ORION GN&C MODEL BASED DEVELOPMENT:
EXPERIENCE AND LESSONS LEARNED

Mark C. Jackson'
Charles Stark Draper Laboratory, Houston, Tx, 77062

and

Joel R. Henry?
NASA Johnson Space Center, Houston, TX, 77058

The Orion Guidance Navigation and Control (GN&C) team is charged with developing
GN&C algorithms for the Exploration Flight Test One (EFT-1) vehicle. The GN&C team is
a joint team consisting primarily of Prime Contractor (Lockheed Martin) and NASA
personnel and contractors. Early in the GN&C development cycle the team selected
MATLAB/Simulink as the tool for developing GN&C algorithms and Mathworks autocode
tools as the means for converting GN&C algorithms to flight software (FSW). This paper
provides an assessment of the successes and problems encountered by the GN&C team from
the perspective of Orion GN&C developers, integrators, FSW engineers and management.
The Orion GN&C approach to graphical development, including simulation tools, standards
development and autocode approaches are scored for the main activities that the team has
completed through the development phases of the program.

Nomenclature

ARINC = Aeronautical Radio, Incorporated GN&C = Guidance Navigation and Control
cC = Cyclomatic Complexity GUI = Graphical User Interface

CDR = Critical Design Review MBD = Model Based Design

Ccsu = Computer Software Unit PA-1 = Pad Abort One

EBA = Empty Box Architecture PDR = Preliminary Design Review

eML = embedded MATLAB PIL = Processor In the Loop

EFT-1 = Exploration Flight Test One SDP = Software Development Plan
FSW = Flight Software SIL = Software In the Loop

. Introduction

HE Orion Guidance Navigation and Control (GN&C) team has developed GN&C flight software using a Model

Based Development (MBD) process that includes developing algorithms in the Simulink® graphical design
environment, automatically generating C** code, and integrating the code into an Aeronautical Radio, Incorporated
ARINC 653 partition. The Orion GN&C application is large and complex and it was developed by a geographically
separated team, so there are many experiences and lessons learned that apply to projects within and outside the
aerospace industry.

This paper provides an assessment of the successes and problems encountered by the GN&C team from the
perspective of Orion GN&C developers, integrators, FSW engineers and management. The Orion GN&C approach
to graphical development, including simulation tools, standards development and autocode approaches are assessed
for each of the main activities that the team has completed through the development phases of the program. A
chronological approach is taken to communicate both the Orion MBD process and the lessons learned from that

! Principal Member of the Technical Staff, Charles Stark Draper Laboratory, 17629 El Camino Real, Suite 470,
Houston, TX 77058, AIAA Senior Member.
2 Orion GN&C Software Functional Manager, NASA — Johnson Space Center, 2101 Nasa Parkway, Houston, TX
77586.
1
American Institute of Aeronautics and Astronautics

process. The following sections provide relevant background on the Orion project as well as problems and
successes encountered during the design phase prior to Preliminary Design Review (PDR), during the development
phase prior to Critical Design Review (CDR) and during post CDR production. At the end of the paper, lessons
learned are summarized and recommendations provided for future MBD projects.

Il. Orion Project Background

Three aspects of the Orion project bear on the the MBD process: Application size and complexity, GN&C team
makeup and geographical distribution, and legacy tools and infrastructure. This section provides background in
each of these areas to allow the reader to understand and assess process decisions and lessons learned.

Application Size and Complexity. The Orion Spacecraft is NASA’s vehicle for manned exploration outside of
low Earth orbit. The spacecraft consists of three main components: a manned capsule, or Crew Module (CM), a
Service Module (SM) and a Launch Abort System (LAS). The CM houses the GN&C subsystem shown in Figure
1. At the center of the GN&C subsystem is the GN&C Flight Software (FSW) which executes on the Vehicle
Management Computers (VMC’s). This software receives inputs from navigation sensors and pilot controls and
displays and commands the appropriate effectors on the CM, SM and LAS to accomplish mission objectives.

The Orion GN&C software operates across a variety of mission phases, including pre-launch, ascent, Earth orbit,
transist, loiter, rendezvous, docking, entry and various abort scenarios. During these phases, GN&C communicates
with sensors on the CM and SM, and commands effectors on the CM, SM and LAS. The software must operate in
both manual and automated modes and must handle commands from the crew and the ground. The software must
also execute complex guidance and navigation algorithms while controlling highly dynamic configurations during
entry, ascent aborts and orbital maneuvers. The resulting breadth of algorithm types drives a multi-rate architecture
to meet CPU usage allocations.

