

American Institute of Aeronautics and Astronautics

1

ORION GN&C MODEL BASED DEVELOPMENT:

EXPERIENCE AND LESSONS LEARNED

Mark C. Jackson1

Charles Stark Draper Laboratory, Houston, Tx, 77062

and

Joel R. Henry2

NASA Johnson Space Center, Houston, TX, 77058

The Orion Guidance Navigation and Control (GN&C) team is charged with developing

GN&C algorithms for the Exploration Flight Test One (EFT-1) vehicle. The GN&C team is

a joint team consisting primarily of Prime Contractor (Lockheed Martin) and NASA

personnel and contractors. Early in the GN&C development cycle the team selected

MATLAB/Simulink as the tool for developing GN&C algorithms and Mathworks autocode

tools as the means for converting GN&C algorithms to flight software (FSW). This paper

provides an assessment of the successes and problems encountered by the GN&C team from

the perspective of Orion GN&C developers, integrators, FSW engineers and management.

The Orion GN&C approach to graphical development, including simulation tools, standards

development and autocode approaches are scored for the main activities that the team has

completed through the development phases of the program.

Nomenclature

ARINC = Aeronautical Radio, Incorporated GN&C = Guidance Navigation and Control

CC = Cyclomatic Complexity GUI = Graphical User Interface

CDR = Critical Design Review MBD = Model Based Design

CSU = Computer Software Unit PA-1 = Pad Abort One

EBA = Empty Box Architecture PDR = Preliminary Design Review

eML = embedded MATLAB PIL = Processor In the Loop

EFT-1 = Exploration Flight Test One SDP = Software Development Plan

FSW = Flight Software SIL = Software In the Loop

I. Introduction

HE Orion Guidance Navigation and Control (GN&C) team has developed GN&C flight software using a Model

Based Development (MBD) process that includes developing algorithms in the Simulink® graphical design

environment, automatically generating C++ code, and integrating the code into an Aeronautical Radio, Incorporated

ARINC 653 partition. The Orion GN&C application is large and complex and it was developed by a geographically

separated team, so there are many experiences and lessons learned that apply to projects within and outside the

aerospace industry.

This paper provides an assessment of the successes and problems encountered by the GN&C team from the

perspective of Orion GN&C developers, integrators, FSW engineers and management. The Orion GN&C approach

to graphical development, including simulation tools, standards development and autocode approaches are assessed

for each of the main activities that the team has completed through the development phases of the program. A

chronological approach is taken to communicate both the Orion MBD process and the lessons learned from that

1 Principal Member of the Technical Staff, Charles Stark Draper Laboratory, 17629 El Camino Real, Suite 470,

Houston, TX 77058, AIAA Senior Member.
2 Orion GN&C Software Functional Manager, NASA – Johnson Space Center, 2101 Nasa Parkway, Houston, TX

77586.

T

American Institute of Aeronautics and Astronautics

2

process. The following sections provide relevant background on the Orion project as well as problems and

successes encountered during the design phase prior to Preliminary Design Review (PDR), during the development

phase prior to Critical Design Review (CDR) and during post CDR production. At the end of the paper, lessons

learned are summarized and recommendations provided for future MBD projects.

II. Orion Project Background

 Three aspects of the Orion project bear on the the MBD process: Application size and complexity, GN&C team

makeup and geographical distribution, and legacy tools and infrastructure. This section provides background in

each of these areas to allow the reader to understand and assess process decisions and lessons learned.

Application Size and Complexity. The Orion Spacecraft is NASA’s vehicle for manned exploration outside of

low Earth orbit. The spacecraft consists of three main components: a manned capsule, or Crew Module (CM), a

Service Module (SM) and a Launch Abort System (LAS). The CM houses the GN&C subsystem shown in Figure

1. At the center of the GN&C subsystem is the GN&C Flight Software (FSW) which executes on the Vehicle

Management Computers (VMC’s). This software receives inputs from navigation sensors and pilot controls and

displays and commands the appropriate effectors on the CM, SM and LAS to accomplish mission objectives.

 The Orion GN&C software operates across a variety of mission phases, including pre-launch, ascent, Earth orbit,

transist, loiter, rendezvous, docking, entry and various abort scenarios. During these phases, GN&C communicates

with sensors on the CM and SM, and commands effectors on the CM, SM and LAS. The software must operate in

both manual and automated modes and must handle commands from the crew and the ground. The software must

also execute complex guidance and navigation algorithms while controlling highly dynamic configurations during

entry, ascent aborts and orbital maneuvers. The resulting breadth of algorithm types drives a multi-rate architecture

to meet CPU usage allocations.

 The Orion project has evolved since its

inception. Originally, the first mission to fly

with the GN&C software would have included

all three components (CM, SM and LAS) and

would have been required to execute nearly the

entire breadth of GN&C capability. However,

changes in manned exploration schedules and

budgets have resulted in a phased development

approach consisting of test flights of increasing

capability. The first flight of the Orion CM will

now be a test flight of the CM only, launched on

a commercial booster to an elliptical orbit

designed to achieve a high speed entry to test

CM thermal protection systems. Termed

“Exploration Flight Test One” (EFT-1) this test

will limit the required GN&C functionality to

navigation-only during pre-launch through

booster separation, followed by full GN&C to

guide the capsule to a water landing target

through the orbital coast, atmospheric entry and parachute landing phases (Figure 2). For EFT-1, the LAS is only a

mass simulator, so no GN&C abort algorithms are required for EFT-1. This phased flight test approach means that

portions of the GN&C software design are complete and undergoing test and integration with the Orion avionics,

while other components and algorithms remain at the post-PDR design complete phase.

Figure 1. Orion GN&C Subsystem.

