 13

over global ocean from SeaWiFS with those from MODIS Terra (data record beginning in 14

2000) and Aqua (beginning 2002). Although there is an offset between MODIS Terra and 15

Aqua in terms of absolute values of AOD, the short-term tendency during the overlapping 16

period is similar between the two (Zhang and Reid, 2010).  This comparison shows that the 17

interannual variability of the SeaWiFS AOD anomaly follows both MODIS Terra and Aqua 18

until mid- 2009. From 2009 onwards, the SeaWiFS AOD anomaly is higher than that from 19

MODIS, resulting in a more positive trend over global ocean compared to the MODIS values. 20

According to Figure 2, the comparisons of SeaWiFS retrieved AOD at 550 nm with the 21

AERONET values do not indicate any drift from the zero line after the mid 2009.  22

It is worth pointing out that long-term global ocean AOD measurements based on AVHRR 23

data have been shown to have a downward tendency for the period 1982 – 2005 [Mischenko 24

et al., 2007; Zhao et al., 2008]. Although revised calibration procedures applied to AVHRR 25

radiances have broadly resulted in comparable AOD when compared to MODIS [Zhao et al., 26

2008; Li et al., 2009], the short-term trends of AOD in the period of overlap between MODIS 27

and AVHRR are opposite in sign (positive for MODIS and negative for AVHRR) for the 28

period 2000 – 2005 (Li et al., 2009; Zhang and Reid, 2010). This downward trend in AVHRR 29

data continues until 2009, based on our analysis of the PATMOS-x AOD data (not shown), 30

which is in contrast to the trends observed from SeaWiFS and MODIS from this study.31
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The difference in sign associated with trends in the past decade could partly be due to the 1

overall calibration accuracy/orbital drift in the AVHRR data record. Thomas et al. (2010) 2

compared changes in AOD between Along-Track Scanning Radiometer 2 (ATSR-2) and 3

AVHRR data for 1995-2001. They found that the global downward trend in the AVHRR 4

AOD was largely driven by the southern oceans, for which the latitudinal range of sampling 5

during daylight hours changed significantly during the study period, due to drifts in the 6

AVHRR platform’s orbit. Even for those regions where daylight availability is not an issue, 7

diurnal variability in cloud cover can lead to changes in the availability of clear-sky pixels for 8

AOD retrieval as the satellites drift, resulting in further sampling bias (e.g. Devasthale et al., 9

2012). The drifts in orbit time for the AVHRR sensors were generally larger than for 10

SeaWiFS, and when compositing multiple AVHRR records together to create a longer time 11

series, there are time discontinuities when one satellite is replaced by the next. Additionally,12

other factors contributing to this noted difference may be related to data sampling issues 13

arising from different cloud-screening schemes employed by AVHRR and SeaWiFS/MODIS. 14

Also shown in Figure 7 is the time series of over-ocean AOD and anomaly from the data 15

assimilation (DA) grade MODIS-Terra dataset, which is an attempt to create a product 16

suitable for DA through bias correction and additional quality screening of the MODIS 17

Collection 5 aerosol product (Zhang & Reid, 2006; Shi et al., 2011). Only the period 2000-18

2009 is available. These time series track the SeaWiFS record very closely. This is consistent 19

with Sayer et al (2012), who found, for collocated daily DA MODIS-Terra and SeaWiFS data 20

over ocean, a correlation of 0.87 and bias of -0.006 between the two (SeaWiFS lower). In 21

contrast, the Collection 5 MODIS Terra had a slightly lower correlation with SeaWiFS (0.80), 22

and SeaWiFS a more negative bias (-0.027). Only Terra data are shown; the offset between 23

the two MODIS sensors becomes smaller in the DA-MODIS product (Shi et al., 2011; Sayer 24

et al., 2012).25

Zhang & Reid (2010) found, using a similar methodology to this study, an annual trend of 26

0.001 yr-1 in global-average over-ocean DA MODIS Terra AOD (and a similar figure noted 27

for Aqua). This is in good agreement with the results of this study from both the DA MODIS 28

and SeaWiFS records. However, after performing a correction to both the Terra and Aqua 29

data to account for a drift in the quality of the validation statistics against AERONET since 30

2005 (Levy et al., 2010; Zhang & Reid, 2010), the magnitude of this trend decreased by a 31
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factor of three, and it became statistically insignificant. Their best estimate is therefore that 1

there has been no significant change in global-average over-ocean AOD during this period.2