The Orion project has evolved since its
inception. Originally, the first mission to fly
with the GN&C software would have included
all three components (CM, SM and LAS) and
would have been required to execute nearly the
entire breadth of GN&C capability. However,
changes in manned exploration schedules and
budgets have resulted in a phased development
approach consisting of test flights of increasing
capability. The first flight of the Orion CM will
now be a test flight of the CM only, launched on
a commercial booster to an elliptical orbit
designed to achieve a high speed entry to test
CM thermal protection systems. Termed
“Exploration Flight Test One” (EFT-1) this test
will limit the required GN&C functionality to
navigation-only during pre-launch through

Figure 1. Orion GN&C Subsystem. booster separation, followed by full GN&C to

guide the capsule to a water landing target

through the orbital coast, atmospheric entry and parachute landing phases (Figure 2). For EFT-1, the LAS is only a

mass simulator, so no GN&C abort algorithms are required for EFT-1. This phased flight test approach means that

portions of the GN&C software design are complete and undergoing test and integration with the Orion avionics,
while other components and algorithms remain at the post-PDR design complete phase.

2
American Institute of Aeronautics and Astronautics

GN&C Team. The Orion GN&C team is a large, geographically dispersed team consisting of members with
diverse experience and backgrounds. GN&C architecture and algorithm developers include NASA civil servants at
Johnson Space Center in Houston, TX, Lockheed Martin employees in Houston, and Denver Colorado, as well as
developers from Honeywell, Draper and other sub-contractors located in Florida, Massachusetts, Minnesota and
other states. Team members have program experience on the Space Shuttle, International Space Station, Mars
exploration programs and commercial satellite development, to name a few. GN&C software development
experience ranges from “classical”

development processes that use
detailed requirements and hand_ EXPLORATION FLIGHT TEST ONE OVERVIEW

ertten Code to more automated TWO ORIXTS '« 20000 MPH ENTRY & 3671 MLE APOGLC & 2116 DEGRIC INCUNATION

processes that depend wholly or
partially on automated code
generation. Additionally, team
members’ views on MBD
processes tended to vary with their
domain expertise, with navigation
and guidance developers often
preferring text-based algorithms,
and controls and architectural
designers preferring the data-flow
depictions of algorithms afforded
by some MBD tools such as
Simulink®. As discussed in the
sections be|0W’ both the Figure 2. EFT-1 Mission Overview.

geographical separation and

diverse experience base of the team impacted the MBD process, both in positive and negative ways.

Legacy Tools. Prior to selection of a prime contractor, the NASA team had developed a highly capable set of
simulation tools and prototype GN&C algorithms adapted from legacy code in the C language. Simulation models
and GN&C algorithms were integrated into functioning executables within the JSC “Trick” simulation environment
(Ref 1). The simulation was termed the Advanced NASA Technology Architecture for Exploration Studies
(ANTARES). Most algorithm development and performance analysis prior to PDR was conducted using the
ANTARES. After contract award, Lockheed Martin also developed an independent Trick-based simulation named
“Qsiris.” Osiris was architected to execute the GN&C FSW algorithms as a separate process. This was done in
done to allow sharing of the GN&C FSW between Osiris and ANTARES. After PDR, Osiris became the simulation
tool used to develop and test GN&C algorithms.

The GN&C algorithms at PDR were derived from a combination of legacy C code algorithms (about 75%) and
Simulink algorithms which were autocoded into C and integrated into the prototype C architecture. Several
proposals were considered to move the algorithms from prototype code to production software. Ultimately the
decision was made to use Simulink in an MBD process for the FSW development, while retaining the legacy C code
simulations. It was decided to create a development environment that included the C simulations communicating
with a MATLAB/Simulink process as described in the next section. Some of the factors in this decision were:

e The prime contractor’s FSW team was staffed under the assumption that autocode would be used to
generate the GN&C algorithms — so there were insufficient resources to allow manual coding of algorithms
from detailed written requirements

e The MATLAB/Simulink process would allow development and debugging of the algorithms in their native
MBD environment

e The legacy simulations were fully developed and functional, so development of a Simulink simulation
would take time and resources that were deemed unnecessary

e The Pad Abort One (PA-1) flight test had used a similar process for software development.

Launch Vehicle
Upper Stage Disposal Upper Stage Separation

Upper Stage
Engine Burns

CAUNCH CONFIGURATIONY

Orion /Upper Stage
Separation

A
e
{E
|

Future papers will compare the benefits and drawbacks of the Orion MBD process with traditional hand-code
processes. The focus here is to enumerate and explain the techniques, issues and lessons learned from the
processes and tools used.

3
American Institute of Aeronautics and Astronautics

ITII. Pre-PDR Analysis, Design and Process Development

Prior to PDR, the team focused on generating and validating GN&C requirements and developing preliminary
GN&C algorithms. Most of this work was done using the ANTARES and Osiris simulations described above.

Performance Driven Development CSU (algorithm) Given the state at PDR, a plan was
. o g generated to move toward an MBD
Detugging Devalgpment development process. The plan included
several critical new tools and capabilities -
CSU Integration specifically:

e A Trick simulation to MATLAB
process interface to allow algorithm
[development in Simulink® with legacy
truth models in C

e An ‘“empty box” architecture in
Simulink® that would house the GN&C
algorithms as they were developed

e A suite of Unix and MATLAB scripts
that enabled the execution of the combined
Trick/ Simulink® tool

Prior to PDR, the team began to
implement the plan by developing the tools
Monte and processes of Figure 3. First,
Carlo algorithms would be developed as
Analys 5 Simulink diagrams. Often these were based
SDD, on pre-existing algorithms that were
S already implemented as prototype C-code.

