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The Orion Guidance Navigation and Control (GN&C) team is charged with developing 

GN&C algorithms for the Exploration Flight Test One (EFT-1) vehicle.  The GN&C team is 

a joint team consisting primarily of Prime Contractor (Lockheed Martin) and NASA 

personnel and contractors.  Early in the GN&C development cycle the team selected 

MATLAB/Simulink as the tool for developing GN&C algorithms and Mathworks autocode 

tools as the means for converting GN&C algorithms to flight software (FSW).  This paper 

provides an assessment of the successes and problems encountered by the GN&C team from 

the perspective of Orion GN&C developers, integrators, FSW engineers and management.  

The Orion GN&C approach to graphical development, including simulation tools, standards 

development and autocode approaches are scored for the main activities that the team has 

completed through the development phases of the program. 

Nomenclature 

ARINC =  Aeronautical Radio, Incorporated GN&C =  Guidance Navigation and Control 

CC  =  Cyclomatic Complexity GUI =  Graphical User Interface 

CDR =  Critical Design Review MBD =  Model Based Design 

CSU =  Computer Software Unit PA-1 =  Pad Abort One 

EBA =  Empty Box Architecture PDR =  Preliminary Design Review 

eML =  embedded MATLAB PIL =  Processor In the Loop 

EFT-1 =  Exploration Flight Test One SDP =  Software Development Plan 

FSW =  Flight Software SIL = Software In the Loop 

I. Introduction 

HE Orion Guidance Navigation and Control (GN&C) team has developed GN&C flight software using a Model 

Based Development (MBD) process that includes developing algorithms in the Simulink® graphical design 

environment, automatically generating C++ code, and integrating the code into an Aeronautical Radio, Incorporated 

ARINC 653 partition.  The Orion GN&C application is large and complex and it was developed by a geographically 

separated team, so there are many experiences and lessons learned that apply to projects within and outside the 

aerospace industry. 

This paper provides an assessment of the successes and problems encountered by the GN&C team from the 

perspective of Orion GN&C developers, integrators, FSW engineers and management.  The Orion GN&C approach 

to graphical development, including simulation tools, standards development and autocode approaches are assessed 

for each of the main activities that the team has completed through the development phases of the program.  A 

chronological approach is taken to communicate both the Orion MBD process and the lessons learned from that 
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process.  The following sections provide relevant background on the Orion project as well as problems and 

successes encountered during the design phase prior to Preliminary Design Review (PDR), during the development 

phase prior to Critical Design Review (CDR) and during post CDR production.  At the end of the paper, lessons 

learned are summarized and recommendations provided for future MBD projects. 

  

II. Orion Project Background 

 Three aspects of the Orion project bear on the the MBD process:  Application size and complexity, GN&C team 

makeup and geographical distribution, and legacy tools and infrastructure.  This section provides background in 

each of these areas to allow the reader to understand and assess process decisions and lessons learned. 

Application Size and Complexity.  The Orion Spacecraft is NASA’s vehicle for manned exploration outside of 

low Earth orbit.  The spacecraft consists of three main components: a manned capsule, or Crew Module (CM), a 

Service Module (SM) and a Launch Abort System (LAS).  The CM houses the GN&C subsystem shown in Figure 

1. At the center of the GN&C subsystem is the GN&C Flight Software (FSW) which executes on the Vehicle 

Management Computers (VMC’s).  This software receives inputs from navigation sensors and pilot controls and 

displays and commands the appropriate effectors on the CM, SM and LAS to accomplish mission objectives.   

 The Orion GN&C software operates across a variety of mission phases, including pre-launch, ascent, Earth orbit, 

transist, loiter, rendezvous, docking, entry and various abort scenarios.  During these phases, GN&C communicates 

with sensors on the CM and SM, and commands effectors on the CM, SM and LAS.  The software must operate in 

both manual and automated modes and must handle commands from the crew and the ground.  The software must 

also execute complex guidance and navigation algorithms while controlling highly dynamic configurations during 

entry, ascent aborts and orbital maneuvers.  The resulting breadth of algorithm types drives a multi-rate architecture 

to meet CPU usage allocations. 

 The Orion project has evolved since its 

inception.  Originally, the first mission to fly 

with the GN&C software would have included 

all three components (CM, SM and LAS) and 

would have been required to execute nearly the 

entire breadth of GN&C capability.  However, 

changes in manned exploration schedules and 

budgets have resulted in a phased development 

approach consisting of test flights of increasing 

capability.  The first flight of the Orion CM will 

now be a test flight of the CM only, launched on 

a commercial booster to an elliptical orbit 

designed to achieve a high speed entry to test 

CM thermal protection systems.  Termed 

“Exploration Flight Test One” (EFT-1) this test 

will limit the required GN&C functionality to 

navigation-only during pre-launch through 

booster separation, followed by full GN&C to 

guide the capsule to a water landing target 

through the orbital coast, atmospheric entry and parachute landing phases (Figure 2).  For EFT-1, the LAS is only a 

mass simulator, so no GN&C abort algorithms are required for EFT-1.  This phased flight test approach means that 

portions of the GN&C software design are complete and undergoing test and integration with the Orion avionics, 

while other components and algorithms remain at the post-PDR design complete phase.  

 

 
Figure 1.   Orion GN&C Subsystem. 
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GN&C Team.  The Orion GN&C team is a large, geographically dispersed team consisting of members with 

diverse experience and backgrounds.  GN&C architecture and algorithm developers include NASA civil servants at 

Johnson Space Center in Houston, TX, Lockheed Martin employees in Houston, and Denver Colorado, as well as 

developers  from Honeywell, Draper and other sub-contractors located in Florida, Massachusetts, Minnesota and 

other states.  Team members have program experience on the Space Shuttle, International Space Station, Mars 

exploration programs and commercial satellite development, to name a few.   GN&C software development 

experience ranges from “classical” 

development processes that use 

detailed requirements and hand-

written code, to more automated 

processes that depend wholly or 

partially on automated code 

generation.  Additionally, team 

members’ views on MBD 

processes tended to vary with their 

domain expertise, with navigation 

and guidance developers often 

preferring text-based algorithms, 

and controls and architectural 

designers preferring the data-flow 

depictions of algorithms afforded 

by some MBD tools such as 

Simulink®.  As discussed in the 

sections below, both the 

geographical separation and 

diverse experience base of the team impacted the MBD process, both in positive and negative ways. 

