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Summary 

Recently, liquid oxygen-liquid methane (LO2-LCH4) has been considered as a potential “green” 
propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced 
Development (PCAD) project was tasked by NASA to develop this propulsion combination to enable safe 
and cost-effective exploration missions. To date, limited experience with such combinations exist, and as 
a result a comprehensive test program is critical to demonstrating with the viability of implementing such 
a system. The NASA Glenn Research Center conducted a test program of a 100-lbf (445-N) reaction 
control engine (RCE) at the Center’s Altitude Combustion Stand (ACS), focusing on altitude testing over 
a wide variety of operational conditions. The ACS facility includes unique propellant conditioning feed 
systems (PCFS), which allow precise control of propellant inlet conditions to the engine. Engine 
performance as a result of these inlet conditions was examined extensively during the test program. This 
paper is a companion to the previous specific impulse testing paper, and discusses the pulsed-mode 
operation portion of testing, with a focus on minimum impulse bit (MIB) and repeatable pulse 
performance. The engine successfully demonstrated target MIB performance at all conditions, as well as 
successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during 
testing are also discussed, including a double pulse phenomenon, which was not noted in previous test 
programs for this engine. 

1.0 0B0BIntroduction 

To enable future exploration of the Moon, Mars, and beyond, next-generation propellant systems are 
being developed. With an emphasis on nontoxic, “green” propellants, liquid oxygen-liquid methane (LO2-
LCH4) has risen to the forefront. LCH4 is an attractive propellant because it does not require the strict 
thermal storage requirements of hydrogen (due to its larger density and higher boiling point), nor does it 
require the rigorous handling protocols of toxic hypergolic propellants. It also has the potential, when 
paired with LO2, to produce higher specific impulse than either the existing hypergolic or LO2-kerosene 
systems. This higher specific impulse and improved storage capability could reduce vehicle mass when 
compared with hydrogen-based systems, since smaller propellant storage and management would be 
required. Not only is there a potential for decreased vehicle mass, these propellants can also be produced 
on Mars using local resources. Prior work with this propellant combination is limited, so a goal of the 
NASA Propulsion and Cryogenic Advanced Development (PCAD) project was to examine the feasibility 
and performance characteristics of these systems (Refs. 1 to 3). In particular, there is interest in 
demonstrating repeatable and reliable ignition of an engine over a wide range of valve inlet temperatures 
(from liquid-liquid operation to gas-gas operation), especially at vacuum conditions (Refs. 3 and 4).  
To facilitate this, a 100-lbf (445-N) LO2-LCH4 Reaction Control Engine (RCE) was developed by Aerojet 
Corporation (Ref. 5). In late 2009 and 2010, this engine underwent a series of tests in the Altitude 
Combustion Stand (ACS) at the NASA Glenn Research Center (Refs. 6 and 7). Two specially designed 
Propellant Conditioning Feed Systems (PCFS) were developed to enable precise propellant temperature 
control. The first test series (Refs. 6 and 7) at ACS examined specific impulse performance with burn 
durations up to 7 s. The engine met the Isp,vac goal, achieving an overall average Isp,vac of 305 s, ±4 percent. 
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4.5 13B13BTiming and Permissives 

In order to ensure proper conditions are met for safe and controlled tests in ACS, two different 
checks are conducted. The first checks are system permissives. These are conditions that must be met 
prior to a test and include “rig-ready” signals from the PCFS, proper power and electrical conditions to 
the test cell, and proper supply pressure for system pressurants. Once the permissives are met, operators 
are then permitted by the PLC to start a test. Timing for a test at ACS is handled in four zones, which 
are described in Reference 7. Unless otherwise noted, only Zone 2, the hot fire portion, is discussed in 
this document. In order to achieve pulse testing, the command timing of Zone 2 encompassed a single 
pulse. This zone was then repeated to achieve the desired number of consecutive pulses. The timing of 
a pulse included a 10-ms LO2 lead on startup, which was intended to bring both manifolds up to 
pressure at the same time based on cold propellant flow tests. A 5-psia (0.03-MPa) nitrogen gas purge 
was introduced through the igniter cavity pressure port (Pc,ign) and manifold pressure ports (PFJ and 
POJ) between pulses using a check valve. This purge ensured that no combustible gas was trapped in 
the manifolds between pulses, minimizing the chances for a hard start. The igniter sparks were initiated 
20 ms before the LCH4 flow. Table I lists the command timing with respect to the zone start, and the 
duration that the valve remains in that commanded state. Thus, a valve (or abort window) that opens at 
30 ms with a duration of 50 ms would mean the valve opened at 30 ms into zone 2 and closed at 80 ms 
into zone 2. The minimum timing resolution of the PLC was 10 ms. The implications of this timing 
schedule are discussed in Section 4.7.1 below. At the end of the pulse, the LO2 valve was closed with 
the LCH4 following 40 ms later. This fuel- rich shutdown was intended to prevent oxidation on the hot 
chamber walls.  

No attempt was made for a “pre-chill” (pre-flow of LO2 to lower the injector hardware temperature) 
of the engine prior to start of test. However, the propellant lines were maintained at chilled conditions 
up to the thruster valves during and between runs by means of trace cooling around the propellant lines. 
Since no pre-chill was conducted, the injector often started at near ambient temperature (≈500 °R 
(278 K)). Therefore, there was a considerable transient on startup as the liquid propellant phase changes 
to gas phase in the manifolds and the manifolds subsequently chill-in. 

The electric pulse width (EPW) is the time when both thruster valves are commanded open. In the 
current study, this is between the opening of the methane valve and when the oxygen valve closes. 
The duty cycle is the EPW divided by the total run time for a single pulse. Thus, for 80-ms EPW with a 
5-percent duty cycle, the dwell time between pulse starts would be 1600 ms (1.6 s). Figure 8 shows a 
basic timing sequence used for these series of tests. Unless otherwise noted, this timing was maintained 
for all tests described here. 
 