Figure 3. Orion GN&C Development Tools within the For this reason, a period of time would be
Development Cycle. spent to “translate” existing prototype C-
code into Simulink diagrams.

The Simulink representation of a particular algorithm was called a Simulink Computer Software Unit, or just
“CSU.” The term “CSU" is used in many programs to define the lowest level testable units, but on Orion, CSU’s
varied in size and complexity, and most had several testable sub-modules. The Orion terminology is used for this
discussion.

Next, the algorithms would integrate into a Simulink framework that allowed execution of the integrated set of
algorithms with a 6 DOF simulation. The Simulink Framework was essentially a wrapper around the GNC
algorithms that provided execution, mode-ing and debugging in the native Simulink environment. ~Dubbed the
“Rapid Algorithm MATLAB Simulink® Engineering Simulation (RAMSES),” this wrapper eventually housed all of
the GN&C algorithms, and provided models of
non-GN&C FSW that were required for GN&C

Sensor

e e |~ RAMSES-M z
Simulation E MATLAB/Simulink

Effector

s THE=
Commands : E_g. _. =

Autocode

Sensor S —

Data
6 DOF RAMSES A

Simulation C++

Effector
Commands

uonejuawinioq ugiseq

| GN&C Team Algorithm Development

| Fsw Build Process

execution.
The RAMSES wrapper would be driven by a | | mitial ping and
heritage 6 DOF C-code simulation. The | | TestngefAlserithms

decision was made not to build a Simulink
simulation, since most of the team was familiar
with the legacy simulations, and there was a
desire to leverage the existing capabilities.
However, this setup did add complexity to the

Analysis |
And |
" Preliminary |
6. g f : e
development gycle, so the pros and cons of this o Dusi |
approach are discussed below. |
Developers were to do most of their [|
developing, debugging and integration work v Y| v

using the native Simulink version of RAMSES.. M ertcaton - “‘;:':.‘J::S.Ef
For analysis work however, RAMSES would be L i i, o ol e e of ST
autotcoded in its entirety and executed as a Figure 4. Design and Production Cycles.

UNIX' process with the legacy C simulation.

4
American Institute of Aeronautics and Astronautics

This would provide higher speed execution for Monte Carlo analysis and some debugging. When execution of the
tool was in the native MATLAB process, the tool was referred to as “RAMSES-M” (M for “MATLAB”). When
executing the autocode as a compiled process, it was called “RAMSES-A” (A for “Autocode”).

Figure 4 shows how the above tools were used in the design and production cycles. At the upper left, the initial
prototyping, requirements validation and pre-PDR design and analysis was conducted primarily using legacy C-
based simulations and algorithms. During the post-PDR phase, the tools of Figure 3 were used to translate and
mature the algorithms as Simulink CSU’s. The iterative process of development of algorithms in RAMSES-M and
performance testing in RAMSES-A was the “Design Loop” and was the primary activity in the post PDR period.
As the team entered the post-CDR production phase, autocoded CSU’s were delivered to the GN&C FSW team for
integration into the GN&C partition. Testing on the GN&C partition occurred with software emulations of the
processor environment as well as on the actual Orion processors. Iterations on the GN&C partition due to this
testing were referred to as the “Production Loop.” Sometimes, errors or changes to the Simulink CSU’s were
needed, so design change requests were fed back to the Design team for modification using the RAMSES tools. The
GN&C Design and FSW teams worked closely together, so response to Design change requests was very rapid.
Also, the thoroughness of testing in the RAMSES environment meant that very few errors were found in the
Simulink models. Most of the problems encountered were related to inefficient execution, as discussed in the Post-
CDR section below. The following sections provide detailed lessons learned for the PDR to CDR design and Post
CDR production processes depicted in the figure.

IV. PDR to CDR Development

During the post PDR period, the GN&C and FSW teams transitioned from hand code algorithm prototyping, to
an MBD process that produced preliminary versions of the GN&C CSU’s in Simulink. During this period, several
major efforts were undertaken: development of the RAMSES GN&C wrapper in Simulink, development of an
Empty Box Architecture (EBA) which provided the moding and interfaces between CSU’s, translation of many of
the GN&C algorithms from prototype C code to Simulink CSU block diagrams, and integration of the CSU’s by
populating the empty boxes.

Figure 5 shows a Simulink diagram of a typical GN&C CSU
Junction Box. The orange block is the CSU itself which contains
the algorithm. Its interfaces consist of 4 Simulink “buses” which

Simulink Model Template

Output and Telemetry

Input Junction Box Busses correspond to structured data types. The input and parameter
o S "’S@ buses enter the CSU from the left and the output and telemetry
ST 0 i " buses feed the output port ovals on the right. Outputs are those
s Y Model ‘\ signals needed by other downstream CSU’s, while telemetry data
[Reference | are additional data needed for analysis and insight into CSU
o = behavior. When autocoded, the orange block produces a Class

) /‘ with a method whose calling arguments are data structures

corresponding to these four Simulink bus types.