Legacy Tools.  Prior to selection of a prime contractor, the NASA team had developed a highly capable set of 

simulation tools and prototype GN&C algorithms adapted from legacy code in the C language.  Simulation models 

and GN&C algorithms were integrated into functioning executables within the JSC “Trick” simulation environment 

(Ref 1).  The simulation was termed the Advanced NASA Technology Architecture for Exploration Studies 

(ANTARES).  Most algorithm development and performance analysis prior to PDR was conducted using the 

ANTARES.  After contract award, Lockheed Martin also developed an independent Trick-based simulation named 

“Osiris.”  Osiris was architected to execute the GN&C FSW algorithms as a separate process.  This was done in 

done to allow sharing of the GN&C FSW between Osiris and ANTARES.  After PDR, Osiris became the simulation 

tool used to develop and test GN&C algorithms.    

The GN&C algorithms at PDR were derived from a combination of legacy C code algorithms (about 75%) and 

Simulink algorithms which were autocoded into C and integrated into the prototype C architecture.  Several 

proposals were considered to move the algorithms from prototype code to production software.  Ultimately the 

decision was made to use Simulink in an MBD process for the FSW development, while retaining the legacy C code 

simulations.  It was decided to create a development environment that included the C simulations communicating 

with a MATLAB/Simulink process as described in the next section.  Some of the factors in this decision were: 

 The prime contractor’s FSW team was staffed under the assumption that autocode would be used to 

generate the GN&C algorithms – so there were insufficient resources to allow manual coding of algorithms 

from detailed written requirements 

 The MATLAB/Simulink process would allow development and debugging of the algorithms in their native 

MBD environment 

 The legacy simulations were fully developed and functional, so development of a Simulink simulation 

would take time and resources that were deemed unnecessary 

 The Pad Abort One (PA-1) flight test had used a similar process for software development.   

Future papers will compare the benefits and drawbacks of the Orion MBD process with traditional hand-code 

processes.  The focus here is to enumerate and explain the techniques, issues and lessons learned from the 

processes and tools used. 

 
Figure 2.  EFT-1 Mission Overview. 
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with the legacy imulati ons, and there was a 
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Figure 5.  Typical GN&C CSU Diagram. 

 

This would provide higher speed execution for Monte Carlo analysis and some debugging.  When execution of the 

tool was in the native MATLAB process, the tool was referred to as “RAMSES-M” (M for “MATLAB”).  When 

executing the autocode as a compiled process, it was called “RAMSES-A” (A for “Autocode”). 

Figure 4 shows how the above tools were used in the design and production cycles.  At the upper left, the initial 

prototyping, requirements validation and pre-PDR design and analysis was conducted primarily using legacy C-

based simulations and algorithms.   During the post-PDR phase, the tools of Figure 3 were used to translate and 

mature the algorithms as Simulink CSU’s.  The iterative process of development of algorithms in RAMSES-M and 

performance testing in RAMSES-A was the “Design Loop” and was the primary activity in the post PDR period.  

As the team entered the post-CDR production phase, autocoded CSU’s were delivered to the GN&C FSW team for 

integration into the GN&C partition.  Testing on the GN&C partition occurred with software emulations of the 

processor environment as well as on the actual Orion processors.  Iterations on the GN&C partition due to this 

testing were referred to as the “Production Loop.”   Sometimes, errors or changes to the Simulink CSU’s were 

needed, so design change requests were fed back to the Design team for modification using the RAMSES tools.  The 

GN&C Design and FSW teams worked closely together, so response to Design change requests was very rapid.  

Also, the thoroughness of testing in the RAMSES environment meant that very few errors were found in the 

Simulink models.  Most of the problems encountered were related to inefficient execution, as discussed in the Post-

CDR section below.  The following sections provide detailed lessons learned for the PDR to CDR design and Post 

CDR production processes depicted in the figure.  

 

IV. PDR to CDR Development 

During the post PDR period, the GN&C and FSW teams transitioned from hand code algorithm prototyping, to 

an MBD process that produced preliminary versions of the GN&C CSU’s in Simulink.  During this period, several 

major efforts were undertaken: development of the RAMSES GN&C wrapper in Simulink, development of an 

Empty Box Architecture (EBA) which provided the moding and interfaces between CSU’s, translation of many of 

the GN&C algorithms from prototype C code to Simulink CSU block diagrams, and integration of the CSU’s by 

populating the empty boxes. 

Figure 5 shows a Simulink diagram of a typical GN&C CSU 

Junction Box.  The orange block is the CSU itself which contains 

the algorithm.  Its interfaces consist of 4 Simulink “buses” which 

correspond to structured data types.  The input and parameter 

buses enter the CSU from the left and the output and telemetry 

buses feed the output port ovals on the right.  Outputs are those 

signals needed by other downstream CSU’s, while telemetry data 

are additional data needed for analysis and insight into CSU 

behavior.  When autocoded, the orange block produces a Class 

with a method whose calling arguments are data structures 

corresponding to these four Simulink bus types.   

To the left of the orange CSU algorithm are “Junction Boxes.”  

These Simulink subsystems route data from upstream CSU’s and 

other sources and multiplex the data into the input and parameter 

boxes.  The orange CSU block is a Simulink model reference 

block.  This means that the functionality within the block is contained in a separate Simulink model (.mdl) file from 

the rest of the block diagram.  This is important for configuration management since changes to the algorithms 

within this block affect only the associated file.   