American Institute of Aeronautics and Astronautics

3

GN&C Team. The Orion GN&C team is a large, geographically dispersed team consisting of members with

diverse experience and backgrounds. GN&C architecture and algorithm developers include NASA civil servants at

Johnson Space Center in Houston, TX, Lockheed Martin employees in Houston, and Denver Colorado, as well as

developers from Honeywell, Draper and other sub-contractors located in Florida, Massachusetts, Minnesota and

other states. Team members have program experience on the Space Shuttle, International Space Station, Mars

exploration programs and commercial satellite development, to name a few. GN&C software development

experience ranges from “classical”

development processes that use

detailed requirements and hand-

written code, to more automated

processes that depend wholly or

partially on automated code

generation. Additionally, team

members’ views on MBD

processes tended to vary with their

domain expertise, with navigation

and guidance developers often

preferring text-based algorithms,

and controls and architectural

designers preferring the data-flow

depictions of algorithms afforded

by some MBD tools such as

Simulink®. As discussed in the

sections below, both the

geographical separation and

diverse experience base of the team impacted the MBD process, both in positive and negative ways.

Legacy Tools. Prior to selection of a prime contractor, the NASA team had developed a highly capable set of

simulation tools and prototype GN&C algorithms adapted from legacy code in the C language. Simulation models

and GN&C algorithms were integrated into functioning executables within the JSC “Trick” simulation environment

(Ref 1). The simulation was termed the Advanced NASA Technology Architecture for Exploration Studies

(ANTARES). Most algorithm development and performance analysis prior to PDR was conducted using the

ANTARES. After contract award, Lockheed Martin also developed an independent Trick-based simulation named

“Osiris.” Osiris was architected to execute the GN&C FSW algorithms as a separate process. This was done in

done to allow sharing of the GN&C FSW between Osiris and ANTARES. After PDR, Osiris became the simulation

tool used to develop and test GN&C algorithms.

The GN&C algorithms at PDR were derived from a combination of legacy C code algorithms (about 75%) and

Simulink algorithms which were autocoded into C and integrated into the prototype C architecture. Several

proposals were considered to move the algorithms from prototype code to production software. Ultimately the

decision was made to use Simulink in an MBD process for the FSW development, while retaining the legacy C code

simulations. It was decided to create a development environment that included the C simulations communicating

with a MATLAB/Simulink process as described in the next section. Some of the factors in this decision were:

 The prime contractor’s FSW team was staffed under the assumption that autocode would be used to

generate the GN&C algorithms – so there were insufficient resources to allow manual coding of algorithms

from detailed written requirements

 The MATLAB/Simulink process would allow development and debugging of the algorithms in their native

MBD environment

 The legacy simulations were fully developed and functional, so development of a Simulink simulation

would take time and resources that were deemed unnecessary

 The Pad Abort One (PA-1) flight test had used a similar process for software development.

Future papers will compare the benefits and drawbacks of the Orion MBD process with traditional hand-code

processes. The focus here is to enumerate and explain the techniques, issues and lessons learned from the

processes and tools used.

Figure 2. EFT-1 Mission Overview.

ill. Pre-PDR Analysis, Design a nd P rocess Development

Pri or to PDR, the team focused on generating and va lidating G &C requirements and developing prel iminary
GN&C algorithm . Mo t of th is work wa done u ing the ANTA RES and Osiris simulations descri bed above.

Debugging Development

Sensor
Data

Effector
Commands

Sensor
Data

Effector

Commands

-
•

Development

In Simulink
,

CSU (algorithm)

,

RAMSESA
C++

>

Monte
Car lo

Ana l~'s&=::::L,
ADD,
SOD,
etc

Figure 3. Orion GN&C Development Tools within the
Development Cycle.

Given the state at PDR, a plan was
generated to move toward an M BD
development proce s. The plan incl uded
several cri tica l new too ls and capabilit ie -
peci fica lly:

• A Trick imulat ion to MATLAB
proce interface to allow algorithm
development in imul ink® with legacy
truth model in C
• An "empty box" architecture in
Sirnuli nk® that would hou e the GN&C
algor ithms a they were developed
• A ui te of Un ix and MATLAB scrip t
that enabled the execution of the combined
Trick! Simu link® too l

Prior to PDR, the team began to
implement the plan by developing the too l
and proce e of Figure 3. Fir t,
algorithm would be developed a
Simulink diagram . Often the e were ba ed
on pre-exi tlng algorithm that were
already implemented a prototype C-code.
For thi reason, a period of time wou ld be
pent to "tran late" exi ting prototype C

code into Simulink diagram .
The Simulink repre entation of a particular algori thm wa called a Simulink Computer Software Unit, or ju t

"CSU ." T he term "CSU" is used in many program to define the lowe t level te table un it , but on Orion, CSU '
varied in size and complex ity, and most had several te table ub-module. The Orion terminology i used for this
discus ion.

Nex t, the algori thms would integrate into a Simu li nk framework that allowed execution of the integrated set of
algorithm with a 6 DOF simulation. The Simu link Framework wa e entially a wrapper around the G C
algori thms that prov ided executi on, mode-ing and debuggi ng in the native Simulink environment. Dubbed the
" Rapid A lgori thm M ATLAB Simulink® Engineering Simu lati on (RAMSES)," this wrapper eventually hou ed all of
the GN&C algorithm , and provided models of
non-GN&C FSW that were required for G &C
execution.

T he RAMSES wrapper would be dri ven by a
heritage 6 DOF C-code simu lation. The
decision wa made not to build a Simulink
imulati on, since most of the team wa fami li ar

with the legacy imulati ons, and there was a
de ire to Ie erage the existing capabi li ti e .
However, this setup did add complex ity to the
development cyc le, so the pros and cons of th i
approach are di cu ed below.

Developer were to do mo t of their
developing, debugging and integration work
using the nati ve Simulink ver ion of RAMSES,.
For analy is work however, RAMSES would be
autotcoded in i t entirety and executed a a
UNIX proce s with the legacy C simulation.

Init ial Prototyping and
Test in, of Alcorithms

4

Ana lysis
And

Preliminary
Design

Selections

Figure 4.

American Insti tute of Aeronauti cs and Astronautics

IntagBlMGNC
Partldonand
~by

T .. ,

..,

American Institute of Aeronautics and Astronautics

5

Figure 5. Typical GN&C CSU Diagram.

This would provide higher speed execution for Monte Carlo analysis and some debugging. When execution of the

tool was in the native MATLAB process, the tool was referred to as “RAMSES-M” (M for “MATLAB”). When

executing the autocode as a compiled process, it was called “RAMSES-A” (A for “Autocode”).