To the left of the orange CSU algorithm are “Junction Boxes.”

These Simulink subsystems route data from upstream CSU’s and

Figure 5. Typical GN&C CSU Diagram. other sources and multiplex the data into the input and parameter

boxes. The orange CSU block is a Simulink model reference

block. This means that the functionality within the block is contained in a separate Simulink model (.mdl) file from

the rest of the block diagram. This is important for configuration management since changes to the algorithms
within this block affect only the associated file.

The method used to provide parameters to a Simulink model reference block is an important design decision to
make early in the Simulink design process. In this context, “inputs” are time-varying signals that are operated upon
by the CSU to produce the outputs. “Parameters” are quantities that configure the CSU and remain static during
most execution calls. These data may be changed by the moding software on asynchronous events, but they
otherwise remain fixed. Control gains are examples of parameters, while control errors are examples of CSU inputs.
The Orion GN&C team elected to pass parameters into each CSU via a parameter bus as discussed above. This has
several important advantages:

e The parameter interface is clearly visible in the diagram
e Parameter data structure types are clearly defined using Simulink Bus definitions

Parameter Junction Box

5
American Institute of Aeronautics and Astronautics

e The parameter interface in the resulting autocode is clear by inspection — as a structured pointer calling
argument for C ++ autocode.

However, one major disadvantage of this technique is
that parameters must be routed like signals to locations u _|
within the CSU. This means that several important '| -K-
Simulink atomic level blocks cannot be directly used. An
example is the gain block at the top of Figure 6 that
multiplies u by K to produce y. Since the gain parameter,
K, is a member of the parameter bus structure, it must u y
enter the diagram on a signal “wire” as shown at the
bottom of the figure. This clutters the diagram and 7'
reduces readability. On Orion, special gain blocks were K
created that had hidden “From” blocks to allow the
designer to use a similar gain form as the top diagram, but
it is more desirable to use the normal Simulink language
whenever possible. Later versions of Simulink, which allow parameters to be specified via other means, are worth
consideration for future projects.

Figure 7 shows a typical collection of CSU’s or a “domain.” Each Orange CSU block contains the combination
of Junction Boxes and a CSU algorithm block as shown in Figure 5. This example is the CM control domain and
contains three CSU’s that control the CM by commanding its reaction thrusters. Each CSU receives inputs from
upstream CSU’s passed into the domain. Each domain also contains moding logic that enables or disables CSU’s
according to mode commands received from the GN&C moder/sequencer to be discussed later. During exo-
atmospheric flight and during the guided entry, the RCS Control CSU is enabled to provide rate change commands
to the Thruster Logic. Once under the main chutes, RCS Control is disabled and the Touchdown Roll Control CSU
is enabled to turn the CM to a downwind heading for splashdown.

On the Orion project, the Orange CSU boxes are autocoded and integrated as independent functions into the
GN&C partition. So from the domain level up, the Simulink diagrams are not used to produce final flight software.
Rather, they provide the interfaces and moding to allow CSU development and integration in a Simulink
environment for execution in a closed loop simulation.

y

A 4

Figure 6. Gain Parameter Comparison.

All the CSU’s in a domain block execute
at the same rate — in this case at the control
rate of 40Hz. One of the lessons learned in

CNC_d0HzProcessing

- . s developing the Orion domain architecture was

. - that collecting CSU’s in like rate groups

— — “'éf;sr;r [simplified the correct modeling of rate group

= N latencies and interactions. Early domain
m— e versions contained all the CSU’s of related

functionality regardless of their execution rate.
The collection of domain diagrams are
) wired together with other domain blocks of

‘o i0 ioinininle

e Moding ~o\) Execution — like rate and collected into the high and low
| Koge Flags rate blocks of Figure 8. These rate blocks,
|nz32a;r; ’ s together with the other blocks in the figure,
Parameters . = comprise the RAMSES Simulink development
from — environment in its final form for EFT-1.
UP:;'J*;’“ e - Inputs, outputs and telemetry are provided by
- the “IOP” blocks which mimic the Input-

Figure 7. Typical Domain Containing CSU Blocks. Output Partitions in the flight software by

providing interfaces to the simulation. Other
partitions which interface with GN&C are also modeled, including the C&DH partition and the Timeline Manager
(TMG) and Vehicle Manager (VMG) partitions which provide vehicle configuration data and mission segment
information to GN&C.

6
American Institute of Aeronautics and Astronautics

o
o 5

o
e

s<mn - o
© - *

o
v boorem| Lo
[- Wi

'ur
;

o

= ' = -

. E

] o : I
[g o — A

ORI v—— o

1

il

il m—— - : o

0 o -
@ — [

Figure 8. RAMSES Simulink Wrapper for GN&C FSW.