The method used to provide parameters to a Simulink model reference block is an important design decision to 

make early in the Simulink design process.  In this context, “inputs” are time-varying signals that are operated upon 

by the CSU to produce the outputs.  “Parameters” are quantities that configure the CSU and remain static during 

most execution calls.  These data may be changed by the moding software on asynchronous events, but they 

otherwise remain fixed.  Control gains are examples of parameters, while control errors are examples of CSU inputs.  

The Orion GN&C team elected to pass parameters into each CSU via a parameter bus as discussed above.  This has 

several important advantages: 

 The parameter interface is clearly visible in the diagram 

 Parameter data structure types are clearly defined using Simulink Bus definitions 
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Figure 7.  Typical Domain Containing CSU Blocks. 

 

 
Figure 6.  Gain Parameter Comparison. 

 

 The parameter interface in the  resulting autocode is clear by inspection – as a structured pointer calling 

argument for C ++ autocode. 

However, one major disadvantage of this technique is 

that parameters must be routed like signals to locations 

within the CSU.  This means that several important 

Simulink atomic level blocks cannot be directly used.  An 

example is the gain block at the top of Figure 6 that 

multiplies u by K to produce y.  Since the gain parameter, 

K, is a member of the parameter bus structure, it must 

enter the diagram on a signal “wire” as shown at the 

bottom of the figure.  This clutters the diagram and 

reduces readability.  On Orion, special gain blocks were 

created that had hidden “From” blocks to allow the 

designer to use a similar gain form as the top diagram, but 

it is more desirable to use the normal Simulink language 

whenever possible.  Later versions of Simulink, which allow parameters to be specified via other means, are worth 

consideration for future projects. 

Figure 7 shows a typical collection of CSU’s or a “domain.”  Each Orange CSU block contains the combination 

of Junction Boxes and a CSU algorithm block as shown in Figure 5.  This example is the CM control domain and 

contains three CSU’s that control the CM by commanding its reaction thrusters.  Each CSU receives inputs from 

upstream CSU’s passed into the domain.  Each domain also contains moding logic that enables or disables CSU’s 

according to mode commands received from the GN&C moder/sequencer to be discussed later.  During exo-

atmospheric flight and during the guided entry, the RCS Control CSU is enabled to provide rate change commands 

to the Thruster Logic.  Once under the main chutes, RCS Control is disabled and  the Touchdown Roll Control CSU 

is enabled to turn the CM to a downwind heading for splashdown.  

On the Orion project, the Orange CSU boxes are autocoded and integrated as independent functions into the 

GN&C partition.  So from the domain level up, the Simulink diagrams are not used to produce final flight software.  

Rather, they provide the interfaces and moding to allow CSU development and integration in a Simulink 

environment for execution in a closed loop simulation.   

All the CSU’s in a domain block execute 

at the same rate – in this case at the control 

rate of 40Hz.  One of the lessons learned in 

developing the Orion domain architecture was 

that collecting CSU’s in like rate groups 

simplified the correct modeling of rate group 

latencies and interactions.  Early domain 

versions contained all the CSU’s of related 

functionality regardless of their execution rate. 

The collection of domain diagrams are 

wired together with other domain blocks of 

like rate and collected into the high and low 

rate blocks of Figure 8.  These rate blocks, 

together with the other blocks in the figure, 

comprise the RAMSES Simulink development 

environment in its final form for EFT-1.  

Inputs, outputs and telemetry are provided by 

the “IOP” blocks which mimic the Input-

Output Partitions in the flight software by 

providing interfaces to the simulation.  Other 

partitions which interface with GN&C are also modeled, including the C&DH partition and the Timeline Manager 

(TMG) and Vehicle Manager (VMG) partitions which provide vehicle configuration data and mission segment 

information to GN&C.    
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Figure 8.  RAMSES Simulink Wrapper for GN&C FSW. 

 
In a typical MBD process, a company or organization may have an existing library of graphical GN&C 

components to draw from.  In the case of Orion, because much of the algorithm prototyping was initially done in C, 

a “translation” period was scheduled to convert C algorithms into Simulink block diagrams.  The intent of the 

translation period was to re-produce algorithms from existing prototype C code.  The entry flight phase was judged 

to have the most mature algorithms, so entry modules were scheduled to be the first wave of algorithms translated 

and integrated into RAMSES.  This pathfinder process highlighted several aspects of the Orion plan that worked 

well, as well as important lessons learned related to MBD development as done for Orion.  Recommendations for 

the Mathworks Simulink product are also highlighted, some of which have been communicated to Mathworks and 

incorporated in later Simulink versions. 

Scaleability.  MBD tools on Orion required considerable customization to allow them to scale to the project size.  

The final Orion GN&C application will produce well over 100,000 lines of autocode.  The Orion experience was 

that the Simulink product did not provide an adequate development capability “out of the box” for this size 

application.  The team found that the build and execution speed of the RAMSES-M/A development environment 

tended to diminish as CSU’s and capability were added.  So continual development of custom tools, iteration with 

Mathworks and dissemination of improved standards and techniques was required to make the development cycle 

time acceptable.  Many of these tools, standards and other lessons learned are useful for similar projects and are 

described in this paper.  Since the EFT-1 flight reduced the size of the overall application, and since many of the 

tools and techniques are now available and understood by the team, future development is expected to be more 

efficient, but compromises may still need to be made to isolate flight phases or functions for development as Orion 

moves forward.  