The resulting annual trends of SeaWiFS AOD anomaly over both land and ocean are derived 3

for each 1° x 1° grid cell and are shown in Figure 8. Points marked with dots indicate trends 4

significant at the 95% confidence level (p-value < 0.05). For comparison, we also calculate 5

trends based upon AERONET measurements over selected sites using the same methodology, 6

where sufficient and more-or-less continuous data records were acquired over a similar time 7

period to SeaWiFS. These AERONET values and the corresponding SeaWiFS trends are 8

listed in Table 1. Also, to help visualize the SeaWiFS and AERONET trend comparisons in 9

the context of the surrounding regions and over the whole globe, we superimpose the 10

locations of AERONET sites on top of the SeaWiFS annual trend map in Figure 7. The black 11

and pink boxes and symbol (x) represent negative, positive, and negligible trends from 12

AERONET data, respectively.13

In general, the annual trends from 1998 to 2010 are small over most of the world. However, 14

for the mineral dust dominant regions, strong positive trends are seen over the Arabian 15

Peninsula, while negligible trends of no statistical significance exist over most of the desert 16

regions in China. In contrast, there is a negative tendency in the surrounding regions of the 17

western part of North Africa as well as the Atlantic. This downward trend, which is most 18

likely associated with the decreasing export of Saharan dust from North Africa into the 19

Atlantic, is also reflected in the AERONET data at Capo Verde. For fine mode anthropogenic 20

aerosols, positive trends are observed in the fast developing countries over India and 21

eastern/southern China, most likely associated with an increase in urban/industrial pollution. 22

Negative trends are also seen over eastern US and Europe, which are consistent with the 23

AERONET trends at GSFC/COVE, and IFT-Leipzig, Germany, respectively. The downward 24

trends over Europe and the eastern US may partly be due to a decrease in pollution aerosols 25

associated with emission control. For biomass burning regions, although there seems to be 26

considerable downward trend over the Central America, the estimated trends are not 27

statistically significant for other areas such as South America, North America, Africa, and 28

Southeast Asia.29

Finally, it is evident from the results shown in Table 1 that, except for Capo Verde and 30

COVE, most of the island/coastal AERONET measurements exhibit either positive or 31

negligible trends over the tropical Pacific (Tahiti and Nauru), South Atlantic (Ascension 32



12

Island), the Caribbean (La Parguera), and the northwest Pacific (Shirahama). The 1

corresponding trend values derived from the SeaWiFS records seem to be comparable to 2

those from the AERONET data.3

4.3 Seasonal and regional trends4

Since, as shown in Figure 1, there is strong seasonality in both the emission intensities of 5

natural and anthropogenic aerosols over various source regions and their impact on large-6

scale aerosol distributions, trend analyses were performed separately for each season. These 7

seasonal trends were calculated over each 10 x 10 grid for the DJF, MAM, JJA and SON time 8

spans and are presented in Figure 9. The corresponding time series of seasonal mean AOD 9

anomaly over northern India (20° - 30° N, 75° - 85° E), eastern China (30° - 40° N, 110° -10

120° E), the Arabian Peninsula (10° - 35° N, 35° - 60° E), Europe (43° - 55° N, 0° - 30° E), 11

and the eastern United States (30° - 45° N, 70° - 90° W) are shown in Figure 10. In order to 12

have a reasonable temporal distribution in the analysis, trends were computed based on the 13

time series of individual months for a particular season (stacked together), instead of 14

calculating a seasonal mean trend. In other words, a slope coefficient was estimated from a 15

time series consisting of DJF 1997, followed by DJF 1998 and so forth, thus from a total of 39 16

data points. Linear trends and their significance are shown in Figure 9 in the same fashion as 17

in Figure 8.18

It is apparent from the results shown in Figure 9 that there are strong positive trends over both 19

the Arabian Peninsula as well as the surrounding Arabian Sea, especially during spring and 20

summer seasons. Strong upward trends are also found over the adjoining Persian Gulf. Thus, 21

it is likely that the increasing aerosol load over the Arabian Peninsula, together with the 22

increase over the northern Arabian Sea, has contributed to upward trends in AOD over 23

surrounding oceanic regions largely associated with the spring- and summer-time dust 24

outflow. We also found supporting evidence of a systematically increasing aerosol loading 25

tendency from AERONET observations at Solar Village in Saudi Arabia, as well as a 26

decreasing trend in Ångström exponent (440 nm – 870nm) for the period 1999-2010 (Figure 27