Figure 4 shows how the above tools were used in the design and production cycles. At the upper left, the initial

prototyping, requirements validation and pre-PDR design and analysis was conducted primarily using legacy C-

based simulations and algorithms. During the post-PDR phase, the tools of Figure 3 were used to translate and

mature the algorithms as Simulink CSU’s. The iterative process of development of algorithms in RAMSES-M and

performance testing in RAMSES-A was the “Design Loop” and was the primary activity in the post PDR period.

As the team entered the post-CDR production phase, autocoded CSU’s were delivered to the GN&C FSW team for

integration into the GN&C partition. Testing on the GN&C partition occurred with software emulations of the

processor environment as well as on the actual Orion processors. Iterations on the GN&C partition due to this

testing were referred to as the “Production Loop.” Sometimes, errors or changes to the Simulink CSU’s were

needed, so design change requests were fed back to the Design team for modification using the RAMSES tools. The

GN&C Design and FSW teams worked closely together, so response to Design change requests was very rapid.

Also, the thoroughness of testing in the RAMSES environment meant that very few errors were found in the

Simulink models. Most of the problems encountered were related to inefficient execution, as discussed in the Post-

CDR section below. The following sections provide detailed lessons learned for the PDR to CDR design and Post

CDR production processes depicted in the figure.

IV. PDR to CDR Development

During the post PDR period, the GN&C and FSW teams transitioned from hand code algorithm prototyping, to

an MBD process that produced preliminary versions of the GN&C CSU’s in Simulink. During this period, several

major efforts were undertaken: development of the RAMSES GN&C wrapper in Simulink, development of an

Empty Box Architecture (EBA) which provided the moding and interfaces between CSU’s, translation of many of

the GN&C algorithms from prototype C code to Simulink CSU block diagrams, and integration of the CSU’s by

populating the empty boxes.

Figure 5 shows a Simulink diagram of a typical GN&C CSU

Junction Box. The orange block is the CSU itself which contains

the algorithm. Its interfaces consist of 4 Simulink “buses” which

correspond to structured data types. The input and parameter

buses enter the CSU from the left and the output and telemetry

buses feed the output port ovals on the right. Outputs are those

signals needed by other downstream CSU’s, while telemetry data

are additional data needed for analysis and insight into CSU

behavior. When autocoded, the orange block produces a Class

with a method whose calling arguments are data structures

corresponding to these four Simulink bus types.

To the left of the orange CSU algorithm are “Junction Boxes.”

These Simulink subsystems route data from upstream CSU’s and

other sources and multiplex the data into the input and parameter

boxes. The orange CSU block is a Simulink model reference

block. This means that the functionality within the block is contained in a separate Simulink model (.mdl) file from

the rest of the block diagram. This is important for configuration management since changes to the algorithms

within this block affect only the associated file.

The method used to provide parameters to a Simulink model reference block is an important design decision to

make early in the Simulink design process. In this context, “inputs” are time-varying signals that are operated upon

by the CSU to produce the outputs. “Parameters” are quantities that configure the CSU and remain static during

most execution calls. These data may be changed by the moding software on asynchronous events, but they

otherwise remain fixed. Control gains are examples of parameters, while control errors are examples of CSU inputs.

The Orion GN&C team elected to pass parameters into each CSU via a parameter bus as discussed above. This has

several important advantages:

 The parameter interface is clearly visible in the diagram

 Parameter data structure types are clearly defined using Simulink Bus definitions

American Institute of Aeronautics and Astronautics

6

Figure 7. Typical Domain Containing CSU Blocks.

Figure 6. Gain Parameter Comparison.

 The parameter interface in the resulting autocode is clear by inspection – as a structured pointer calling

argument for C ++ autocode.

However, one major disadvantage of this technique is

that parameters must be routed like signals to locations

within the CSU. This means that several important

Simulink atomic level blocks cannot be directly used. An

example is the gain block at the top of Figure 6 that

multiplies u by K to produce y. Since the gain parameter,

K, is a member of the parameter bus structure, it must

enter the diagram on a signal “wire” as shown at the

bottom of the figure. This clutters the diagram and

reduces readability. On Orion, special gain blocks were

created that had hidden “From” blocks to allow the

designer to use a similar gain form as the top diagram, but

it is more desirable to use the normal Simulink language

whenever possible. Later versions of Simulink, which allow parameters to be specified via other means, are worth

consideration for future projects.

Figure 7 shows a typical collection of CSU’s or a “domain.” Each Orange CSU block contains the combination

of Junction Boxes and a CSU algorithm block as shown in Figure 5. This example is the CM control domain and

contains three CSU’s that control the CM by commanding its reaction thrusters. Each CSU receives inputs from

upstream CSU’s passed into the domain. Each domain also contains moding logic that enables or disables CSU’s

according to mode commands received from the GN&C moder/sequencer to be discussed later. During exo-

atmospheric flight and during the guided entry, the RCS Control CSU is enabled to provide rate change commands

to the Thruster Logic. Once under the main chutes, RCS Control is disabled and the Touchdown Roll Control CSU

is enabled to turn the CM to a downwind heading for splashdown.

On the Orion project, the Orange CSU boxes are autocoded and integrated as independent functions into the

GN&C partition. So from the domain level up, the Simulink diagrams are not used to produce final flight software.

Rather, they provide the interfaces and moding to allow CSU development and integration in a Simulink

environment for execution in a closed loop simulation.

All the CSU’s in a domain block execute

at the same rate – in this case at the control

rate of 40Hz. One of the lessons learned in

developing the Orion domain architecture was

that collecting CSU’s in like rate groups

simplified the correct modeling of rate group

latencies and interactions. Early domain

versions contained all the CSU’s of related

functionality regardless of their execution rate.

The collection of domain diagrams are

wired together with other domain blocks of

like rate and collected into the high and low

rate blocks of Figure 8. These rate blocks,

together with the other blocks in the figure,

comprise the RAMSES Simulink development

environment in its final form for EFT-1.

Inputs, outputs and telemetry are provided by

the “IOP” blocks which mimic the Input-

Output Partitions in the flight software by

providing interfaces to the simulation. Other

partitions which interface with GN&C are also modeled, including the C&DH partition and the Timeline Manager

(TMG) and Vehicle Manager (VMG) partitions which provide vehicle configuration data and mission segment

information to GN&C.