 

TABLE I: TIMING FOR VARIOUS PULSE WIDTHS (EPWs) USED IN PULSE TESTING 
EPW, 

ms 
Zone 2,a 

ms 
(% duty cycle) 

Spark 
on/duration,

ms 

Oxygen  
on/duration,

ms 

Fuel 
on/duration,

ms 

Pcav abort window 
start/duration, 

ms 
500 980 (50) 230/100 240/500 250/510 350/300 
100 380 (25) 30/100 40/110 50/140 120/20 
80 1580 (5) 30/90 40/90 50/120 120/10 
40 780 (5) 30/60 40/50 50/80 OFF 

aZone 2 is repeated for desired number of pulses. Zone 2 is left 20 ms short to account for 
programmable logic controller (PLC) delay in repeating the zone. 
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6.1 18B18BUncertainty Analysis of I-bit 

An uncertainty analysis was performed to qualify the I-bit values to fully meet Joint Army, Navy, 
NASA, Air Force (JANNAF) reporting standards (Ref. 16). The equations for I-bit and its uncertainty  
(UI-bit) are 
 

 
 tF

P
d

valveCH

high %10
bit-I vac

4

cav  (3) 

 

 2222222
- ttFFFFbitI BBU  P  (4) 

 
In equation (3), Fvac is the vacuum thrust and t is the time. The thrust is integrated over the pulse 

width, as described above. In equation (4), B is the bias uncertainty that includes the instrumentation and 
calibration uncertainties, while PF is the precision uncertainty, which represents scatter in the data. Both 
also include a Student’s t-distribution factor for a 95-percent confidence interval, and will be discussed in 
more depth below. The θ values are the sensitivity terms, which are the partial derivatives of I-bit with 
respect to its dependent variables (F, t). Simply they are θF = t and θt = F.  

The bias uncertainty of time, Bt, is assumed to be negligible. The time stamp in the data files is taken 
from the data system clock. The bias uncertainty of the force term,	ܤி౬౗ౙ , is derived from the vacuum 
thrust equation: 

 
















 
cells

load 3
ambvac eAPFKF  (5) 

 

 22
amb

222222222222222
ambeeambambvac eAPeKFAAPPKKFFF BPBABFBKBBBBB   (6) 

 
Where F is the force measured by the load cells, Pamb is the pressure outside the chamber, Ae is the 

exit area of the nozzle, and K is the calibration factor (calibrations are done at the beginning and end of 
each test day). The bias values were determined in the previous test program and are displayed in 
Table III. The previous program encompassed 55 tests, so the Student’s t-distribution factor was 2 with a 
95-percent confidence interval. The only term in Table III that would change with the current pulse test 
program is the sensitivity of the load cell calibration factor (K-factor), θK. As shown in Equation (6), this 
term is equal to the average force exerted on the load cells over all tests. For the previous program 
(Ref. 7) it was ≈100 lbf (445 N) and for the pulse program it was ≈50 lbf (222 N) in each pulse. Using the 
latter would decrease the bias error, ܤி౬౗ౙ

ଶ , to a value of approximately 13.3. However, the uncertainty 
calculations were programmed prior to the pulse test program so estimates could be obtained in real time. 
Therefore, while the values in Table III are somewhat conservative, they were retained.  

 
 

TABLE III: THE BIAS UNCERTAINTY FOR THE VACUUM THRUST MEASUREMENTS  
 Sensitivity binst Bcali B2 = Θ2 Σ(tb)2 

Force (summation of three load cells) 1.033 = θF ±1 lbf each ±0.06 lbf each 12.862 

Force calibration term (K factor) 99.863 = θK ------ 0.005 0.999 

Thrust—area, exit 0.210 = θA ±0.001 in.2 ------ 1.757×10–7 

Thrust—pressure ambient 13.710 = θP ±0.015 psi 0.0063 0.204 

ி౬౗ౙܤ
ଶ  14.065 
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TABLE V: POTENTIAL CAUSES OF DAMAGE TO COLUMBIUM CHAMBER 
Potential cause Proof Result 

Nozzles used here were newer than 
ones used in previous testing. The 
coating batch on the new nozzles 
could have been flawed. 

Test the old nozzle in the current 
facility in an attempt to cause the 
same damage. 

Nozzle had been damaged by other means in 
previous testing and could not be reused. 

Operating temperature exceeds the 
rated coating temperature. 

No direct chamber temperature 
diagnostics are available; 
however, the color of the nozzle 
during burn is an indicator. 

Nozzles discolor after heat exposure, but SN–1 had 
not yet been discolored. Yet the damage still 
occurred. Also, during duration testing, much 
higher temperatures were reached with no damage. 

Molten material from a degrading of 
the spark plug damaged the nozzle. 

Spark plug was removed and 
investigated. 

No damage to the spark plug was found. No 
damage was observed in the igniter cavity nor at 
the converging section of the nozzle. 

High local mixture ratios (MRs) near 
the wall were creating hot spots. 

Igniter pins inspected for 
alignment. Rough calculations 
were done to determine local MR 
at the injector. 

Pins are inspected as standard leak check 
procedures and were never found out of alignment. 
Calculations indicated a lower MR at the injector. 

Propellant flow timing could be 
causing hard starts or oxidation on 
the walls (if directly exposed to 
LO2). 

Timing was reviewed. 
The oxygen valve was shut first so 
that the hot walls would not be 
exposed directly to oxygen. 

Aerojet testing used a variety of timing conditions 
including oxygen flow on shutdown. 