11). Recently, Yoon et al. (2011a) also reported an increasing (decreasing) AOD (Ångström28

exponent) for the period 2001-2008, based on analysis of AERONET data from the Solar 29

Village site. The upward trend in AOD from AERONET data is 0.018 yr-1 for the 11-year 30

period shown in Figure 11, while a positive trend is also obtained from the SeaWiFS data for 31

the overlapping period over a 1°x1° region collocated with the Solar Village site (Table 1). 32
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Furthermore, we discern from the top panel of Figure 11 that the seasonal cycle of aerosol 1

loading has strengthened on an approximate inter-annual scale, with measurable decrease in 2

the Angstrom Exponent. These observations lead us to posit that the seasonal cycle of dust 3

emissions (loading as well as outflow) has strengthened in the past 11 - 13 years spanning the 4

AERONET and SeaWiFS data record over this region. The region-wide trend from the 5

SeaWiFS AOD data record (September 1997 to December 2010) is estimated to be 0.009 yr-1

The global mean trends are weakly positive with large variability and are only representative 11

for the relatively short time scale of the data record (a little over 13 years) and therefore are 12

deemed to be negligible or not significant. However, it is important to emphasize the large 13

sustained upward trends observed over the Arabian Peninsula and the need to monitor future 14

trends, and/or construct a longer-term aerosol record in retrospect to better quantify the 15

changes in aerosol loading, causes and regional (and downwind) climate impacts. 16

6

(±0.00076) when averaged over the Arabian Peninsula (10°N - 35°N, 35°E - 60°E). As clearly 7

noted in the spatial trend distribution (Figure 8), this large regional trend is an order of 8

magnitude higher than the global mean trend (land and ocean) as well as the global mean 9

trend only over land.10

In contrast to the strong upward trends over the Arabian Peninsula, there appears to be 17

negative trends over the Saharan dust dominant regions in western African and the North 18

Atlantic, particularly during the winter season. However, these patterns in the trends seem to 19

coincide with the AOD-NAO correlation map depicted in Figure 6. Therefore, the negative 20

trend in the SeaWiFS AOD anomaly during the winter months is likely a reflection of the 21

downward trend in the NAO strength from 1997 to 2010. Similarly, the locations of negative 22

trends in the summer AOD anomaly over the Sahel and across the Atlantic also mimic the 23

AOD-ENSO correlation shown in Figure 5. Consequently, the large-scale meteorological 24

processes such as NAO and ENSO largely regulate the export of the Saharan dust in the 25

Atlantic. Overall, trends observed over the North Africa exhibit relatively smaller trends and 26

weak seasonal dependency. However, there seems to be a significant positive trend over the 27

Sahel region during springtime which is also reflected in the AERONET data at 28

Banizoumbou. 29

Over East Asia, the aerosol loading appears to exhibit negligible trends of no statistical 30

significance in eastern China during the active dust outbreak season (i.e., springtime); the 31

corresponding AOD anomaly time series is depicted in Figure 10 (top-right panel). The 32
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amount of mineral dust reaching this region seems to decrease from 1998 to 2004-2005, but 1

became quite high again in the later years (2006-2010). Overall, the insignificant trends for 2

the dust-dominant season over eastern China are due to large inter-annual variability in the 3

observed aerosol loading. In South Asia, the regions over northern India along the Indo-4

Gangetic plain are often influenced during the pre-monsoon season with heavy dust plumes 5

transported from the Thar Desert in northwestern India (Gautam et al., 2011). Based upon 6

Figure 10 (top-left panel), these dust activities seem to increase significantly from 1998 and 7

peak around 2003. However, since 2003 the dust intensity is seen to steadily decrease during 8

the spring (MAM). Recent studies based on satellite observations from MISR and MODIS 9

have also alluded to this decrease in dust loading over northern India from 2000 onwards 10

(Dey and Di Girolamo, 2011; Kaskaoutis et al., 2011). However, since the SeaWiFS data 11

record spans a longer time, our results indicate an overall slightly positive trend from 1998 to 12

2010 over northern India. For the rest of the world, there are no statistically-significant trends 13

over arid and semi-arid regions, including over Australia and the southwest US.14