American Institute of Aeronautics and Astronautics

7

Figure 8. RAMSES Simulink Wrapper for GN&C FSW.

In a typical MBD process, a company or organization may have an existing library of graphical GN&C

components to draw from. In the case of Orion, because much of the algorithm prototyping was initially done in C,

a “translation” period was scheduled to convert C algorithms into Simulink block diagrams. The intent of the

translation period was to re-produce algorithms from existing prototype C code. The entry flight phase was judged

to have the most mature algorithms, so entry modules were scheduled to be the first wave of algorithms translated

and integrated into RAMSES. This pathfinder process highlighted several aspects of the Orion plan that worked

well, as well as important lessons learned related to MBD development as done for Orion. Recommendations for

the Mathworks Simulink product are also highlighted, some of which have been communicated to Mathworks and

incorporated in later Simulink versions.

Scaleability. MBD tools on Orion required considerable customization to allow them to scale to the project size.

The final Orion GN&C application will produce well over 100,000 lines of autocode. The Orion experience was

that the Simulink product did not provide an adequate development capability “out of the box” for this size

application. The team found that the build and execution speed of the RAMSES-M/A development environment

tended to diminish as CSU’s and capability were added. So continual development of custom tools, iteration with

Mathworks and dissemination of improved standards and techniques was required to make the development cycle

time acceptable. Many of these tools, standards and other lessons learned are useful for similar projects and are

described in this paper. Since the EFT-1 flight reduced the size of the overall application, and since many of the

tools and techniques are now available and understood by the team, future development is expected to be more

efficient, but compromises may still need to be made to isolate flight phases or functions for development as Orion

moves forward.

Configuration Management. Projects electing to follow an MBD process should prepare for configuration

management requirements that differ from hand code. Two aspects of MBD tools in particular require attention:

separation of graphical modules, and merging graphical changes. Early versions of the Simulink tool included all

functionality in a single model file (“.mdl” file). This was not practical for a large project, since all developers

operated on a single configuration managed object, even though they may have been making changes to separate

subsystems within the model. For this reason, Orion used the Simulink Model Reference Block (MRB) capability

discussed above, which allows subsystems to be expressed in separate model files and “referenced” in the top level

diagram. This MRB capability evolved significantly over the Orion development period and new capabilities for

parameterization and autocoding of MRBs are now available. Since MRB’s are a virtual necessity from a

configuration management standpoint, project architects should thoroughly investigate the latest MRB capabilities

prior to deciding on how to integrate and parameterize GN&C algorithm units.

Graphical merges are another important consideration for MBD processes. When multiple changes are

simultaneously made to the same file by multiple developers, a merge is required to incorporate updates. Text

merge tools are highly effective for hand coded applications, but graphical merge tools are more expensive and less

effective than their text counterparts. Orion purchased licenses from third party vendors for graphical merge tools,

and found the tools to be useful enough to justify purchase, but not as effective as text merge tools. The limited

distribution and training of these tools to the team limited the amount of parallel development that the team was able

to accomplish. This was less of a problem at the CSU level, but often CSU developers needed to make changes at

the domain level and would have to either wait until another developer completed domain level changes, or make

American Institute of Aeronautics and Astronautics

8

parallel changes and use the graphical merge. Since domain level changes were often in the interface, the number of

graphical merges was reduced by wrapping the junction boxes associated with each CSU in another MRB, as

discussed above and shown in figures 5 and 7. Also, a one POC per CSU standard was enforced to prevent parallel

changes to CSUs. As algorithms matured for EFT-1, parallel development has reduced and the need for merges has

diminished. However, the Orion team considers the graphical merge capability an important need for the

development of remaining flight phases and continues to look for acceptable options.

Complexity of mixed tool development. The RAMSES development environment – and its associated interface

to and hand-coded simulation has been successful for Orion EFT-1 development. However, the use of mixed

simulation/FSW development environments is not recommended for the early development phases for projects that

do not have a strong legacy of hand coded simulations. The Orion development environment requires a fairly

complex set of scripts to start both simulation and FSW processes, load simulation and FSW configurations and

manage environment variables and other initialization items. The environment also requires familiarity with several

tools, including familiarity with C code, the JSC “Trick” simulation environment, the suite of execution scripts and

the full suite of Simulink tools and custom scripts. This means that engineers new to the project need significant

training prior to starting development. The team is currently looking at options for development in future flight

phases, including simplified scripting and configuration management tools and the creation of simplified medium

fidelity Simulink simulations for early algorithm development.

Logging and Debugging. Two of the areas in which the Orion team did significant custom work were data

logging and graphical process debugging. The Simulink development tool provides several options for writing to

files and to the MATLAB workspace in the form of output blocks. However, these options are not data configurable

as required for high complexity applications and they have some incompatibilities with arrayed structure types. For

this reason the Orion team developed a data logging subsystem – RAMSES-M Record – to allow user selection of

output parameters for analysis and debugging. While this tool will pay dividends for future Orion development, a

generic logging capability that is delivered as part of Simulink, that does not require changes to the diagram for

configuration is highly desirable.

Additionally, debugging in the native Simulink environment was often difficult. Simulink provides three

separate debugging tools, one for Simulink, one for Embedded MATLAB and one for Stateflow. All three are

different, so training or familiarization is required for each. The most popular debugger by far among developers

was the Embedded MATLAB debugger which provides intuitive, graphical breakpoint insertion, “hover” displays of

variable and parameter values, etc. In fact the ease of eML debugging led several developers to develop initial

algorithms as large eML blocks, which were later broken down into graphical elements with smaller eML functions

contained in lower level blocks. The team also developed custom eML debug blocks which allowed execution

control and viewing of data on Simulink buses between Simulink subsystem blocks.

Modeling Standards. Since this is NASA’s first major manned project to utilize fully the MBD process with the

MathWorks software, a set of Modeling Standards was developed to aid developers. The original source of the

document was the MAAB (MATLAB Automotive Advisory Board) Standards and those from the Honeywell

LaserRef6 project. Lessons learned from the CEV Pad Abort 1 (PA-1) flight test project were included as well.