In a typical MBD process, a company or organization may have an existing library of graphical GN&C
components to draw from. In the case of Orion, because much of the algorithm prototyping was initially done in C,
a “translation” period was scheduled to convert C algorithms into Simulink block diagrams. The intent of the
translation period was to re-produce algorithms from existing prototype C code. The entry flight phase was judged
to have the most mature algorithms, so entry modules were scheduled to be the first wave of algorithms translated
and integrated into RAMSES. This pathfinder process highlighted several aspects of the Orion plan that worked
well, as well as important lessons learned related to MBD development as done for Orion. Recommendations for
the Mathworks Simulink product are also highlighted, some of which have been communicated to Mathworks and
incorporated in later Simulink versions.

Scaleability. MBD tools on Orion required considerable customization to allow them to scale to the project size.
The final Orion GN&C application will produce well over 100,000 lines of autocode. The Orion experience was
that the Simulink product did not provide an adequate development capability “out of the box™ for this size
application. The team found that the build and execution speed of the RAMSES-M/A development environment
tended to diminish as CSU’s and capability were added. So continual development of custom tools, iteration with
Mathworks and dissemination of improved standards and techniques was required to make the development cycle
time acceptable. Many of these tools, standards and other lessons learned are useful for similar projects and are
described in this paper. Since the EFT-1 flight reduced the size of the overall application, and since many of the
tools and techniques are now available and understood by the team, future development is expected to be more
efficient, but compromises may still need to be made to isolate flight phases or functions for development as Orion
moves forward.

Configuration Management. Projects electing to follow an MBD process should prepare for configuration
management requirements that differ from hand code. Two aspects of MBD tools in particular require attention:
separation of graphical modules, and merging graphical changes. Early versions of the Simulink tool included all
functionality in a single model file (“.mdl” file). This was not practical for a large project, since all developers
operated on a single configuration managed object, even though they may have been making changes to separate
subsystems within the model. For this reason, Orion used the Simulink Model Reference Block (MRB) capability
discussed above, which allows subsystems to be expressed in separate model files and “referenced” in the top level
diagram. This MRB capability evolved significantly over the Orion development period and new capabilities for
parameterization and autocoding of MRBs are now available. Since MRB’s are a virtual necessity from a
configuration management standpoint, project architects should thoroughly investigate the latest MRB capabilities
prior to deciding on how to integrate and parameterize GN&C algorithm units.

Graphical merges are another important consideration for MBD processes. When multiple changes are
simultaneously made to the same file by multiple developers, a merge is required to incorporate updates. Text
merge tools are highly effective for hand coded applications, but graphical merge tools are more expensive and less
effective than their text counterparts. Orion purchased licenses from third party vendors for graphical merge tools,
and found the tools to be useful enough to justify purchase, but not as effective as text merge tools. The limited
distribution and training of these tools to the team limited the amount of parallel development that the team was able
to accomplish. This was less of a problem at the CSU level, but often CSU developers needed to make changes at
the domain level and would have to either wait until another developer completed domain level changes, or make

7
American Institute of Aeronautics and Astronautics

parallel changes and use the graphical merge. Since domain level changes were often in the interface, the number of
graphical merges was reduced by wrapping the junction boxes associated with each CSU in another MRB, as
discussed above and shown in figures 5 and 7. Also, a one POC per CSU standard was enforced to prevent parallel
changes to CSUs. As algorithms matured for EFT-1, parallel development has reduced and the need for merges has
diminished. However, the Orion team considers the graphical merge capability an important need for the
development of remaining flight phases and continues to look for acceptable options.

Complexity of mixed tool development. The RAMSES development environment — and its associated interface
to and hand-coded simulation has been successful for Orion EFT-1 development. However, the use of mixed
simulation/FSW development environments is not recommended for the early development phases for projects that
do not have a strong legacy of hand coded simulations. The Orion development environment requires a fairly
complex set of scripts to start both simulation and FSW processes, load simulation and FSW configurations and
manage environment variables and other initialization items. The environment also requires familiarity with several
tools, including familiarity with C code, the JSC “Trick” simulation environment, the suite of execution scripts and
the full suite of Simulink tools and custom scripts. This means that engineers new to the project need significant
training prior to starting development. The team is currently looking at options for development in future flight
phases, including simplified scripting and configuration management tools and the creation of simplified medium
fidelity Simulink simulations for early algorithm development.

Logging and Debugging. Two of the areas in which the Orion team did significant custom work were data
logging and graphical process debugging. The Simulink development tool provides several options for writing to
files and to the MATLAB workspace in the form of output blocks. However, these options are not data configurable
as required for high complexity applications and they have some incompatibilities with arrayed structure types. For
this reason the Orion team developed a data logging subsystem — RAMSES-M Record — to allow user selection of
output parameters for analysis and debugging. While this tool will pay dividends for future Orion development, a
generic logging capability that is delivered as part of Simulink, that does not require changes to the diagram for
configuration is highly desirable.