 
 
environment is insufficient, the rate of volatilization will exceed the formation, and the protective layer 
will fail. The oxygen may then leach into the coating and cause internal damage (scale formation). Small 
samples of the damaged coating were scraped off the chamber and chemically analyzed (x ray and 
scanning electron microscope (SEM)). The results (see Appendix B) indicated the presence of niobium 
oxide indicating oxidation of the substrate, but lacked the silica that would be indicative of the protective 
coating. The timing of the propellants had been oriented to avoid concern over too much oxygen near the 
hot walls, but this may have caused oxygen starvation of the coating. This, combined with the transient 
thermal conditions of a high duty cycle, could have led to break down of the coating. However, 
destructive testing and a more detailed materials study would be required to confirm this theory. 

Various solutions were discussed including preconditioning of the nozzles in an oxide atmosphere or 
application of a barrier coating. However, the path forward involved a simple change in test conditions in 
an attempt to avoid or reduce the occurrence of the pesting phenomenon. After weighing the risks, testing 
was resumed with the SN–1 chamber (since damage was minimal) with the following changes:  
 

(1) The duty cycle was decreased to 5 percent. The majority of the previous Aerojet testing had been 
done at this condition. This would also help mitigate the transients in the chamber, allowing more 
time between pulses for gas dispersion. 

(2) The lower duty cycle also allows more time for the coating and substrate to reach thermal 
equilibrium between pulses. A thermal mismatch between the coating and substrate may also 
have contributed to the damage. 

(3) The existing damage to the nozzle was well documented. When it was reinstalled, the nozzle was 
rotated 90 to see if the damage was related to the injector pattern (i.e., flow irregularities). 

 
Following the above changes, chamber SN–1 was tested for over 700 pulses with videoscope 

inspections performed at the end of each test day. No further degradation of the coating was observed 
beyond expected normal wear. Since the nature of anomaly is beyond the scope of the testing program, 
and since no further damage was observed, it was concluded not to pursue a more definitive explanation 
of cause at this time.  
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7.0 6B6BSummary and Conclusions 

The 100-lbf  liquid oxygen-liquid methane (LO2-LCH4) reaction control engine (RCE) developed by 
Aerojet was tested to determine impulse bit (I-bit) performance. All experiments took place in a reduced 
pressure environment using the Altitude Combustion Stand at the NASA Glenn Research Center. 
Propellant temperature was varied between three set point conditions to simulate operation limits of an  
in-space system. Pulse train length (number of consecutive pulses), pulse duration (electronic pulse width 
(EPW)), and duty cycle were all adjusted to meet test needs. 

The performance fully met three of the four objectives set forth: It was operated at, and below, the 
required minimum pulse duration of 80 ms; it achieved a minimum impulse bit (MIB) of less than 4 lbf-s 
(at 40-ms pulse duration); and it was operated at a range of duty cycle conditions. The fourth requirement 
stated that the MIB repeatability should be within ±5 percent after achieving stable temperature. 
However, stable temperatures were not achieved due to warming in the lines, believed to be associated 
with one of the turbine flow meters, though this has yet to be confirmed. This was a facility issue and not 
related to the performance of the engine. As a result, propellant temperatures increased gradually over the 
pulse train, which involved as many as 30 consecutive pulses. The I-bit values were shown to be strongly 
dependent on propellant inlet temperature with warmer propellants showing shorter I-bits. Thus the I-bit 
values dropped off toward the end of longer pulse trains. The number of consecutive pulses demonstrates 
reliable and repeatable ignition and pulse performance, bolstering the feasibility of this propellant 
combination for future exploration endeavors. 

Several issues with this particular engine system did occur. A unique phenomenon was observed 
whereby the engine reignited immediately after the valves were closed, resulting in a “double pulse.” 
Manifold temperature and pressure conditions indicate that this may have been due to a two-phase flow 
condition. Vaporization of liquid in the oxygen manifold could have reacted with the lagging methane 
flow to cause a short re-ignition. This double pulse phenomenon also led to higher I-bits (due to longer 
integration times). Another issue was damage to the chamber surface coating that occurred early in the 
pulse test program. Since the coating prevents oxidation of the columbium substrate, this posed a concern 
to the safety of the engine. Chemical analysis of some damaged coating material indicates this may have 
been caused by a phenomena likened to pesting. Insufficient oxygen at these temperature conditions 
prevented the formation of silicon oxide on the coating surface. The lack this protective layer caused 
internal damage to the coating (scaling). The thermal cycling of a high duty cycle could have contributed 
to this issue. Testing was resumed at lower duty cycle conditions (5 percent) with no further damage. 

8.0 7B7BRelated Work 

Testing with this engine continued with a focus on ignition phenomena. Since one of the perceived 
drawbacks of this propellant combination is high ignition energy, this program sought to determine 
energy limits. A well instrumented exciter unit was used to obtain high-fidelity voltage information of the 
spark discharge. By coupling this to the existing pressure instruments, it was possible to determine the 
energy of the ignition spark. A variable energy exciter unit was developed to explore these limits.  
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Appendix A31B31B.—Acronyms and Symbols 

The acronyms and symbols found in this report are presented here. 
 
Acronyms 
ACS Altitude Combustion Stand  
EPW electronic pulse width 
ETDP Exploration and Technology Development Program 
FFC fuel film cooling 
FFT fast Fourier transform 
JANNAF Joint Army, Navy, NASA, Air Force 
MIB minimum impulse bit (lbf-s (N-s)) 
MR mixture ratio 
NASA National Aeronautics and Space Administration 
NIST National Institute of Standards and Technology 
PCAD Propulsion and Cryogenic Advanced Development (project) 
PCFS propellant conditioning feed system 
PLC programmable logic controller 
RCE reaction control engine 
RETF Rocket Engine Test Facility 
RTD resistance temperature detector 
SEM scanning electron microscope 
SN serial number 
TFV Fuel temperature measured just upstream of thruster valves, °R (K) 
TOV Oxidizer temperature measured just upstream of thruster valves, °R (K) 
WSTF White Sands Test Facility 
 