However, a majority of the content is derived from the development process itself. The document is a living

document which is continuously evolving based on developer feedback and autocode performance.

The main purpose of the Standards was to enhance the consistency, readability, efficiency and compatibility of

the many models that were being developed amongst a large group of developers.

There are currently 155 standards and guidelines in the Orion GN&C MATLAB/Simulink Standards document

(available at www.mathworks.com/aerospace-defense/standards/nasa.html).

To complement the ORION standards, a set of Model Advisor scripts tests were created to streamline the

checking of many of the non-objective standards. These checks could be run automatically to determine any

standards violations. There are currently 68 model advisor checks for the 155 ORION Modeling standards.

When autocode errors/incompatibilities were found, the source Library blocks were modified to avoid them or a

standard was written to avoid them. Many times a model advisor check was also written to automate the finding of

a pattern. Since the standards document and the Model Advisor configurations underwent significant modification,

having these elements under configuration control was essential.

Modeling Library. The standard set of Simulink blocks contained many blocks that are not compatible with the

RTW Embedded Coder or the GN&C architecture. To clarify which blocks are compatible, the team created the

Orion Library. The Orion Library contains only blocks that are compatible with the Embedded Coder and the

Fixed-Step solver, conformed to the modeling standards, and whose resulting autocode complied with the project’s

SDP. Also, no blocks that require variables/parameters from the workspace are included since the architecture does

not support these as described above. This blockset (Figure 9) provides the GN&C and FSW developers with a

American Institute of Aeronautics and Astronautics

9

Figure 9. Orion Library.

standardized set of tools that are certified to be compatible with the modeling standards and will work seamlessly

with the Orion GN&C architecture.

The ideology applied when designing the

ORION library and Modeling Standards was that

the models should speak for themselves. A

reviewer should ideally be able to review a model

and understand all of the details of the algorithm

being modeled without having to click inside a

block and review the block settings or have prior

knowledge of a block’s functionality. Data types,

integration types, data limiting, etc. should all be

clear from the diagram alone. Block illustrations

should convey the functionality of the block.

The Simulink tool allows for the creation of

unique GUIs for each block. The ORION library

uses these unique GUIs to hide certain block

settings that need to remain consistent throughout the model for compatibility or autocode format (e.g. the sample

rate).

Another issue with the standard set of Simulink blocks is that not all of the significant block characteristics are

visible. For example, the standard Simulink “Constant Block” has a setting for limiting the maximum and minimum

value of the output. However, this restriction does not show up on the icon for the constant block. The only way to

know if this setting is used is to open up the block dialog itself. Reviewing the block GUI dialog is not an option

when the block is printed or viewed in a document. Since these models are considered self-documenting they should

be as readable, descriptive and transparent as possible. All of the blocks used in the ORION Library either have the

parameters hidden that should not be changed or the icons have been modified to adequately show the functionality

of the block based on the parameter selection.

Blocks in the ORION Library are color-coded to distinguish between block types and enhance readability – as

required by the standards. For example, an eML block in the Orion GN&C Library is colored grey whereas the

standard Simulink version looks identical to any other subsystem block.

Autocode Configuration Settings. The ORION Library includes the official configuration settings used for the

autocode. There are numerous options available for formatting the autocode. Many times it is unclear how a setting

will affect the autocode until the result is analyzed and compared. The focus of the configuration settings are on

efficiency first, testability second, and readability third. Although Orion did not require formal reviews of the

autocode, it is still very useful to maintain traceability for debugging purposes, so readability is still important. The

ORION settings were mostly chosen by a trial and error approach. The project ran several trade studies to

understand the effect of the configuration settings on the autocode.

The configuration settings have options to both autocode a model and compile it. During development, both the

capability to produce the code and compile it were used. This meant that any compilation issues early and not when

the code was integrated into the larger project.

The autocoding tool includes the option to automatically compile the generated code after completion of each

model. This option allowed us to find compilation issues early and at the model level instead of when the project

was compiled in its entirety.

The ORION project utilized the “referenced configuration set” ability for managing the settings for the

simulation/autocoding. These settings can be managed on a model by model basis or via a referenced set that all

models point to. This allowed us to manage the configuration settings for all of the models in a single object. This

prevented us from having to manage configuration changes on a model by model basis, which would not have been

compatible with the CM system. In this case, every time a change is made to a single setting, all of the models

would need to be revised.

As discussed above, the CSUs were integrated into the partition at the Junction Box layer. Due to the object-

oriented format of the Rhapsody level code, the interface required the use of the C++ (Encapsulated) target. The

2010b version of Simulink was the first release to include this target and the team found many incompatibilities that

required worked arounds.

Modeling Template. The library also includes a Template file, illustrated in Figure 10, for use in creating a CSU

model and the subsystems contained within it. This has proven to be a very useful tool to ensure that all of the

models are consistent and compatible from the start. The template can be thought of as a formal schematic

representing the algorithm design that is also the direct functional representation.

American Institute of Aeronautics and Astronautics

10

Figure 10. Orion GN&C Model Template.

This template has the following features:

 Standard configuration settings (through config set reference). The configuration sets contain the settings

for model simulation and custom autocode options (see “Autocode Configuration Settings” above).

 Information block in the lower right section of each level of the model, to display the project name,

version, author, CSU name, subsystem name, and parent subsystem name. This allowed users to navigate

printed models.

 Version data specific to the project’s CM tool, which is automatically modified every time the model is

checked in to the system.

 Model size constraint borders, that allow each level to be printable on 8½”x11” or “ 11”x17” paper, which

prevents large unprintable models (each level of the model contains these borders)

 Standard input, output and parameter port stubs.

 Annotation block for adding comments to the diagram

Training on Tools. Initial Training on the use of

Simulink was fairly quick and concise. A week long

session was given to go over the early version of the

ORION Modeling Standards, the ORION Library and

to show examples of early prototype work. However,

a functional EBA was not available yet, and the

RAMSES-M tools for closed-loop simulation

connection were not complete. The unit testing

framework was also not available, so developers had

limited ability to build and test models.