Additionally, debugging in the native Simulink environment was often difficult. Simulink provides three
separate debugging tools, one for Simulink, one for Embedded MATLAB and one for Stateflow. All three are
different, so training or familiarization is required for each. The most popular debugger by far among developers
was the Embedded MATLAB debugger which provides intuitive, graphical breakpoint insertion, “hover” displays of
variable and parameter values, etc. In fact the ease of eML debugging led several developers to develop initial
algorithms as large eML blocks, which were later broken down into graphical elements with smaller eML functions
contained in lower level blocks. The team also developed custom eML debug blocks which allowed execution
control and viewing of data on Simulink buses between Simulink subsystem blocks.

Modeling Standards. Since this is NASA’s first major manned project to utilize fully the MBD process with the
MathWorks software, a set of Modeling Standards was developed to aid developers. The original source of the
document was the MAAB (MATLAB Automotive Advisory Board) Standards and those from the Honeywell
LaserRef6 project. Lessons learned from the CEV Pad Abort 1 (PA-1) flight test project were included as well.
However, a majority of the content is derived from the development process itself. The document is a living
document which is continuously evolving based on developer feedback and autocode performance.

The main purpose of the Standards was to enhance the consistency, readability, efficiency and compatibility of
the many models that were being developed amongst a large group of developers.

There are currently 155 standards and guidelines in the Orion GN&C MATLAB/Simulink Standards document
(available at www.mathworks.com/aerospace-defense/standards/nasa.html).

To complement the ORION standards, a set of Model Advisor scripts tests were created to streamline the
checking of many of the non-objective standards. These checks could be run automatically to determine any
standards violations. There are currently 68 model advisor checks for the 155 ORION Modeling standards.

When autocode errors/incompatibilities were found, the source Library blocks were modified to avoid them or a
standard was written to avoid them. Many times a model advisor check was also written to automate the finding of
a pattern. Since the standards document and the Model Advisor configurations underwent significant modification,
having these elements under configuration control was essential.

Modeling Library. The standard set of Simulink blocks contained many blocks that are not compatible with the
RTW Embedded Coder or the GN&C architecture. To clarify which blocks are compatible, the team created the
Orion Library. The Orion Library contains only blocks that are compatible with the Embedded Coder and the
Fixed-Step solver, conformed to the modeling standards, and whose resulting autocode complied with the project’s
SDP. Also, no blocks that require variables/parameters from the workspace are included since the architecture does
not support these as described above. This blockset (Figure 9) provides the GN&C and FSW developers with a

8
American Institute of Aeronautics and Astronautics

standardized set of tools that are certified to be compatible with the modeling standards and will work seamlessly
with the Orion GN&C architecture.

T e The i_deology applied_ when designing the
——n T o o ORION library and Modeling Standards was that
the models should speak for themselves. A
3¢} s M ON =l | =1 reviewer should ideally be able to review a model
ke ‘TA - — — and understand all of the details of the algorithm
% é) [s = [E] being modeled without having to click inside a
-] B 8 &5 & E block and review the block settings or have prior
= S B) = — knowledge of a block’s functionality. Data types,
=] U L,I — integration types, data limiting, etc. should all be
= = clear from the diagram alone. Block illustrations

— should convey the functionality of the block.
= , The Simulink tool allows for the creation of
Figure 9. Orion Library. unique GUIs for each block. The ORION library

uses these unique GUIs to hide certain block
settings that need to remain consistent throughout the model for compatibility or autocode format (e.g. the sample
rate).

Another issue with the standard set of Simulink blocks is that not all of the significant block characteristics are
visible. For example, the standard Simulink “Constant Block™ has a setting for limiting the maximum and minimum
value of the output. However, this restriction does not show up on the icon for the constant block. The only way to
know if this setting is used is to open up the block dialog itself. Reviewing the block GUI dialog is not an option
when the block is printed or viewed in a document. Since these models are considered self-documenting they should
be as readable, descriptive and transparent as possible. All of the blocks used in the ORION Library either have the
parameters hidden that should not be changed or the icons have been modified to adequately show the functionality
of the block based on the parameter selection.

Blocks in the ORION Library are color-coded to distinguish between block types and enhance readability — as
required by the standards. For example, an eML block in the Orion GN&C Library is colored grey whereas the
standard Simulink version looks identical to any other subsystem block.

Autocode Configuration Settings. The ORION Library includes the official configuration settings used for the
autocode. There are numerous options available for formatting the autocode. Many times it is unclear how a setting
will affect the autocode until the result is analyzed and compared. The focus of the configuration settings are on
efficiency first, testability second, and readability third. Although Orion did not require formal reviews of the
autocode, it is still very useful to maintain traceability for debugging purposes, so readability is still important. The
ORION settings were mostly chosen by a trial and error approach. The project ran several trade studies to
understand the effect of the configuration settings on the autocode.

The configuration settings have options to both autocode a model and compile it. During development, both the
capability to produce the code and compile it were used. This meant that any compilation issues early and not when
the code was integrated into the larger project.

The autocoding tool includes the option to automatically compile the generated code after completion of each
model. This option allowed us to find compilation issues early and at the model level instead of when the project
was compiled in its entirety.