Configuration Management.  Projects electing to follow an MBD process should prepare for configuration 

management requirements that differ from hand code.  Two aspects of MBD tools in particular require attention:  

separation of graphical modules, and merging graphical changes.  Early versions of the Simulink tool included all 

functionality in a single model file (“.mdl” file).  This was not practical for a large project, since all developers 

operated on a single configuration managed object, even though they may have been making changes to separate 

subsystems within the model.  For this reason, Orion used the Simulink Model Reference Block (MRB) capability 

discussed above, which allows subsystems to be expressed in separate model files and “referenced” in the top level 

diagram.  This MRB capability evolved significantly over the Orion development period and new capabilities for 

parameterization and autocoding of MRBs are now available.  Since MRB’s are a virtual necessity from a 

configuration management standpoint, project architects should thoroughly investigate the latest MRB capabilities 

prior to deciding on how to integrate and parameterize GN&C algorithm units. 

Graphical merges are another important consideration for MBD processes.  When multiple changes are 

simultaneously made to the same file by multiple developers, a merge is required to incorporate updates.  Text 

merge tools are highly effective for hand coded applications, but graphical merge tools are more expensive and less 

effective than their text counterparts.  Orion purchased licenses from third party vendors for graphical merge tools, 

and found the tools to be useful enough to justify purchase, but not as effective as text merge tools.  The limited 

distribution and training of these tools to the team limited the amount of parallel development that the team was able 

to accomplish.  This was less of a problem at the CSU level, but often CSU developers needed to make changes at 

the domain level and would have to either wait until another developer completed domain level changes, or make 
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parallel changes and use the graphical merge.  Since domain level changes were often in the interface, the number of 

graphical merges was reduced by wrapping the junction boxes associated with each CSU in another MRB, as 

discussed above and shown in figures 5 and 7.  Also, a one POC per CSU standard was enforced to prevent parallel 

changes to CSUs.  As algorithms matured for EFT-1, parallel development has reduced and the need for merges has 

diminished.  However, the Orion team considers the graphical merge capability an important need for the 

development of remaining flight phases and continues to look for acceptable options. 

Complexity of mixed tool development.  The RAMSES development environment – and its associated interface 

to and hand-coded simulation has been successful for Orion EFT-1 development.  However, the use of mixed 

simulation/FSW development environments is not recommended for the early development phases for projects that 

do not have a strong legacy of hand coded simulations.  The Orion development environment requires a fairly 

complex set of scripts to start both simulation and FSW processes, load simulation and FSW configurations and 

manage environment variables and other initialization items.  The environment also requires familiarity with several 

tools, including familiarity with C code, the JSC “Trick” simulation environment, the suite of execution scripts and 

the full suite of Simulink tools and custom scripts. This means that engineers new to the project need significant 

training prior to starting development.  The team is currently looking at options for development in future flight 

phases, including simplified scripting and configuration management tools and the creation of simplified medium 

fidelity Simulink simulations for early algorithm development.  

Logging and Debugging.  Two of the areas in which the Orion team did significant custom work were data 

logging and graphical process debugging.  The Simulink development tool provides several options for writing to 

files and to the MATLAB workspace in the form of output blocks.  However, these options are not data configurable 

as required for high complexity applications and they have some incompatibilities with arrayed structure types.  For 

this reason the Orion team developed a data logging subsystem – RAMSES-M Record – to allow user selection of 

output parameters for analysis and debugging.  While this tool will pay dividends for future Orion development, a 

generic logging capability that is delivered as part of Simulink, that does not require changes to the diagram for 

configuration is highly desirable. 

Additionally, debugging in the native Simulink environment was often difficult.  Simulink provides three 

separate debugging tools, one for Simulink, one for Embedded MATLAB and one for Stateflow.  All three are 

different, so training or familiarization is required for each.  The most popular debugger by far among developers 

was the Embedded MATLAB debugger which provides intuitive, graphical breakpoint insertion, “hover” displays of 

variable and parameter values, etc.  In fact the ease of eML debugging led several developers to develop initial 

algorithms as large eML blocks, which were later broken down into graphical elements with smaller eML functions 

contained in lower level blocks.  The team also developed custom eML debug blocks which allowed execution 

control and viewing of data on Simulink buses between Simulink subsystem blocks. 

Modeling Standards. Since this is NASA’s first major manned project to utilize fully the MBD process with the 

MathWorks software, a set of Modeling Standards was developed to aid developers. The original source of the 

document was the MAAB (MATLAB Automotive Advisory Board) Standards and those from the Honeywell 

LaserRef6 project. Lessons learned from the CEV Pad Abort 1 (PA-1) flight test project were included as well. 

However, a majority of the content is derived from the development process itself.  The document is a living 

document which is continuously evolving based on developer feedback and autocode performance.   

The main purpose of the Standards was to enhance the consistency, readability, efficiency and compatibility of 

the many models that were being developed amongst a large group of developers.  

There are currently 155 standards and guidelines in the Orion GN&C MATLAB/Simulink Standards document 

(available at www.mathworks.com/aerospace-defense/standards/nasa.html).  

To complement the ORION standards, a set of Model Advisor scripts tests were created to streamline the 

checking of many of the non-objective standards.  These checks could be run automatically to determine any 

standards violations. There are currently 68 model advisor checks for the 155 ORION Modeling standards. 

When autocode errors/incompatibilities were found, the source Library blocks were modified to avoid them or a 

standard was written to avoid them.  Many times a model advisor check was also written to automate the finding of 

a pattern.  Since the standards document and the Model Advisor configurations underwent significant modification, 

having these elements under configuration control was essential. 

Modeling Library.  The standard set of Simulink blocks contained many blocks that are not compatible with the 

RTW Embedded Coder or the GN&C architecture. To clarify which blocks are compatible, the team created the 

Orion Library.  The Orion Library contains only blocks that are compatible with the Embedded Coder and the 

Fixed-Step solver, conformed to the modeling standards, and whose resulting autocode complied with the project’s 

SDP. Also, no blocks that require variables/parameters from the workspace are included since the architecture does 

not support these as described above. This blockset (Figure 9) provides the GN&C and FSW developers with a 
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Figure 9. Orion Library. 

 

standardized set of tools that are certified to be compatible with the modeling standards and will work seamlessly 

with the Orion GN&C architecture. 