At the time, thorough Simulink experience was

limited to a few individuals, the team at large was not

familiar with the tool. The standards that were used to

train the team were preliminary, and many issues with

the autocoder were not yet known. All of these factors

led to a shaky start to the development cycle. Future

projects should use the lessons learned herein to have

development tools ready, and to provide more complete training on standards, development processing, unit testing,

and general MBD development.

Algorithm Modeling. Not all algorithms benefit from graphical dataflow implementation. Certain GN&C

algorithms are ideally suited for graphical representation in a data flow format like Simulink. The overall flow of

GNC data at the top level, and many of the embedded control laws are expressed naturally as block diagrams. Some

attributes of algorithms that are not as easily expressed as data flow diagrams include iteration, expression of

complex equations, state machines, low level data manipulation and object-oriented representations. The Simulink

environment provides tools to allow embedding algorithms with some of these attributes into the graphical dataflow

layers. These include embedded MATLAB scripting, Stateflow diagrams and S-functions to call externally coded

algorithms. The final Orion design for EFT-1 is one example of a successful mix of these languages. In particular,

the GN&C sequencer was coded using an object-oriented Unified Modelling Language (UML) tool. The code for

the sequencer was incorporated into Simulink via an S-function interface. The Orion navigation algorithms made

significant use of Embedded MATLAB (eML) to allow expression of vector and matrix equations while maintaining

top level and intermediate level dataflow diagrams in Simulink. Orion guidance algorithms made heavy use of

Stateflow diagrams to implement iteration and eML functions to implement complex guidance equations. Issues

with testing stateflow algorithms were sufficiently overcome for EFT-1 but Orion continues to communicate with

Mathworks on further improvements. Finally, Orion also developed the GN&C sensor interfaces using Simulink

and eML. This provided consistency in delivery format and autocoding processes for GN&C components, but there

was little gained in clarity or abstraction. Future projects may wish to consider allowing hand code or UML code

for hardware interfaces and integrating them into the Simulink project using S-fuctions.

As the project matured and the team learned more about the benefits and limitations of the tools, a chart (see

Table 1) was created to help aid developers to use the most suitable tool for the algorithm being modeled.

American Institute of Aeronautics and Astronautics

11

Figure 11. Example DDR's.

Table 1. Standards for Use of Simulink Language Tools.
Algorithm Type Simulink Stateflow eML Notes/examples

Simple Logic
•if/then
•switch/case
•for/while loops

X X X Ex: If/then with <5 paths and no nesting

Complex Logic
•nested if/then
•nested switch/case
•nested for/while loops

X
preferred

X Ex: If/then with numerous paths and multiple
levels of nesting

Simple/Short
Numerical Expressions X Ex: <6 consecutive operations, <6

variables/signals

Complex/Lengthy
Numerical Expressions X X

preferred

Ex: >6 consecutive operations, >6
variables/signals

Numerical Expressions
containing continuously valued
states

X*
Ex: Difference equations, integrals, derivatives,
filters
*The actual integrator function can be written
in eML

Combination of:
•Complex Logic
•Simple Numerical Expressions

X iterating a counter is considered a simple
numeric calculation

Combination of:
•Simple Logic
•Complex Numerical
Expressions

X
For Logic

X
For Math

•Can use only Simulink, only eML or use
Simulink for the logic and eML for the math

Combination of
•Complex logic
•Complex Numerical
Expressions

X
for Logic

X
for Logic

and/or Math

•Use Simulink or eML for the numerical
calculations
•Stateflow should invoke the execution of this
subsystem using a function-call

Modal Logic X
Where the control function to be performed at
the current time depends on a combination of
past and present logical conditions

 As Orion approached the Critical Design Review (CDR) for EFT-1 the GN&C algorithms were well positioned

to begin the process of changing them from preliminary functioning requirements to production ready graphical

source. Twenty six CSU’s were functionally complete, integrated into RAMSES and performing well in Monte

Carlo analysis. These were comprised of more than 200 testable units, most of whom had modified complexity

metrics that met the Orion SDP standard.

V. Post-CDR Analysis Production

After CDR, GN&C focus shifted from algorithm

development to evolving the models to include attributes of

good software engineering. This section discusses process

and model attributes that affected testing and review of

GN&C CSU's.

Most GN&C model based development projects create

algorithms that are autocoded from data-flow diagrams and

fit into a larger framework that may be developed by hand

or “semi-automatically” using UML or other graphical

tools. The selection of the “level” of autocode is an

important project decision and should be made early in

development. The autocode level may be anywhere from

autocoding only small units, to autocoding entire rate

groups or autocoding the entire GN&C application. For

Orion, the GN&C application used autocode that included

the CSU model reference block of figure 5 as well as the

input and parameter junction boxes. This means that the

interface to the UML-developed application code was

defined by the the output data buses (structures) of upstream

CSUs, as well as the various parameter bus types.

Parameter data were collected into CSU-specific

parameters, vehicle and physical constants and CSU

American Institute of Aeronautics and Astronautics

12

command parameters. These parameters could be modified by the sequencer at activity boundaries (GN&C mode

changes).

This “CSU plus Junction Box” interface represented a compromise that allowed the higher level application to

function as an object-oriented design and to use efficient hand coded mode-ing logic, while still eliminating the hand

coding of GN&C algorithms. The inclusion of junction boxes also meant that most of the CSU-to-CSU interfaces

were defined in autocode and carried over from the RAMSES Simulink design environment to the GN&C

application. The disadvantage of this methodology was that the domain-level mode-ing logic, CSU

parameterization and any additions of new bus types did not carry over from RAMSES to autocode. The Orion

experience was that errors due to hand coding the moding and bus-level interfaces were rare, but their development

required some time and resources.

In spite of the fact that the autocode was at the CSU + Junction Box level, unit testing of the CSU was done at

the inner CSU level. This prevented the CSU designer from needing knowledge of other CSU output data types and

made the CSU test drivers independent of other CSU or domain level development. The junction box mapping is

inspected and tested as part of integrated testing.