For biomass burning regions such as Indonesia, South America, and in particular Central 15

America, the aerosol trends are observed to be negative from 1998 to 2010. However, the 16

year-to-year variabilities of smoke emission over these regions are most likely driven by the 17

ENSO induced effects discussed in the previous section. Our calculations also show that there 18

are no observed aerosol trends of statistical significance over Southeast Asia (i.e. Indo-China) 19

as well as regions in North America, Europe, and Siberia where forest fires frequently occur.   20

Over regions where anthropogenic fine mode aerosols are prevalent, our study shows that 21

there are downward trends in AOD over the eastern US and Europe during the summer 22

months (i.e. the peak season of air pollution build-up in these regions). However, for the 23

rapidly developing countries in Asia, the AOD tendencies are positive. In particular, during 24

the heavy winter haze months, significant upward trends are observed in the regions of 25

eastern and southern China, the East China Sea, and in northern and central India and the 26

surrounding oceanic regions, particularly over the Bay of Bengal. In contrast to the weak 27

tendencies in the boreal spring/pre-monsoon months that are largely due to inter-annual 28

variability of dust transport, the relatively stable conditions during dry winter/post-monsoon 29

period favors accumulation of aerosols/pollutants.  Hence, the upward trends are most likely 30

due to increase in regional urban/industrial pollution. Yoon et al. (2011b), using SeaWiFS 31

data (with a different AOD retrieval algorithm) found positive trends in AOD during 32
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springtime and fall over the Pearl River delta in China; positive trends in this region are also 1

seen in this study, although only statistically-significant on an annual, rather than seasonal 2

scale due to frequent cloud cover. In terms of overall trends, it is interesting to note that both 3

East and South Asia exhibit similar patterns during the high aerosol loading seasons, i.e. a 4

systematic increasing trend during the winter haze period and a rather variable AOD 5

distribution during the dust-dominant spring/pre-monsoon season (Fig. 10). A recent study 6

also indicates upward trends in fine-mode anthropogenic aerosols over China and India using 7

inventory emissions data for sulfate and carbonaceous aerosols (Lu et al., 2011).8

4.4 Zonal average trend9

In order to help study the radiative effects of aerosols on Earth’s climate, we also compute 10

zonal-averaged trends (averaged from 180°W to 180°E over both land and ocean) based upon 11

this 13 year SeaWiFS data record; these trends are displayed in Figure 12 (right panel). 12

Trends from zonal mean of AOD anomalies for both annual and seasonal averages are 13

calculated and shown from 55°S to 55°N at 5° intervals. The corresponding zonal averaged 14

absolute AOD values are also depicted in Figure 12 (left panel) for comparison. As expected, 15

the absolute AOD is much higher in the northern hemisphere compared to the southern 16

hemisphere, which is mostly dominated by the oceans and is, in general, pristine. Most of the 17

tropospheric aerosol burden resides between the equator and 40° N for all four seasons, 18

except for the springtime Asian dust outbreak which peaks at mid-latitudes in the northern 19

hemisphere, and the biomass burning activities over South America, Africa, and Southeast 20

Asia in the southern hemisphere during the fall months (SON).21

As shown in Figure 12 (right panel), the corresponding overall annual trends are mostly 22

positive over the latitude zone from equator to 30° N, where most of the aerosol sources 23

reside, although there are significant self-compensating positive and negative trends within 24

this zone as depicted in Figure 8. On a seasonal basis, the primary peak tendency in AOD 25

occurs during the winter months around 25° - 40° N and is largely associated with changes in 26

India and China as well as adjacent waters. However, the springtime zonal mean trends are 27

slightly negative around 35° - 45° N due to weak decreases over the dust source regions in 28

northwestern China, while remaining positive in the 10° - 30° N latitude zone as a result of 29

larger increasing trends in the Arabian Peninsula dominating over the decreasing trend in 30

Central America. The net positive summer trends over the tropics and subtropics in the 31

northern hemisphere are also a product of the strong increasing Arabian trends and the weaker 32
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decreasing trends in the Saharan dust dominant Atlantic Ocean. Compared to those in the 1

northern hemisphere, the aerosol emissions in southern hemisphere, which are mostly related 2

to biomass burning activities, peak in the fall (SON) months. Most of the aerosol tendency in 3

this region is not statistically significant, especially near the smoke sources over land, due to 4

large year-to-year fluctuation. However, a significant positive trend around 35° S is detected, 5

which may be linked to the increasing amount of biomass burning smoke transported out of 6

southern Australia and southeastern Africa. Overall, significant upward trends in annual mean 7