Symbols 
A area, in.2 (mm2) 
B bias error 
b uncertainty value 
Cd  discharge coefficient 
c* characteristic exhaust velocity, ft/s (m/s) 
F thrust force, lbf (N) 
I-bit impulse bit (lbf-s (N-s)) 
Isp specific impulse, s 
L′ characteristic chamber length, in. (mm) 
m  mass flow rate, lbm/s (kg/s) 
MR mixture ratio, oxidizer/fuel (O/F), lbm/s oxidizer / lbm/s fuel (kg/s oxidizer / kg/s fuel)  
P pressure, psia (MPa) 
࣪ precision uncertainty 
T time, s  
Q volumetric flow rate, gal/min (L/min) 
t factor from Student’s t-distribution 
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Δ differential 
 fluid density, lbm/ft3 (kg/m3) 
 
Subscripts 
amb ambient 
c chamber 
calc calculated uncertainty 
cali calibration uncertainty 
cav chamber acoustic cavity 
e nozzle exit 
F thrust force 
f fuel  
ign igniter 
inst instrument uncertainty 
meas measurement uncertainty 
o oxidizer 
therm thermal expansion effects 
throat throat 
total total 
vac vacuum condition 
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Appendix B 32B32B.—X ray and Scanning Electron Microscope Results 

Small samples of the coating from one of the damaged nozzles, serial number (SN)–3, were provided 
to the NASA Glenn materials group for analysis. The nozzle was scraped in both damaged and 
undamaged areas for comparison. Kapton® tape (DuPont) was used to collect and contain the sample. The 
following information is the raw data that led to the conclusions provided by Dongming Zhu of the 
NASA Glenn materials group, who performed this analysis.  

X ray diffraction data was gathered using a D8 Advance Diffractometer using Cu K radiation. Data 
was also gathered on the D8 Discover Diffractometer (area detector) to check for grain size effects. Full 
even-intensity Debye rings were observed indicating good sampling statistics. Samples of light and dark 
Kapton tape were also run to determine the contribution of the tape to the background. The scan of the 
light tape corresponded well with both datasets.  

B.1 34B34BX ray Diffraction: Undamaged (Baseline) 
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Phase ID sample: 
 

Chemical formula Compound name Crystal system Reference code SemiQuant [%] 
Nb Si2 Niobium silicon Hexagonal 04–003–6241 93 
Fe0.998 O Wüstite, syn Cubic 04–002–3667 7 

 
Possible matches to single unidentified peaks (not shown in graphics): 
 
30.1° Fe3O4, Fe(Nb2O6), or Cr2FeO4 
40.9° NbCr2 
73.2° FeO 

B.2 35B35BX ray Diffraction: Damaged 
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Appendix C33B33B.—Test Data Log 

The following tables list all tests that were performed as part of this study. The measurements are 
averages taken over the I-bit integration time. (Note that for high duty cycle (e.g., 50 percent) the 
chamber pressure never decays to 17.5 psi, which is the end point of the I-bit integration defined in 
Section 5.1. Therefore, the integration time ends when the next pulse begins). The information is 
abbreviated with respect to JANNAF standards to facilitate easier viewing of the parameters referenced in 
this document. The full table is available upon request. 

Column descriptions: 
 
(1) Run #: The number of the test run as referenced to the first facility tests in the 100-lbf RCE test 

program.  
(2) Test Description: The target conditions and/or purpose for the run is given.  
(3) All successful hot fire tests are indicated by their target propellant temperature (nominal, warm, 

or cold).  
(4) With the exception of a few tests, the flow rates were set to achieve a mixture ratio (MR) of 2.5 

based on the previous specific impulse test series. There are a few conditions designated “MR 
Low” which used the set point for an MR=2.0. 

(5) “Thrust Cal” indicates a calibration of the thrust load cell. All calibrations were performed at 
altitude conditions. These calibrations were performed at the beginning and end of each day 

(6) “Late ignition” indicates that for one of the pulses in a given spark train, ignition occurred late. 
This triggered an abort, as described in section 4.7.1, which caused an incomplete (aborted) 
pulse train. 

(7) “No-ignition” indicates that a given pulse in the train failed to ignite, resulting in an incomplete 
pulse train.  

(8) “Abort” indicates a facility abort. This could be triggered by a sensor reading out of limit. In 
some cases, this was due to an overly conservative limit set in the PLC (e.g. for the manifold 
pressures POJ and/or PFJ).  

(9) Pulse Duration: The time between ignition and the closing of the propellant valves for each 
pulse. This is also known as the electronic pulse width (EPW). 

(10) Number of Pulses achieved/planned: The first number specifies the number of successful pulses 
achieved, while the second number indicates the number of pulses intended for the pulse train. 

(11) Duty Cycle: This indicates the frequency of pulsing. It is the ratio of the pulse duration to the 
total between pulses (pulse start to pulse start). For example, a test with a 5-percent duty cycle 
and 80-ms pulse durations would mean there is 1600 ms between pulses (80 ms of hot fire and 
1520 ms of down time). 

(12) Run Tank Pressures: The pressure in the propellant holding tanks. This is a pressure-driven 
flow system, so these pressures govern the mass flow rate of the propellants, and thus the MR. 

(13) Run Tank Temperature: The temperature of the propellant in the holding tanks. The desired 
conditions (cold, nominal, and warm) were judged based on the temperature at the thruster 
valves. Thus the run tank temperatures were chosen to account for line losses. Note the 
temperatures are given in Fahrenheit, since this was the convention of the propellant 
conditioning systems (PFCS). 

(14) Thrust parameters: The thrust measurements from the load cell. The first column (Thrust, lbf) is 
a summation of the three loads, corrected using the calibration coefficient or “K factor”. The 
“vacuum thrust” is corrected to vacuum relative conditions. 