Because a MBD process was used, no detailed, implementation level requirements were needed, and the

Simulink diagrams provided a certain amount of insight into each CSU’s design. However, the MBD process still

required documentation in several areas. First, the Software Requirements Specifications (SRS’s) for Orion often

did not specify enough detail to drive unit testing of each CSU, so Derived Design Requirements (DDR’s) were

created and documented in a “CSU memo” for each CSU (see examples in Figure 11). The CSU memo also

included several other sections that documented important design information. The major CSU document sections

were:

1. Derived Design Requirements – “Shall” statements used to drive unit testing with parent requirements in

the Orion SRS

2. Design and Theory – which provided the mathematical and logic formulation for GN&C algorithms

3. CSU Interface – included automatically generated tables of inputs, outputs and parameters created from

CSU interface bus types

4. Parameter Configuration Set Design – provided information about how to set configurable parameters

5. Assumptions and Limitations

6. Implementation Reference – link to the CSU model in html form

7. Unit Test Descriptions

On the Orion project, the

Simulink CSU diagrams are treated

as the source for CSU algorithms.

For this reason, no formal inspections

of the autocode were performed.

However, formal inspections of the

CSU model diagrams were rigorously

conducted and these included reviews

of the autocode for efficiency. Also,

all unit tests that are developed and

executed on the model have been

executed on the autocode.

Model Maturation. The model

maturation process was well defined

(see Figure 12). This process was

adopted from Honeywell. It gave

clear steps for how to develop a

model in a way that it would be

testable, standards compliant, and

ready for inspection.

To aid the developers when

designing CSUs a “Developer

Checklist” was created. This had a

list of major items that needed to be

“checked” off at each stage in the

process (CSU Inspection readiness,

Figure 12. Model Maturation Process.

American Institute of Aeronautics and Astronautics

13

CSU Unit Test readiness, etc.). At first, many developers were unsure if their models were mature enough to even

integrate into the EBA. This checklist gave them a better picture of the maturity of the models and helped increase

the quality of the models that were being reviewed.

Some examples of this development checklist entrance and exit criteria for the Model Test Review include:

 Are all low level requirements satisfied

 Is the code/model properly notes/commented

 Is the model broken up into individually testable units

 Is the complexity of each testable unit below 20

 Does the model pass all of the Model Advisor checks

 Do the existing Unit Test achieve 100% model coverage

 Is the model “autocod-able” (does the autocoding process complete and compile successfully)

Testable Units. As familiarity with the autocoder increased, the need to define a “testable units” became more

important. The goal was to have a one-to-one match between the source Simulink Model, Stateflow Chart, or

Embedded MATLAB function and the resulting

CPP function or method. This one-to-one match

helped tracking of testing between the source

“models” and the generated functions. It also

helped avoid re-testing code due to excessive in-

lining or function duplication.

One of the biggest headaches of testing the

autocode from our models was how inconsistent

the autocoder is with various model sources. An

independently testable unit at the modeling level

does not always translate into and individually

testable unit in the autocode. Some source

blocks are in-lined in the parent model’s code,

whereas others are separate functions wither in

the parent cpp file or in the shared utilities

section.

To partially get around this issue, autocode

“directives” were used in eML functions (e.g.

%eml.inline(“never”)) and block settings to force the autocoder to create individual methods/functions from the

source eml/Statelfow function. This solved some issues but did not result in the ideal 1-to-1 situation because

autocoded eml/Stateflow functions were coded as methods of the parent model. This caused issues with testing the

method directly and eliminated sharing these

functions between models. Figure 13 illustrates a

single external eML function called by 2 separate

Models and the placement of the autocode that

represents the eML function. All of this duplication

of code places a heavier burden on the backend

testing of the actual autocode.

The only way to ensure absolute 1-to-1 model to

code was to use “Model References” (Figure 13). If

each source function were a Model Reference, it

could be called throughout the project and result in

a single instance in the autocode. Another

advantage of the MBR approach was that each

MBR could be directly tested in a Simulink driver

as a unit – and the resultant test drivers functioned

well with the Mathworks “System Test” verification

tool. Figure 14 illustrates how a model reference

containing an eML function is placed in the

autocode.

However, many of our functions were created

Figure 12. External eML Function Called by Two

Parent Models.

Figure 13. Model Reference Blocks as Testable Unit

Wrappers.

American Institute of Aeronautics and Astronautics

14

Figure 13. Legal Execution Hierarchy.

Matrix Multiply block of Model Complexity 0:

Resulting Autocode of Complexity 3:

Figure 14. Effect of Autocoding on Complexity.

using eML and to a smaller degree, Stateflow. Eml functions cannot call Simulink Models (aka Model References)

– so if an algorithm needed to be written in eML, none of the shared Simulink or Stateflow models could be called.

Figure 14 illustrates the calling ability between the Simulink, Stateflow, and eML tools. From this you can see that

eML is restricted to only calling other eML functions.

Due to this issue, strong limitations were placed on the use of eML functions that were shared between models.

This caused problems with developers that favored eML for

their algorithm development.

Develop meaningful complexity requirements for MBD.

During early Orion development, functionality and capability

were given priority over modularity, complexity and other

software engineering considerations. This was due partly to

the need to use GN&C algorithms early to perform time

domain analysis for vehicle systems integration and due to

the fact that complexity definitions and guidelines were

evolving. The Orion project Software Development plan

(SDP) required that the cyclomatic complexity (CC) (Ref. 2) of functional units be no more than 20 (hand code and

autocode). It was soon discovered, however that automatically generated code often had higher CC than hand code

and testable units in the model didn’t translate into testable units in the autocode (as discussed above).

The Cyclomatic Complexity metric is a very useful way to measure the testability of the code. However, it

posed a bit of a challenge for functions that were developed in Simulink because there is no direct way to find the

CC of the code without actually autocoding the model and analyzing the autocode. Simulink provides the ability to

find the Model Complexity, but on Orion, the

SDP requirement is applied to the autocode

only, regardless of model source. Also, the

standard way of measuring the CC of the

autocode did not reflect the testability of the

source model. This disconnect is mainly due

to the liberal use of for loops in the autocode

for data initialization, data assignment, and

vector/matrix math. The standard way of

calculating CC counts each for loop as an

additional unit of complexity whether the loop

is static or not. This issue caused the Model

Complexity and the Code Complexity to differ

greatly and added confusion to the developer.

Figure 15 illustrates how a single block in the

model is translated into code that has a complexity of 3 due to the nested static for loops arising from a matrix

multiplication. These additional static for loops do not add to the complexity of the code.