The ideology applied when designing the 

ORION library and Modeling Standards was that 

the models should speak for themselves.  A 

reviewer should ideally be able to review a model 

and understand all of the details of the algorithm 

being modeled without having to click inside a 

block and review the block settings or have prior 

knowledge of a block’s functionality.  Data types, 

integration types, data limiting, etc. should all be 

clear from the diagram alone.  Block illustrations 

should convey the functionality of the block. 

The Simulink tool allows for the creation of 

unique GUIs for each block.  The ORION library 

uses these unique GUIs to hide certain block 

settings that need to remain consistent throughout the model for compatibility or autocode format (e.g. the sample 

rate). 

Another issue with the standard set of Simulink blocks is that not all of the significant block characteristics are 

visible. For example, the standard Simulink “Constant Block” has a setting for limiting the maximum and minimum 

value of the output. However, this restriction does not show up on the icon for the constant block. The only way to 

know if this setting is used is to open up the block dialog itself.  Reviewing the block GUI dialog is not an option 

when the block is printed or viewed in a document. Since these models are considered self-documenting they should 

be as readable, descriptive and transparent as possible. All of the blocks used in the ORION Library either have the 

parameters hidden that should not be changed or the icons have been modified to adequately show the functionality 

of the block based on the parameter selection. 

Blocks in the ORION Library are color-coded to distinguish between block types and enhance readability – as 

required by the standards. For example, an eML block in the Orion GN&C Library is colored grey whereas the 

standard Simulink version looks identical to any other subsystem block. 

Autocode Configuration Settings.  The ORION Library includes the official configuration settings used for the 

autocode.  There are numerous options available for formatting the autocode.  Many times it is unclear how a setting 

will affect the autocode until the result is analyzed and compared.  The focus of the configuration settings are on 

efficiency first, testability second, and readability third.  Although Orion did not require formal reviews of the 

autocode, it is still very useful to maintain traceability for debugging purposes, so readability is still important.  The 

ORION settings were mostly chosen by a trial and error approach. The project ran several trade studies to 

understand the effect of the configuration settings on the autocode. 

The configuration settings have options to both autocode a model and compile it. During development, both the 

capability to produce the code and compile it were used.  This meant that any compilation issues early and not when 

the code was integrated into the larger project. 

The autocoding tool includes the option to automatically compile the generated code after completion of each 

model.  This option allowed us to find compilation issues early and at the model level instead of when the project 

was compiled in its entirety. 

The ORION project utilized the “referenced configuration set” ability for managing the settings for the 

simulation/autocoding.  These settings can be managed on a model by model basis or via a referenced set that all 

models point to.  This allowed us to manage the configuration settings for all of the models in a single object.  This 

prevented us from having to manage configuration changes on a model by model basis, which would not have been 

compatible with the CM system.  In this case, every time a change is made to a single setting, all of the models 

would need to be revised. 

As discussed above, the CSUs were integrated into the partition at the Junction Box layer.  Due to the object-

oriented format of the Rhapsody level code, the interface required the use of the C++ (Encapsulated) target.  The 

2010b version of Simulink was the first release to include this target and the team found many incompatibilities that 

required worked arounds.   

Modeling Template.  The library also includes a Template file, illustrated in Figure 10, for use in creating a CSU 

model and the subsystems contained within it. This has proven to be a very useful tool to ensure that all of the 

models are consistent and compatible from the start. The template can be thought of as a formal schematic 

representing the algorithm design that is also the direct functional representation. 
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Figure 10.  Orion GN&C Model Template. 

 

This template has the following features: 

 Standard configuration settings (through config set reference). The configuration sets contain the settings 

for model simulation and custom autocode options (see “Autocode Configuration Settings” above). 

 Information block in the lower right section of each level of the model, to display the project name, 

version, author, CSU name, subsystem name, and parent subsystem name.  This allowed users to navigate 

printed models. 

 Version data specific to the project’s CM tool, which is automatically modified every time the model is 

checked in to the system.  

 Model size constraint borders, that allow each level to be printable on 8½”x11” or  “ 11”x17” paper, which 

prevents large unprintable models (each level of the model contains these borders) 

 Standard input, output and parameter port stubs.  

 Annotation block for adding comments to the diagram  

Training on Tools. Initial Training on the use of 

Simulink was fairly quick and concise.  A week long 

session was given to go over the early version of the 

ORION Modeling Standards, the ORION Library and 

to show examples of early prototype work.  However, 

a functional EBA was not available yet, and the 

RAMSES-M tools for closed-loop simulation 

connection were not complete.  The unit testing 

framework was also not available, so developers had 

limited ability to build and test models. 

At the time, thorough Simulink experience was 

limited to a few individuals, the team at large was not 

familiar with the tool.  The standards that were used to 

train the team were preliminary,  and many issues with 

the autocoder were not yet known.  All of these factors 

led to a shaky start to the development cycle.  Future 

projects should use the lessons learned herein to have 

development tools ready, and to provide more complete training on standards, development processing, unit testing, 

and general MBD development. 

Algorithm Modeling.  Not all algorithms benefit from graphical dataflow implementation.  Certain GN&C 

algorithms are ideally suited for graphical representation in a data flow format like Simulink.  The overall flow of 

GNC data at the top level, and many of the embedded control laws are expressed naturally as block diagrams.  Some 

attributes of algorithms that are not as easily expressed as data flow diagrams include iteration, expression of 

complex equations, state machines, low level data manipulation and object-oriented representations.  The Simulink 

environment provides tools to allow embedding algorithms with some of these attributes into the graphical dataflow 

layers.  These include embedded MATLAB scripting, Stateflow diagrams and S-functions to call externally coded 

algorithms.  The final Orion design for EFT-1 is one example of a successful mix of these languages.  In particular, 

the GN&C sequencer was coded using an object-oriented Unified Modelling Language (UML) tool.  The code for 

the sequencer was incorporated into Simulink via an S-function interface.  The Orion navigation algorithms made 

significant use of Embedded MATLAB (eML) to allow expression of vector and matrix equations while maintaining 

top level and intermediate level dataflow diagrams in Simulink.  Orion guidance algorithms made heavy use of 

Stateflow diagrams to implement iteration and eML functions to implement complex guidance equations. Issues 

with testing stateflow algorithms were sufficiently overcome for EFT-1 but Orion continues to communicate with 

Mathworks on further improvements.  Finally, Orion also developed the GN&C sensor interfaces using Simulink 

and eML.  This provided consistency in delivery format and autocoding processes for GN&C components, but there 

was little gained in clarity or abstraction.  Future projects may wish to consider allowing hand code or UML code 

for hardware interfaces and integrating them into the Simulink project using S-fuctions.  