(15) Mass Flow: The mass flow rates and corresponding mixture ratio, or MR, of the propellants 
calculated at the venturi. During these short pulse times, these measurements are highly 
transient (Section 4.4.1) and these numbers are rough averages. 

(16) Chamber pressure: The pressure inside the combustion chamber, “Pcav” averaged.  
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(17) Valve temperature: The temperature at the propellant thruster valve. TOV is the oxidizer side, 
TFV is fuel. 

(18) Test capsule pressure: The pressure in test cell. Therefore, the ‘ambient’ pressure of the engine.  
(19) Average I-bit: The I-bits for each individual pulse are averaged to obtain this number. 
(20) Note: Test specific notes.  

 



RCE ACS Test summary: Pulse testing

Chamber 
pressure

Run # Test description
Pulse Duration, 

s

Number of 
pulses 

achieved / 
planned

Duty Cycle LOX CH4 LOX CH4
Thrust 

(lbf)
Vac Thrust 

(lbf)
K Factor

LOX 
Venturi 
(lbm/s)

CH4 

Venturi 
(lbm/s)

MR 
venturi

Pcav (5607) TOV (5511) TFV (5011)
Test Capsule 

pressure, psia
Average 
Ibit, lbf-s

NOTES

Columbium Nozzle SN#3, Injector 6, Champion Exciter (contunation from steady state tests)
Interim activity: Prepare for pulse testing, software modified.

3/5/2010 Day Plan: Begin pulse test program at nominal conditions. Start with 1s duration and low number of pulses, gradually decrease duration and incorperate more pulses. Target is to get 80ms duration. 
End of Day: Very sucessful day.PCIGN broke at test 193.  Took time to work out facility timing setting & did not have enough propellant to try for the 80ms case.   Orange color in flame during 20s pulse... boroscope next day revealed more chamber spalling!  These are not severe conditions, so don't know why it occurred. 

190 Thrust cal
191 Nominal 1 5/5 50% 325 265 43.93 47.11 1.028 0.121 0.054 2.24 96.87 200.95 202.91 0.232 86.096
192 Nominal 1 5/5 50% 325 265 44.75 47.91 1.028 0.118 0.055 2.15 95.94 203.09 201.79 0.230 88.107

193 Nominal 1 5/5 50% 325 265 44.01 47.33 1.028 0.112 0.056 1.99 93.70 207.79 202.84 0.242 86.564
PCIGN was lost during a pressure spike.  Reading 
shift low, but can still continue testing

194 No ignition-Nominal 1 0/10 50% 325 265 -262 -265 1.028
195 Nominal 1 10/10 50% 325 265 -262 -266 44.04 46.96 1.028 0.111 0.057 1.97 95.39 214.83 202.69 0.213 88.715
196 Nominal 0.5 5/5 50% 325 265 -262 -264 45.62 49.55 1.028 0.120 0.058 2.06 97.36 206.96 203.55 0.286 43.798
197 Nominal 0.5 5/5 50% 325 265 -262 -265 46.51 50.02 1.028 0.120 0.057 2.10 96.91 205.84 204.22 0.255 44.630
198 Nominal 0.5 5/5 50% 325 265 -262 -262 46.06 49.21 1.028 0.117 0.058 2.01 94.73 207.42 204.56 0.230 43.533
199 Facility abort- Nominal 0.1 0/5 50% 325 265 -261 -263 1.028
200 Nominal 0.1 5/5 50% 325 265 52.29 56.07 1.028 0.142 0.074 1.93 101.94 205.21 203.77 0.276 9.931
201 Facility abort- Nominal 0.1 0/10 50% 325 265 -262 -261 1.028
202 Nominal 0.1 10/10 50% 325 265 -260 -262 55.32 59.02 1.028 0.142 0.076 1.87 108.13 205.09 202.31 0.270 10.808
203 Facility abort- Nominal 0.1 0/20 50% 325 265 -260 -260 1.028

204 Nominal 0.1 20/20 50% 325 265 55.77 58.32 1.028 0.144 0.078 1.85 113.39 205.90 202.29 0.186 10.839 Some orange color and sparking observed in plume

205 Nominal 0.1 20/20 50% 325 265 54.55 57.59 1.028 0.139 0.076 1.83 110.05 208.86 207.56 0.221 10.667 Some orange color and sparking observed in plume
206 Thrust cal

NEW Columbium Nozzle SN#1
Interim Activity: The SN#3 nozzle was removed, inspection confirmed spalling seen with boroscope.  Virgin spare Nozzle SN1 was put on the stand. Pcign transducer was replaced with the more rugged Tabor sensors.

3/12/2010 Day Plan: Run at very benign conditions since we don't know what caused damage. No more than 10pulses. Goal is to get some tests at 80ms
End of Day: Lost Pcign on 1st test.  Late ignitions triggering aborts… cannot set abort limits any shorter. Methane lag diminishing as train proceeds… could this be a cause of spalling?

207 Thrust Cal
208 Late ignition - Nominal 0.1 4/5 25% 325 265 -263 -257 35.33 39.59 1.028 0.119 0.065 1.82 68.75 225.70 204.39 0.311 5.969 Late ignition on last pulse
209 Nominal 0.08 1/1 25% 325 265 -264 -258 38.12 42.25 1.028 0.166 0.086 1.94 69.63 200.02 203.64 0.300 0.000 One pulse to check facility timing
210 Late ignition - Nominal 0.08 2/5 25% 325 265 -264 -257 38.17 41.86 1.028 0.151 0.071 2.13 71.57 205.22 206.65 0.269 6.781 Late ignition
211 Nominal 0.08 5/5 25% 325 265 -256 -264 37.87 41.80 1.028 0.139 0.067 2.07 71.43 206.29 212.16 0.286 7.423 We are loosing methane lag by the 3rd pulse. 
212 Nominal 0.1 5/5 25% 325 265 42.50 46.58 1.028 0.128 0.071 1.81 80.57 207.83 211.96 0.293 9.069 Repeat earlier test to check methane lag.
213 Thrust cal