The ORION project utilized the “referenced configuration set” ability for managing the settings for the
simulation/autocoding. These settings can be managed on a model by model basis or via a referenced set that all
models point to. This allowed us to manage the configuration settings for all of the models in a single object. This
prevented us from having to manage configuration changes on a model by model basis, which would not have been
compatible with the CM system. In this case, every time a change is made to a single setting, all of the models
would need to be revised.

As discussed above, the CSUs were integrated into the partition at the Junction Box layer. Due to the object-
oriented format of the Rhapsody level code, the interface required the use of the C++ (Encapsulated) target. The
2010b version of Simulink was the first release to include this target and the team found many incompatibilities that
required worked arounds.

Modeling Template. The library also includes a Template file, illustrated in Figure 10, for use in creating a CSU
model and the subsystems contained within it. This has proven to be a very useful tool to ensure that all of the
models are consistent and compatible from the start. The template can be thought of as a formal schematic
representing the algorithm design that is also the direct functional representation.

9
American Institute of Aeronautics and Astronautics

This template has the following features:

e Standard configuration settings (through config set reference). The configuration sets contain the settings
for model simulation and custom autocode options (see “Autocode Configuration Settings” above).

¢ Information block in the lower right section of each level of the model, to display the project name,
version, author, CSU name, subsystem name, and parent subsystem name. This allowed users to navigate
printed models.

e Version data specific to the project’s CM tool, which is automatically modified every time the model is
checked in to the system.

e Model size constraint borders, that allow each level to be printable on 8%5”x11” or “ 11”x17” paper, which
prevents large unprintable models (each level of the model contains these borders)

e Standard input, output and parameter port stubs.

e Annotation block for adding comments to the diagram

Training on Tools. Initial Training on the use of

Simulink was fairly quick and concise. A week long COU Thie
session was given to go over the early version of the
ORION Modeling Standards, the ORION Library and K . 3 —e

to show examples of early prototype work. However,
a functional EBA was not available yet, and the
RAMSES-M tools for closed-loop simulation
connection were not complete. The unit testing
framework was also not available, so developers had R e
limited ability to build and test models. ~
At the time, thorough Simulink experience was
limited to a few individuals, the team at large was not
familiar with the tool. The standards that were used to s K et be Ut T
train the team were preliminary, and many issues with
the autocoder were not yet known. All of these factors -
led to a shaky start to the development cycle. Future Figure 10. Orion GN&C Model Template.

projects should use the lessons learned herein to have
development tools ready, and to provide more complete training on standards, development processing, unit testing,
and general MBD development.

Algorithm Modeling. Not all algorithms benefit from graphical dataflow implementation. Certain GN&C
algorithms are ideally suited for graphical representation in a data flow format like Simulink. The overall flow of
GNC data at the top level, and many of the embedded control laws are expressed naturally as block diagrams. Some
attributes of algorithms that are not as easily expressed as data flow diagrams include iteration, expression of
complex equations, state machines, low level data manipulation and object-oriented representations. The Simulink
environment provides tools to allow embedding algorithms with some of these attributes into the graphical dataflow
layers. These include embedded MATLAB scripting, Stateflow diagrams and S-functions to call externally coded
algorithms. The final Orion design for EFT-1 is one example of a successful mix of these languages. In particular,
the GN&C sequencer was coded using an object-oriented Unified Modelling Language (UML) tool. The code for
the sequencer was incorporated into Simulink via an S-function interface. The Orion navigation algorithms made
significant use of Embedded MATLAB (eML) to allow expression of vector and matrix equations while maintaining
top level and intermediate level dataflow diagrams in Simulink. Orion guidance algorithms made heavy use of
Stateflow diagrams to implement iteration and eML functions to implement complex guidance equations. Issues
with testing stateflow algorithms were sufficiently overcome for EFT-1 but Orion continues to communicate with
Mathworks on further improvements. Finally, Orion also developed the GN&C sensor interfaces using Simulink
and eML. This provided consistency in delivery format and autocoding processes for GN&C components, but there
was little gained in clarity or abstraction. Future projects may wish to consider allowing hand code or UML code
for hardware interfaces and integrating them into the Simulink project using S-fuctions.

As the project matured and the team learned more about the benefits and limitations of the tools, a chart (see
Table 1) was created to help aid developers to use the most suitable tool for the algorithm being modeled.

10
American Institute of Aeronautics and Astronautics

Table 1. Standards for Use of Simulink Language Tools.