Ensuring that the resulting autocode for each function would have a CC value of <20 is difficult. The team

found that if static for-loops are ignored, the CC for autocoded functions closely matched the source model

complexity. Since these static for loops did not truly add complexity to the code, it was agreed that our CC metric

should exclude them. To measure the modified CC, a tool was developed that calculated complexity and ignored

static for loops. The CC limits were reviewed in both the Model Inspection and Unit Test Inspection.

In the 2010b version of Simulink, the complexity of a model is not easy to obtain and caused issues in metric

reporting, this issue has been improved in future versions.

Other Metrics. Using SLOC is a good way to calculate project metrics such as project size and for estimating

work load for future tasks. However, with MBD, model size is a better metric than lines of code. The SLOC count

of the autocode was not consistently proportional to the size of the Model for many reasons. Instead, a “Model

Size” metric was created to take into account components from all three tools (Simulink/Stateflow/eML) and is

calculated via the following formula (calculated automatically via script):

Model Size = Simulink Blocks + lines of eml code + Stateflow Transitions

American Institute of Aeronautics and Astronautics

15

Figure 15. System Test

Execution Flow.

The ORION project did not have a SLOC limit requirement for functions or files since function complexity was

governed by Cyclomatic Complexity requirements. But, the team found this tool useful in tracking progress and

project size.

Model coverage vs Code coverage. Ideally, to minimize the testing difference between Models and Code, the

coverage of the model should be the same as the code. This is not always the case. In addition to the code reuse

issues described above, the autocoder will optimize out certain blocks, remove unreachable paths (dead code) based

on specific use, and insert protection around certain operations (e.g. integer overflow). Also, some blocks that may

have internal paths, are not represented as such in the source model. In Simulink, a block is either executed or is not

executed; internal branching is not revealed until the block is autocoded. Some of these discrepancies between the

model and autocode can be prevented by changing options in the configuration setting and some could be removed

by modifying block settings. However, 1-to-1 model and code coverage was not 100%.

Unit Testing. Simulink System Test (Figure 16) was chosen as the official Orion GN&C tool for Unit Testing

the models. Developing the tests from within the System Test tool proved troublesome due to both stability issues

and limited functionality. For example, error reporting for simulations was limited to either pass or fail, with no

insight to the cause of problems. As the team grew more accustomed to the tool, we found workarounds for many of

the issues. A Standards and Guidelines document was created for unit testing as well. This document listed the

standard formats, process, and APIs for developing unit tests for models. This document help standardize the unit

tests across the entire GN&C project.

Due to the general issues of System Test, our unit testing framework was

designed to rely as little as possible on System Test itself. All of the input data,

initialization routines, and comparison data were created outside of the tool.

System Test was basically used to execute the test, return results, and generate

the test report and coverage files. The quality of the test and coverage reports

were a highlight of the tool. Due to the independent way our unit tests were

developed, switching to a more capable tool in the future is expected to be

fairly seamless.

LDRA and SIL/PIL Mode integration. The official Code analysis tool on

Orion was LDRA (Liverpool Data Research Associates) Testbed. LDRA

Testbed provides the core static and dynamic analysis engines for our software.

By default, The MathWorks tools only worked with Bullseye Coverage tool

with the C target. The GN&C FSW team worked with Mathworks support to

achieve compatibility with LDRA for generating unit test scripts that could be

run with LDRA.

One highly useful feature of the Simulink tool is the ability to run the

autocode of a model in “SIL” or “PIL” mode. This allows the developer to

generate unit tests with the source models, then run the same tests on that actual

compiled FSW (SIL mode) and on the actual FSW running in an emulated

target environment (PIL mode). Unfortunately, our pioneering use of the C++

Encapsulated Target and our use of the LDRA Tools, the SIL and PIL mode

were not yet compatible “out of the box”. Upon request from Orion, The

Mathworks provided a patch to enable this functionality. Later versions of

Simulink have LDRA compatibility built in and support SIL and PIL mode for the C++ (encapsulated) target.

VI. Conclusions

The Orion GN&C team has successfully used a MBD process to generate software for GN&C algorithms for the

EFT-1 mission. The team incurred considerable up-front cost for the transition to an MBD process, but downstream

benefits are now being realized. Some of the upfront costs were unavoidable, but others may be avoided in future

programs by heeding the lessons learned enumerated here. Some of the costs included:

 A steep learning curve for engineers not familiar with MBD tools

 Slow and complex development tools and processes

 Configuration management issues.

These issues will be mitigated in algorithm development and test for future Orion missions since many of the tools

and techniques have been established. The team now has mature MBD coding standards and automated standards

checking via the Model Advisor. Faster build and autocode times have arisen from improvements in Mathworks

American Institute of Aeronautics and Astronautics

16

tools and better application of the tools. And the team has a better understanding of how to perform configuration

management with MBD artifacts as described above.

Some of the benefits that GN&C is now observing include:

 No schedule time was needed for hand coding GN&C algorithms (60,000+ SLOC were autocoded by

CDR)

 Detailed requirements review was replaced by review of MBD artifacts which had proven functionality

 Automated test framework and report generation has simplified testing and production of test artifacts

 Automated standards checking tools (e.g. Model Advisor) and graphical artifacts have facilitated the

inspection process

The Orion GN&C team is ready to complete GN&C software integration for the EFT-1 mission and to move

forward to generate GN&C algorithms for other flight phases. Other programs desiring to use an MBD process

should not start from scratch. Many tools, techniques and lessons learned are available from the authors and other

Orion GN&C team members.

Acknowledgments

To acknowledge all the contributors to the Orion MBD process is not possible since it was a product of a large,

diverse team as described above. However, the authors wish to acknowledge certain key individuals who made

particularly large contributions, including Scott Tamblyn from NASA, David Shoemaker from Lockheed Martin,

David Oelschlaeger and Kevin Morrill from Honeywell and Ian Mitchell from Draper Lab.

References
1Trick Simulation Environement, Trick User’s Guide, Version 2007.20, Automation, Robotics and Simulation Division,

NASA Johnson Space Center, November, 2009.
2McCabe, T., “A Complexity Measure,” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO.4, pp

308-320, December, 1976.