Interim Activity: Looked at data, still loosing methane lag. Don't know what is causing. Replace tabor pressure transducer and add higher range transducer to try to catch the problem
3/18/2010 Day Plan: Move to warm conditions, operate in 'safe' mode since we still don't know cause.  Goal is to get SOME test for milestone progression and see effect of temp on lag

End of Day: There was difficultly with the Pcav abort, the window is so small at these durations that a late ignition (at the tail end of window) may mean Pcav has not met the abort condition. Easiest solution is to shift the abort window 10ms later even though this may overlap the LOX valve closing
214 Thrust cal
215 Late ignition - Warm 0.1 0/1 25% 370 265 -238 -237 Ignition occurred after abort (in Zone 4)
216 Late ignition - Warm 0.1 4/5 25% 370 265 -238 -236 40.49 44.48 1.029 0.131 0.065 2.00 75.55 218.38 217.71 0.291 8.128 Late ignition

217 Warm 0.08 5/5 25% 370 265 -238 -235 38.48 42.65 1.029 0.136 0.064 2.11 71.09 222.59 221.96 0.304 6.944
Move to 80ms to mimic 3/12/2010 test in terms of 
hardware temps

218 Late ignition - Warm 0.08 2/5 25% 370 265 -238 -235 38.73 42.52 1.029 0.146 0.067 2.17 70.88 224.09 219.76 0.277 6.294 Late ignition
219 Late ignition - Warm 0.08 1/5 25% 370 265 -238 -235 30.91 33.77 1.029 0.159 0.076 2.10 53.22 224.36 222.08 0.208 0.000 Repeat of last test. Late ignition
220 Late ignition - Warm 0.08 3/5 25% 370 265 -238 -236 41.74 44.70 1.029 0.135 0.068 2.00 75.90 224.47 220.08 0.216 6.899 Late ignition

221 Warm 0.1 5/5 25% 370 265 -238 -236 40.86 44.38 1.029 0.125 0.066 1.91 76.56 224.04 221.09 0.254 8.172
Return to 100ms to look at hardware temp effects 
(compare with test 216)

222 Late ignition - Warm 0.1 4/5 25% 370 265 -238 -235 43.52 46.80 1.029 0.130 0.066 1.97 81.05 224.30 221.92 0.243 8.284 Late ignition
223 Thrust cal

3/23/2010 Day Plan: Move to Cold conditions, still use relatively benign settings to avoid spalling. The methane recirculation pump broke prior to testing. Decided to proceed with test day even though methane will not meet cold condition. 
End of Day: Light spalling was found on post-test inspection. Stopped testing to explore potential causes more thoroughly

224 Thrust cal

225 Late ignition - Cold 0.1 1/5 25% 325 285 -303 -280 27.45 30.80 1.032 0.118 0.064 1.84 36.73 171.47 190.38 0.245
Aborted on the manifold pressures (both)... looks like 
late ignition 

226 Abort -Cold 0.1 1/5 25% 325 285 -305 -280 39.24 42.27 1.032 0.123 0.066 1.87 57.29 175.72 190.37 0.221 2.495

Abort on PFJ ( effect sees in previous cold 
tests)…ignitions also are later in the cold cases. Will 
lower PFJ abort to 75 and POJ to 140. Also shift 
Pcav abort to the right

227 Late ignition - Cold 0.1 2/5 25% 325 285 -305 -280 41.46 45.08 1.032 0.169 0.109 1.55 76.12 175.02 189.09 0.259 9.597
Llate ignition, shift Pcav abort. Pressure transient in 
Methane on 1st pulse, the drop out causes LOX lag.

228 Abort -Cold 0.1 4/5 25% 325 285 -305 -280 43.97 47.46 1.032 0.165 0.089 1.86 82.43 176.12 189.81 0.244 10.433

Abort POJ:  Pressure transient in 1st pulse, methane 
decay is very slow and influction point is more 
severe (going positive). 
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NOTES

229 Late ignition - Cold 0.08 0/5 25% 325 285 -305 -279 0.329
 Late ignition… looks like it ignited on LAST spark or 
after

230 Late ignition - Cold 0.08 2/5 25% 325 285 -305 -280 38.96 42.83 1.032 0.200 0.137 1.46 72.27 171.63 188.10 0.281 8.742
Abort POJ - late ignition AND preignition on last (3rd 
pulse)

231 No ignition -Cold 0.08 0/5 25% 325 285 -305 -281 166.74 188.57 0.307
No ignition… the bleeds had been increased on this 
run, so they are going to back off to previous sets

232 Abort - Cold 0.08 4/5 25% 325 285 -305 -278 41.57 45.64 1.032 0.146 0.087 1.68 80.50 172.36 188.01 0.278 9.112 Abort POJ
233 Thrust cal

Installed Unison Exciter
Interim activity: Anaysis of previous test data shows we need longer pulse trains to resolve pulse behavior.  No definitive answer on the coating damage. Materials group analysis shows possible Pesting issue. Previously observed methane lag issues do not appear to be a problem. 

6/3/2010 Day Plan: Run at nominal conditions. Chamber has been clocked to monitor damage locations. Reduce Duty cycle to 5%, run longer pulse trains (10pulses).
End of Day: After facility abort resulting in a long duration (10s) test, we ended testing to check for damage.  Good data from 1st two tests. Double pulse phenomena in run 235

234 Thrust cal
235 Nominal 0.08 10/10 5% 325 285 33.94 38.89 1.019 0.161 0.086 1.88 68.66 219.55 214.62 0.361 5.557
236 Nominal 0.08 10/10 5% 325 285 36.58 41.71 1.019 0.184 0.086 2.14 71.38 197.41 211.30 0.374 7.607

237 Faciity abort - Nominal 0.08 0/10 5% 325 285

Engine aborted on pulse 2, but missed a facility 
abort and the valves did not closed.  Had to use E-
stop

Interim activity: Checked facility and engine.  Facility had some heat damage from e-stop blow back. Engine had some discoloration on the bell… some blue that we haven't seen before. Boroscope does not indicate any spalling or other damage internal chamber. 
6/10/2010 Day Plan: Run Warm/Warm, 3 tests at 10pulse train.