AOD are found over the tropics and sub-tropics; they are largely amplified by the increasing 8

dust emissions and outflow from the Arabian Peninsula during boreal spring and summer 9

seasons.10

11

5 Conclusions12

Compared to other satellite sensors, SeaWiFS has unprecedentedly high accuracy and long-13

term stability (1-2% and 0.3%, respectively) in radiometric calibration as a result of rigorous 14

lunar, solar and vicarious calibrations performed by the OBPG team. Therefore, the 15

corresponding long-term drift in SeaWiFS AOD time series due to sensor calibration is 16

negligible. However, as described in Section 1, several other factors in addition to calibration, 17

such as retrieval algorithm deficiency, could also contribute to the temporal variability of 18

satellite retrieved AOD data records. In order to examine the effect of retrieval algorithm on 19

trend analysis, we compare the SeaWiFS v003 AOD products against ground-based 20

AERONET measurements acquired over the 13 year mission lifetime. The results indicate 21

that there is no apparent year-to-year shift over either land or ocean between these two 22

measurements, suggesting that the SeaWiFS v003 data are suitable for estimating the 23

interannual changes in AOD on both global and regional scales.24

Our trend analyses based upon the SeaWiFS data from 1998 to 2010 show that the global 25

annual trend of AOD during this period, although weakly positive, is essentially negligible 26

when compared to the magnitudes of contributions from other factors, including large-scale 27

meteorological events such as ENSO and NAO. Our estimated SeaWiFS trend over global 28

ocean is comparable to and has the same sign as the trend derived from the MODIS sensors 29

aboard Terra and Aqua.  However, it is in opposite sign to AVHRR data during the 30

overlapping years. On regional scales, the estimated trends in this study suggest that the AOD 31

tendency could be significantly large. We note that there are decreasing trends over the 32
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eastern US and Europe, possibly due to a corresponding decrease manmade air pollution 1

levels. Yet, over the rapidly developing countries such as China and India, significant 2

increasing trends in AOD are seen in these source regions and their surrounding downwind 3

oceans, particularly during the dry winter/post-monsoon months when the atmosphere is 4

relatively stable, thus favoring accumulation of aerosols. 5

For the mineral dust-dominated parts of the world, strong positive trends are detected over the 6

Arabian Peninsula and the adjacent waters. In contrast, a negative tendency is observed in the 7

emission and export of Saharan dust over the western North Africa and the North Atlantic. 8

Overall, based on 13 years of data, a relatively contrasting pattern in trends seem to have 9

emerged in the tropics/subtropics largely modulated by dust emissions and transport processes 10

encompassing the Saharan arid lands and the Arabian Peninsula and their downwind oceanic 11

regions, with downward and upward tendencies, respectively.12

In order to reduce the uncertainty in estimating climate forcing caused by tropospheric 13

aerosols, it is important to produce the best quality climatology of aerosol properties with 14

sufficient data length by merging aerosol information obtained from the multiple satellite 15

sensors that are currently available. SeaWiFS data extends from 1997 to 2010, which has 16

many overlapping years with MODIS, MISR, AVHRR, and TOMS, and thus provides a good 17

benchmark to characterize instrument drifts due to calibration for other satellite 18

measurements. However, 13 years of satellite measurements is not enough to establish long-19

term trends of aerosols, particularly in the tropics where the ENSO and other large-scale 20

climatic factors could play a large role in modulating aerosol variability. Therefore, it is 21

imperative to continue the high quality-EOS aerosol data records from SeaWiFS and MODIS 22

with Visible and Infrared Imager Radiometer Suite (VIIRS) measurements onboard the 23

currently operational Suomi NPP satellite and to be flown on future JPSS satellites to achieve 24

the statistically adequate length of data records necessary for climate studies.25
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Table 1. Comparisons of SeaWiFS-derived trends with those from AERONET measurements.1

** indicates trends significant at 95%, * indicates trends significant at 90%2

Location Time 
Period

AERONET SeaWiFS
Trend 

(AOD/year)
Std. 

Error
Trend 

(AOD/year)
Std. 