As the project matured and the team learned more about the benefits and limitations of the tools, a chart (see 

Table 1) was created to help aid developers to use the most suitable tool for the algorithm being modeled. 
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Figure 11.  Example DDR's. 

 

Table 1.  Standards for Use of Simulink Language Tools. 
Algorithm Type Simulink Stateflow eML Notes/examples

Simple Logic
•if/then
•switch/case
•for/while loops

X X X Ex: If/then with <5 paths and no nesting

Complex Logic
•nested if/then
•nested switch/case 
•nested for/while loops

X
preferred

X Ex: If/then with numerous paths and multiple 
levels of nesting

Simple/Short
Numerical Expressions X Ex: <6 consecutive operations, <6 

variables/signals

Complex/Lengthy
Numerical Expressions X X

preferred

Ex: >6 consecutive operations, >6
variables/signals

Numerical Expressions 
containing continuously valued 
states

X*
Ex: Difference equations, integrals, derivatives, 
filters
*The actual integrator function can be written 
in eML

Combination of:
•Complex Logic
•Simple Numerical Expressions 

X iterating a counter is considered a simple 
numeric calculation

Combination of:
•Simple Logic
•Complex Numerical 
Expressions 

X
For Logic

X
For Math

•Can use only Simulink, only eML or use 
Simulink for the logic and eML for the math

Combination of
•Complex logic 
•Complex Numerical 
Expressions 

X
for Logic

X
for Logic

and/or Math

•Use Simulink or eML for the numerical 
calculations
•Stateflow  should invoke the execution of this 
subsystem using a function-call

Modal Logic X
Where the control function to be performed at 
the current time depends on a combination of 
past and present logical conditions  

 

 As Orion approached the Critical Design Review (CDR) for  EFT-1 the GN&C algorithms were well positioned 

to begin the process of changing them from preliminary functioning requirements to production ready graphical 

source.  Twenty six CSU’s were functionally complete, integrated into RAMSES and performing well in Monte 

Carlo analysis.  These were comprised of more than 200 testable units, most of whom had modified complexity 

metrics that met the Orion SDP standard.   

 

V. Post-CDR Analysis Production 

After CDR, GN&C focus shifted from algorithm 

development to evolving the models to include attributes of 

good software engineering.  This section discusses process 

and model attributes that affected testing and review of 

GN&C CSU's. 

Most GN&C model based development projects create 

algorithms that are autocoded from data-flow diagrams and 

fit into a larger framework that may be developed by hand 

or “semi-automatically” using UML or other graphical 

tools.   The selection of the “level” of autocode is an 

important project decision and should be made early in 

development.  The autocode level may be anywhere from 

autocoding only small units, to autocoding entire rate 

groups or autocoding the entire GN&C application.  For 

Orion, the GN&C application used autocode that included 

the CSU model reference block of figure 5 as well as the 

input and parameter junction boxes.  This means that the 

interface to the UML-developed application code was 

defined by the the output data buses (structures) of upstream 

CSUs, as well as the various parameter bus types.  

Parameter data were collected into CSU-specific 

parameters, vehicle and physical constants and CSU 
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command parameters.  These parameters could be modified by the sequencer at activity boundaries (GN&C mode 

changes). 

This “CSU plus Junction Box” interface represented a compromise that allowed the higher level application to 

function as an object-oriented design and to use efficient hand coded mode-ing logic, while still eliminating the hand 

coding of GN&C algorithms.  The inclusion of junction boxes also meant that most of the CSU-to-CSU interfaces 

were defined in autocode and carried over from the RAMSES Simulink design environment to the GN&C 

application.  The disadvantage of this methodology was that the domain-level mode-ing logic, CSU 

parameterization and any additions of new bus types did not carry over from RAMSES to autocode.  The Orion 

experience was that errors due to hand coding the moding and bus-level interfaces were rare, but their development 

required some time and resources.  

In spite of the fact that the autocode was at the CSU + Junction Box level, unit testing of the CSU was done at 

the inner CSU level.  This prevented the CSU designer from needing knowledge of other CSU output data types and 

made the CSU test drivers independent of other CSU or domain level development.  The junction box mapping is 

inspected and tested as part of integrated testing. 

Because a MBD process was used, no detailed, implementation level requirements were needed, and the 

Simulink diagrams provided a certain amount of insight into each CSU’s design.  However, the MBD process still 

required documentation in several areas.  First, the Software Requirements Specifications (SRS’s) for Orion often 

did not specify enough detail to drive unit testing of each CSU, so Derived Design Requirements (DDR’s) were 

created and documented in a “CSU memo” for each CSU (see examples in Figure 11).  The CSU memo also 

included several other sections that documented important design information.  The major CSU document sections 

were: 

1. Derived Design Requirements – “Shall” statements used to drive unit testing with parent requirements in 

the Orion SRS 

2. Design and Theory – which provided the mathematical and logic formulation for GN&C algorithms 

3. CSU Interface – included automatically generated tables of inputs, outputs and parameters created from 

CSU interface bus types 

4. Parameter Configuration Set Design – provided information about how to set configurable parameters 

5. Assumptions and Limitations 

6. Implementation Reference – link to the CSU model in html form 

7. Unit Test Descriptions 

On the Orion project, the 

Simulink CSU diagrams are treated 

as the source for CSU algorithms.  