End of Day: Got 3 good tests (good temp, no abort) at condition, and one more at higher temp.  Did a timing test to see what would take to get a 40ms pulse duration. 
238 Thrust Cal

239 Warm 0.08 10/10 5% 370 265 -239 -236 36.33 40.88 1.026 0.149 0.067 2.24 69.94 231.30 243.79 0.332 5.298

POJ had gain error, readings are off. Fixed before 
next test. Did not hit temp targets, line traces will be 
adjusted

240 Warm 0.08 10/10 5% 370 265 -238 -238 37.59 42.62 1.026 0.149 0.076 1.96 73.71 224.41 223.44 0.366 6.371
241 Late ignition - Warm 0.08 6/10 5% 370 265 -238 -238 37.11 42.14 1.026 0.160 0.078 2.06 72.41 222.42 226.75 0.367 6.385 Late ignition
242 Warm 0.08 10/10 5% 370 265 -238 -236 39.04 43.75 1.026 0.146 0.077 1.90 74.61 222.94 227.15 0.343 6.742
243 Warm 0.08 10/10 5% 370 265 -238 -237 37.91 42.77 1.026 0.147 0.078 1.90 74.12 223.06 224.99 0.354 6.646
244 Cold flow to test 40ms timing 0.04 10/10 5% 370 265 40ms timing sucessful, no aborts
245 Thrust cal

Interim activity: Checked data and looked at double pulse phenomena. May be liquid collecting in manifold, then off gasing and reacting (autoignite) in the methane lag period
6/15/2010 Day Plan: Cold/Cold with 3 good tests of 10 pulse trains. Methane reciculation pump sill non-operational, so temperatures will likely not reach target

End of Day: First test was warm. Increased bleeds to get colder.  Several aborts on POJ, reduced abort limit to 100psi to correct, then 2 good tests. Last test we reduced methane lag to see if effects double pulse.
246 Thrust Cal
247 Cold 0.08 10/10 5% 325 285 -302 -280 41.39 46.52 1.027 0.171 0.083 2.07 81.75 179.18 208.01 0.374 8.857
248 Cold 0.08 10/10 5% 325 285 -301 -280 42.48 48.04 1.027 0.160 0.083 1.92 83.87 177.80 203.27 0.405 9.632 Increased bleed to lower temp
249 Abort - Cold 0.08 7/10 5% 325 285 -301 -279 43.02 48.39 1.027 0.165 0.086 1.92 84.13 170.42 197.65 0.391 10.002 Abort POJ -Increased bleed to lower temp
250 Abort - Cold 0.08 6/10 5% 325 285 -300 -278 43.46 48.64 1.027 0.169 0.088 1.93 83.65 171.23 195.67 0.377 9.947 Abort POJ 
251 Cold 0.08 10/10 5% 325 285 -301 -278 42.27 47.51 1.027 0.162 0.083 1.95 83.05 174.29 198.75 0.382 9.850

252 Cold 0.08 5/5 5% 325 285 38.61 43.93 1.027 0.183 0.088 2.09 75.56 179.68 198.93 0.388 8.391

Changed methane lag to see if can eliminate the 
double pulse.  Double pulse still occurred, severity 
will be examined

253 Thrust Cal
Interim activity: 

6/17/2010 Day Plan: Longer pulse trains and possibly 40ms pulse duration
End of Day: Successful day

254 Thrust Cal
255 Late ignition - Nominal 0.08 12/15 5% 325 265 -262 -268 36.81 41.85 1.030 0.146 0.083 1.74 71.18 207.81 207.51 0.368 6.836 Late ignition
256 Nominal 0.08 15/15 5% 325 265 -261 -265 37.40 42.92 1.030 0.137 0.080 1.70 73.67 208.42 209.57 0.402 7.394  
257 Nominal 0.08 20/20 5% 325 265 -260 -268 38.62 44.03 1.030 0.132 0.077 1.72 75.35 208.13 208.30 0.395 7.967
258 Nominal 0.08 20/20 5% 325 265 -261 -269 38.92 44.22 1.030 0.132 0.078 1.70 76.49 209.43 207.81 0.386 7.699

259 Nominal 0.08 30/30 5% 325 265 -260 -270 38.97 44.46 1.030 0.132 0.077 1.72 77.31 213.23 208.79 0.400 7.296
20 pulses look consistant and safe, will tried a 30 to 
match aerojet testing

260 Nominal 0.04 5/5 5% 325 265 -260 -268 25.22 31.15 1.030 0.151 0.081 1.87 50.16 207.29 196.53 0.433 3.265
261 Nominal 0.04 5/5 5% 325 265 -260 -271 24.81 30.44 1.030 0.155 0.083 1.88 50.43 206.49 195.77 0.410 3.269
262 Thrust cal

Compact Exciter Installed
Interim activity: Installed the  compact exciter, Data system recalibrated, new data channels for compact exiciter data signals

7/7/2010 Day Plan: Warm/Warm with the compact exciter.  Up to 30 pulse cycles.  Nominal mixture ratio.  1 test at low MR at conclusion of day.  40 ms pulse train at end
End of Day: Exciter performed well, there were no dropouts or ignition failures. No issues encountered.