Error

Ocean
Capo Verde 16N,22W -0.0040* 0.0022 -0.0040 0.0031

COVE 36N,75W -0.0010 0.0019 -0.0026** 0.0010

Ascension 
Island 7S,14W 0.0012 0.0013 0.00083 0.00073

Nauru 0S,166E 0.0013** 0.00058 0.00086 0.00058

Tahiti 17S,149W 0.00022 0.00053 0.00090** 0.00019

Shirahama 33N,135E 0.000063 0.0023 0.00056* 0.00032

La Parguera 17N,67W 0.0014 0.00099 0.00091 0.00077

Land

IFT-Leipzig 51N,12E
05/2001 –

05/2010
-0.0089** 0.0028 -0.0128** 0.0048

GSFC 38N,76W
09/1997 –

12/2010
-0.0038** 0.0011 -0.0008 0.0012

Alta_Floresta 9S,56W
01/1999 –

12/2010
0.0005 0.0057 -0.0093 0.0088

Banizoumbou 13N,2E
06/1999 –

06/2010
0.0086** 0.0044 0.0136** 0.0039

Solar Village
24.90N, 

46.39E

02/1999 –

04/2010
0.018** 0.0023 0.0097** 0.0025
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1

Figure 1. SeaWiFS average AOD at 550 nm from 1997-2010.2
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1

2

Figure 2. Yearly variations in the differences between SeaWiFS and AERONET AOD over 3

(a) ocean and (b) land. Red is the mean difference in each year, while solid black is the 4

median for each year. Dotted black are the 68% confidence interval.5
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(a) No Lag (b) 6 Month Lag

(c) 1 Year Lag

1
2

Figure 3. Correlation coefficients of SeaWiFS deseasonalized monthly AOD anomaly with 3

the multivariate ENSO index (MEI) (a) from the same month, (b) leading by 6 months, and 4

(c) leading by 1 year. Dots indicate significance at 95% confidence level.5

6
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1

Figure 4. Time series of AOD anomaly and ENSO Index over Indonesia region (80 S-80 N, 2

900 -1300 E).3

4
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1

Figure 5. Lagged correlation of summertime average (JJA) mean AOD anomaly with winter 2

(DJ) mean ENSO Index leading by 6 months. Dots indicate significance at 95% confidence3

level.4

5
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1

Figure 6. Correlation of AOD anomaly and NAO Index during winter (DJF) months. Dots 2

indicate significance at 95% confidence level.3

4
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2

Figure 7. Comparisons of the absolute AOD (top) and AOD anomaly (bottom) averaged over 3

global ocean as a function of year between SeaWiFS and various MODIS products. The 4

estimated linear trend is 0.00098/year for SeaWiFS and 0.00061/year for MODIS Terra.5
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2

Figure 8. Linear trend based upon deseasonalised monthly anomaly of AOD at 550 nm. Units 3

are AOD/year. Dots indicate significance at 95% confidence level. The black and pink boxes 4

and symbol (x) represent the ground based AERONET locations with AOD tendency of 5

positive, negative, and negligible values, respectively.6
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1
2

Figure 9. Seasonal trends of SeaWiFS AOD anomaly from January 1998 to December 2010. 3

Dots indicate significance at 95% confidence level. Units are AOD/year. The gray color 4

represents the regions with insufficient sampling sizes for trend analysis due to the frequent 5

coverage of clouds and snow/ice.6
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1

Figure 10. SeaWiFS time series of seasonal averaged AOD anomaly over northern India (20°2

- 30° N, 75° - 85° E), eastern China (30° - 40° N, 110° - 120° E), Arabian Peninsula (10° -3

35° N, 35° - 60° E), Europe (43° - 55° N, 0° - 30° E), and eastern United States (30° - 45° N, 4

70° - 90° W).5
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1

Figure 11. Interannual variation of AOD (top panel) and AOD anomaly (bottom panel) from 2

SeaWiFS and AERONET measurements co-located over the Solar Village site, for the period 3

from February 1999 to April 2010. A systematic increasing aerosol loading signal is 4

associated with the strengthening of the seasonal cycle, particularly during boreal spring and 5

summer seasons, i.e. peak dust loading period. Interannual variations of Angstrom Exponent 6

anomaly from AERONET data (bottom panel) also suggest a characteristic increase in coarse 7

aerosol fraction.8

9
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Figure 12. Zonal average AOD trends from 55° S to 55° N (land and ocean).2