For this reason, no formal inspections 

of the autocode were performed.  

However, formal inspections of the 

CSU model diagrams were rigorously 

conducted and these included reviews 

of the autocode for efficiency.  Also, 

all unit tests that are developed and 

executed on the model have been 

executed on the autocode.  

Model Maturation.  The model 

maturation process was well defined 

(see Figure 12).  This process was 

adopted from Honeywell.  It gave 

clear steps for how to develop a 

model in a way that it would be 

testable, standards compliant, and 

ready for inspection.   

To aid the developers when 

designing CSUs a “Developer 

Checklist” was created.  This had a 

list of major items that needed to be 

“checked” off at each stage in the 

process (CSU Inspection readiness, 

 

 
Figure 12.  Model Maturation Process. 
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CSU Unit Test readiness, etc.).  At first, many developers were unsure if their models were mature enough to even 

integrate into the EBA.  This checklist gave them a better picture of the maturity of the models and helped increase 

the quality of the models that were being reviewed. 

Some examples of this development checklist entrance and exit criteria for the Model Test Review include:   

 Are all low level requirements satisfied 

 Is the code/model properly notes/commented 

 Is the model broken up into individually testable units 

 Is the complexity of each testable unit below 20 

 Does the model pass all of the Model Advisor checks 

 Do the existing Unit Test achieve 100% model coverage 

 Is the model “autocod-able” (does the autocoding process complete and compile successfully) 

 

Testable Units.  As familiarity with the autocoder increased, the need to define a “testable units” became more 

important.  The goal was to have a one-to-one match between the source Simulink Model, Stateflow Chart, or 

Embedded MATLAB function and the resulting 

CPP function or method.  This one-to-one match 

helped tracking of testing between the source 

“models” and the generated functions.  It also 

helped avoid re-testing code due to excessive in-

lining or function duplication. 

One of the biggest headaches of testing the 

autocode from our models was how inconsistent 

the autocoder is with various model sources.  An 

independently testable unit at the modeling level 

does not always translate into and individually 

testable unit in the autocode.  Some source 

blocks are in-lined in the parent model’s code, 

whereas others are separate functions wither in 

the parent cpp file or in the shared utilities 

section.  

To partially get around this issue, autocode 

“directives” were used in eML functions (e.g. 

%eml.inline(“never”)) and block settings to force the autocoder to create individual methods/functions from the 

source eml/Statelfow function.  This solved some issues but did not result in the ideal 1-to-1 situation because 

autocoded eml/Stateflow functions were coded as methods of the parent model.  This caused issues with testing the 

method directly and eliminated sharing these 

functions between models.  Figure 13  illustrates a 

single external eML function called by 2 separate 

Models and the placement of the autocode that 

represents the eML function.  All of this duplication 

of code places a heavier burden on the backend 

testing of the actual autocode. 

The only way to ensure absolute 1-to-1 model to 

code was to use “Model References” (Figure 13).  If 

each source function were a Model Reference, it 

could be called throughout the project and result in 

a single instance in the autocode.  Another 

advantage of the MBR approach was that each 

MBR could be directly tested in a Simulink driver 

as a unit – and the resultant test drivers functioned 

well with the Mathworks “System Test” verification 

tool.  Figure 14 illustrates how a model reference 

containing an eML function is placed in the 

autocode. 

However, many of our functions were created 

 
Figure 12.  External eML Function Called by Two 

Parent Models. 

 

 

 
Figure 13.  Model Reference Blocks as Testable Unit 

Wrappers. 
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Figure 13.  Legal Execution Hierarchy. 

 

Matrix Multiply block of Model Complexity 0: 

 
Resulting Autocode of Complexity 3: 

 

Figure 14.  Effect of Autocoding on Complexity. 

 

using eML and to a smaller degree, Stateflow.  Eml functions cannot call Simulink Models (aka Model References)  

– so if an algorithm needed to be written in eML, none of the shared Simulink or Stateflow models could be called.  

Figure 14 illustrates the calling ability between the Simulink, Stateflow, and eML tools.  From this you can see that 

eML is restricted to only calling other eML functions. 

Due to this issue, strong limitations were placed on the use of eML functions that were shared between models.  

This caused problems with developers that favored eML for 

their algorithm development. 

Develop meaningful complexity requirements for MBD.  

During early Orion development, functionality and capability 

were given priority over modularity, complexity and other 

software engineering considerations.  This was due partly to 

the need to use GN&C algorithms early to perform time 

domain analysis for vehicle systems integration and due to 

the fact that complexity definitions and guidelines were 

evolving.  The Orion project Software Development plan 

(SDP) required that the cyclomatic complexity (CC) (Ref. 2) of functional units be no more than 20 (hand code and 

autocode).  It was soon discovered, however that automatically generated code often had higher CC than hand code 

and testable units in the model didn’t translate into testable units in the autocode (as discussed above).   

The Cyclomatic Complexity metric is a very useful way to measure the testability of the code.  However, it 

posed a bit of a challenge for functions that were developed in Simulink because there is no direct way to find the 

CC of the code without actually autocoding the model and analyzing the autocode.  Simulink provides the ability to 

find the Model Complexity, but on Orion, the 

SDP requirement is applied to the autocode 

only, regardless of model source.  Also, the 

standard way of measuring the CC of the 

autocode did not reflect the testability of the 

source model.  This disconnect is mainly due 

to the liberal use of for loops in the autocode 

for data initialization, data assignment, and 

vector/matrix math.  The standard way of 

calculating CC counts each for loop as an 

additional unit of complexity whether the loop 

is static or not.  This issue caused the Model 

Complexity and the Code Complexity to differ 

greatly and added confusion to the developer.  