263 Thrust cal
264 Warm 0.08 10/10 5% 370 265 -242 -239 32.44 38.04 1.038 0.145 0.071 2.03 66.15 228.93 237.69 0.408 4.849
265 Warm 0.08 30/30 5% 370 265 -241 -238 35.63 41.35 1.038 0.132 0.071 1.86 70.59 229.31 233.21 0.417 5.804
266 Warm 0.08 30/30 5% 370 265 -240 -238 36.51 42.05 1.038 0.124 0.072 1.73 70.95 232.12 229.18 0.404 6.023
267 Warm 0.08 30/30 5% 370 265 -241 -237 36.48 42.17 1.038 0.127 0.072 1.77 70.29 236.11 227.42 0.415 5.672
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268 Warm - Low MR 0.08 10/10 5% 330 265 -241 -247 35.24 41.30 1.038 0.136 0.082 1.66 68.42 229.01 218.89 0.441 5.646 Lower O/F to push ignition limits
269 Warm - Low MR 0.08 10/10 5% 330 265 -240 -240 35.40 41.62 1.038 0.148 0.082 1.81 70.66 224.41 220.06 0.453 6.076 Lower O/F repeat
270 Warm 0.04 5/5 5% 370 265 -240 -240 27.40 33.83 1.038 0.157 0.076 2.07 54.67 220.45 208.57 0.468 3.498 40ms pulse duration- Aborts off
271 Warm 0.04 5/5 5% 370 265 -240 -240 29.45 36.04 1.038 0.146 0.076 1.92 58.82 213.18 215.68 0.480 5.536 40ms pulse duration- Aborts off
272 Thrust cal

Interim activity:
7/9/2010 Day Plan: Cold/Cold with the compact exciter.  Up to 30 pulse cycles.  Nominal mixture ratio.  1 test at low MR at conclusion of day.  40 ms pulse train at end

End of Day: Temperature conditions were too warm, but continued testing to prove out exciter.  Test 279 almost out of Nitrogen, so we went to 40ms tests instead of repeating low MR. Double pulse observed in almost all 30pulses.
273 Thrust Cal
274 Late ignition - Cold 0.08 6/10 5% 325 285 -302 -277 35.96 42.11 1.031 0.199 0.089 2.24 70.80 182.45 204.53 0.449 7.714 Late ignition
275 Cold 0.08 10/10 5% 325 285 -302 -278 37.31 43.83 1.031 0.153 0.080 1.90 75.99 180.72 203.75 0.475 8.705
276 Cold 0.08 30/30 5% 325 285 -303 -278 37.51 43.55 1.031 0.147 0.073 2.03 77.49 185.91 215.37 0.441 8.114

277 Cold 0.08 10/10 5% 325 285 -302 -277 40.12 46.38 1.031 0.162 0.086 1.89 79.24 174.35 203.26 0.456 9.189
Try to force the CH4 traces on during test to better 
regulate temp

278 Cold 0.08 30/30 5% 325 285 -302 -278 40.07 46.25 1.031 0.149 0.075 1.98 81.12 182.90 210.80 0.450 8.630
Try to force the CH4 traces on during test to better 
regulate temp

279 Late ignition - Cold - Low MR 0.08 3/10 5% 290 285 -302 -277 34.44 40.76 1.031 0.195 0.115 1.70 67.87 175.42 196.45 0.460 7.826
Late ignition  Try to force the CH4 traces on during 
test to better regulate temp. 

280 No ignition -Cold 0.04 4/5 5% 325 285 -302 -275 23.71 30.12 1.031 0.173 0.097 1.79 44.74 170.22 192.77 0.467 3.810 Non-ignition
281 No ignition -Cold 0.04 3/5 5% 325 285 25.24 31.51 1.031 0.179 0.100 1.80 49.08 169.11 191.70 0.457 4.138 Non-ignition
282 Thrust cal

Interim activity:
7/13/2010 Day Plan: Nominal with the compact exciter.  Up to 30 pulse cycles.  Nominal mixture ratio.  1 test at low MR and a few  40 ms pulse trains

End of Day: Traces left on during all tests to try to maintain temperature better (reduce line heating issues)
283 Thrust Cal
284 Nominal 0.08 10/10 5% 325 265 -269 -265 34.70 37.99 1.025 0.177 0.077 2.30 69.01 189.04 211.39 0.240 6.853 Traces on during pulses
285 Nominal 0.08 30/30 5% 325 265 -266 -266 38.38 41.95 1.025 0.142 0.067 2.11 78.04 186.62 214.43 0.260 7.706 Traces on during pulses
286 Nominal 0.08 30/30 5% 325 265 -266 -265 40.56 43.95 1.025 0.142 0.069 2.06 80.32 186.30 208.51 0.247 8.088 Traces on during pulses

287 Late ignition -Nominal 0.08 20/30 5% 325 265 -265 -263 36.63 40.36 1.025 0.139 0.079 1.75 71.99 207.68 204.96 0.272 6.063
Late ignition. Traces on during pulses, Adjust Lox 
trace to get warmer

288 Nominal 0.08 30/30 5% 325 265 -265 -265 38.23 41.94 1.025 0.135 0.073 1.84 75.95 201.92 206.30 0.270 7.382
Traces on during pulses, Repeat…last abort was 
anomoly- caught PFJ late

289 Nominal 0.04 5/5 5% 325 265 -265 -264 25.56 29.75 1.025 0.149 0.080 1.88 51.92 203.15 196.87 0.305 3.189 Traces on during pulses
290 Late ignition -Nominal - Low MR 0.08 3/30 5% 275 265 -265 -264 32.12 36.36 1.025 0.155 0.099 1.57 65.22 204.27 199.76 0.308 5.465 Late ignition. Traces on during pulses
291 Nominal - Low MR 0.08 30 5% 275 265 -265 -264 30.95 34.71 1.025 0.117 0.077 1.52 62.51 224.61 205.39 0.275 4.341 Traces on during pulses, Warm on LOX
292 Thrust cal
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