Figure 15 illustrates how a single block in the 

model is translated into code that has a complexity of 3 due to the nested static for loops arising from a matrix 

multiplication.  These additional static for loops do not add to the complexity of the code. 

Ensuring that the resulting autocode for each function would have a CC value of <20 is difficult.  The team 

found that if static for-loops are ignored, the CC for autocoded functions closely matched the source model 

complexity.  Since these static for loops did not truly add complexity to the code, it was agreed that our CC metric 

should exclude them.  To measure the modified CC, a tool was developed that calculated complexity and ignored 

static for loops.  The CC limits were reviewed in both the Model Inspection and Unit Test Inspection. 

In the 2010b version of Simulink, the complexity of a model is not easy to obtain and caused issues in metric 

reporting, this issue has been improved in future versions.   

Other Metrics. Using SLOC is a good way to calculate project metrics such as project size and for estimating 

work load for future tasks.  However, with MBD, model size is a better metric than lines of code.  The SLOC count 

of the autocode was not consistently proportional to the size of the Model for many reasons.  Instead, a “Model 

Size” metric was created to take into account components from all three tools (Simulink/Stateflow/eML) and is 

calculated via the following formula (calculated automatically via script): 

 

Model Size = Simulink Blocks + lines of eml code + Stateflow Transitions 
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Figure 15. System Test 

Execution Flow. 

 

The ORION project did not have a SLOC limit requirement for functions or files since function complexity was 

governed by Cyclomatic Complexity requirements.  But, the team found this tool useful in tracking progress and 

project size.   

Model coverage vs Code coverage.  Ideally, to minimize the testing difference between Models and Code, the 

coverage of the model should be the same as the code.  This is not always the case.  In addition to the code reuse 

issues described above, the autocoder will optimize out certain blocks, remove unreachable paths (dead code) based 

on specific use, and insert protection around certain operations (e.g. integer overflow).  Also, some blocks that may 

have internal paths, are not represented as such in the source model.  In Simulink, a block is either executed or is not 

executed; internal branching is not revealed until the block is autocoded.  Some of these discrepancies between the 

model and autocode can be prevented by changing options in the configuration setting and some could be removed 

by modifying block settings.  However, 1-to-1 model and code coverage was not 100%. 

Unit Testing.  Simulink System Test (Figure 16) was chosen as the official Orion GN&C tool for Unit Testing 

the models. Developing the tests from within the System Test tool proved troublesome due to both stability issues 

and limited functionality. For example, error reporting for simulations was limited to either pass or fail, with no 

insight to the cause of problems.  As the team grew more accustomed to the tool, we found workarounds for many of 

the issues.   A Standards and Guidelines document was created for unit testing as well.  This document listed the 

standard formats, process, and APIs for developing unit tests for models.  This document help standardize the unit 

tests across the entire GN&C project.      

Due to the general issues of System Test, our unit testing framework was 

designed to rely as little as possible on System Test itself.  All of the input data, 

initialization routines, and comparison data were created outside of the tool.  

System Test was basically used to execute the test, return results, and generate 

the test report and coverage files.  The quality of the test and coverage reports 

were a highlight of the tool.  Due to the independent way our unit tests were 

developed, switching to a more capable tool in the future is expected to be 

fairly seamless. 

LDRA and SIL/PIL Mode integration.  The official Code analysis tool on 

Orion was LDRA (Liverpool Data Research Associates) Testbed.  LDRA 

Testbed provides the core static and dynamic analysis engines for our software.  

By default, The MathWorks tools only worked with Bullseye Coverage tool 

with the C target.  The GN&C FSW team worked with Mathworks support to 

achieve compatibility with LDRA for generating unit test scripts that could be 

run with LDRA.  

One highly useful feature of the Simulink tool is the ability to run the 

autocode of a model in “SIL” or “PIL” mode.  This allows the developer to 

generate unit tests with the source models, then run the same tests on that actual 

compiled FSW (SIL mode) and on the actual FSW running in an emulated 

target environment (PIL mode).  Unfortunately, our pioneering use of the C++ 

Encapsulated Target and our use of the LDRA Tools, the SIL and PIL mode 

were not yet compatible “out of the box”.  Upon request from Orion, The 

Mathworks provided a patch to enable this functionality.  Later versions of 

Simulink have LDRA compatibility built in and support SIL and PIL mode for the C++ (encapsulated) target. 

VI.  Conclusions 

The Orion GN&C team has successfully used a MBD process to generate software for GN&C algorithms for the 

EFT-1 mission.  The team incurred considerable up-front cost for the transition to an MBD process, but downstream 

benefits are now being realized.  Some of the upfront costs were unavoidable, but others may be avoided in future 

programs by heeding the lessons learned enumerated here.  Some of the costs included:   

 A steep learning curve for engineers not familiar with MBD tools 

 Slow and complex development tools and processes  

 Configuration management issues.   

These issues will be mitigated in algorithm development and test for future Orion missions since many of the tools 

and techniques have been established.  The team now has mature MBD coding standards and automated standards 

checking via the Model Advisor.  Faster build and autocode times have arisen from improvements in Mathworks 
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tools and better application of the tools.  And the team has a better understanding of how to perform configuration 

management with MBD artifacts as described above. 

Some of the benefits that GN&C is now observing include:   

 No schedule time was needed for hand coding GN&C algorithms (60,000+ SLOC were autocoded by 

CDR) 

 Detailed requirements review was  replaced by review of MBD artifacts which had proven functionality 

 Automated test framework and report generation has simplified testing and production of test artifacts 

 Automated standards checking tools (e.g. Model Advisor) and graphical artifacts have facilitated the 

inspection process 

The Orion GN&C team is ready to complete GN&C software integration for the EFT-1 mission and to move 

forward to generate GN&C algorithms for other flight phases.  Other programs desiring to use an MBD process 

should not start from scratch.  Many tools, techniques and lessons learned are available from the authors and other 

Orion GN&C team members.  
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