Simple Logic
«if/then
*switch/case
for/while loops
Complex Logic
*nested if/then X
*nested switch/case
nested for/while loops
Simple/Short
Numerical Expressions

preferred

Complex/Lengthy X
Numerical Expressions

Numerical Expressions
containing continuously valued
states

X*

Combination of:

«Complex Logic X
*Simple Numerical Expressions

Combination of:

«Simple Logic X

+Complex Numerical
Expressions
Combination of
«Complex logic X
+Complex Numerical
Expressions

For Logic

for Logic

Modal Logic X

X

preferred

X

For Math

X
for Logic
and/or Math

Ex: If/then with <5 paths and no nesting

Ex: If/then with numerous paths and multiple
levels of nesting

Ex: <6 consecutive operations, <6
variables/signals

Ex: >6 consecutive operations, >6
variables/signals

Ex: Difference equations, integrals, derivatives,
filters

*The actual integrator function can be written
ineML

iterating a counter is considered a simple
numeric calculation

Can use only Simulink, only eML or use
Simulink for the logic and eML for the math

*Use Simulink or eML for the numerical
calculations

«Stateflow should invoke the execution of this
subsystem using a function-call

Where the control function to be performed at
the current time depends on a combination of
past and present logical conditions

As Orion approached the Critical Design Review (CDR) for EFT-1 the GN&C algorithms were well positioned
to begin the process of changing them from preliminary functioning requirements to production ready graphical
source. Twenty six CSU’s were functionally complete, integrated into RAMSES and performing well in Monte
Carlo analysis. These were comprised of more than 200 testable units, most of whom had modified complexity

metrics that met the Orion SDP standard.

V. Post-CDR Analysis Production

After CDR, GN&C focus shifted from algorithm
development to evolving the models to include attributes of
good software engineering. This section discusses process
and model attributes that affected testing and review of
GN&C CSU's.

Most GN&C model based development projects create
algorithms that are autocoded from data-flow diagrams and
fit into a larger framework that may be developed by hand
or “semi-automatically” using UML or other graphical
tools. The selection of the “level” of autocode is an
important project decision and should be made early in
development. The autocode level may be anywhere from
autocoding only small units, to autocoding entire rate
groups or autocoding the entire GN&C application. For
Orion, the GN&C application used autocode that included
the CSU model reference block of figure 5 as well as the
input and parameter junction boxes. This means that the
interface to the UML-developed application code was
defined by the the output data buses (structures) of upstream
CSUs, as well as the various parameter bus types.
Parameter data were collected into CSU-specific
parameters, vehicle and physical constants and CSU

11

1 CSU Requirements

CSU Req.
DLTRIG.0001

Table 1-1 SRS Requirement Description

Description / Rationale

Prior to FBC jettison the Descent and Landing Triggers
(DLTRIG) CSU shall set the FBC Chute Deploy trigger
to true when the Nav source flag is Unaided (3) and
the velocity is at or below a threshold. / This velocity
trigger is the backup algorithm that enables the chute
sequence to start in the event that the navigated
altitude is not deemed acceptable.

[
Deploy FBC Parachutes
with Velocity Trigger

Parent Req.
GID-354

DLTRIG.0002

DLTRIG.0003

Deploy FBC Parachutes
with Smart Deploy
Trigger

Prior to FBC jettison the DLTRIG CSU shall set the FBC
Chute Deploy trigger to true when the Nav source
flag is set to GPS-Aided (1) or Baro-Alt (2), the
altitude is at or below the FBC Smart Altitude
threshold and the computed root sum square (RSS)

of the input Pitch and Yaw rates are greater than or
equal to the FBC Smart Threshold. / This trigger
allows for the FBC parachutes to be deployed above
the normal deployment altitude to prevent the vehicle
rates from becoming too excessive.

Prior to FBC jettison the Descent and Landing Triggers
CSU shall set the FBC Chute Deploy trigger to true
when the Nav source flag is set to GPS-Aided (1) or
Baro-Alt(2), the altitude is at or below the FBC
Jettison Altitude threshold. / This is the normal
deploy altitude and acts as the floor for the entire
chute sequence to start.

Deploy FBC Parachutes
with Altitude Trigger

GID-354 and
GID-180

GID-354 and
GID-180

DLTRIG.0004

DLTRIG.0005

Jettison Drogue
Parachutes with
Unaided Nav Altitude

After the Drogue Parachutes have been deployed but
prior to Drogue jettison the DLTRIG CSU shall set the
Drogue Jettison Trigger to true based on a timer
threshold when the Nav source flag is Unaided (3). /
This timer trigger is the backup algorithm that allows
for the Drogue parachutes to be jettisoned if the Nav
altitude is not deemed acceptable.

Jettison Drogue
Parachutes with GPS.
Aided or Baro-Alt Nav
Altitude

After the Drogue Parachutes have been deployed but
prior to Drogue jettison the DLTRIG CSU shall set the
Drogue Jettison Trigger to true based on a set of
algorithms when the Nav source flag is GPS-Aided (1)
or Baro-Alt (2). The Drogue Jettison Trigger shall be
set to true when all of the following conditions are
true: 1) minimum time on Drogues has been
exceeded, 2) current altitude s less than or equal to
Main Parachute deployment altitude, and 3) Smart
Drogue Jettison Trigger command is set. / This set of
algorithms ensures that the vehicle altitude and rotes
are within an acceptable Main Parachute deployment
box.

Figure 11. Example DDR's.

American Institute of Aeronautics and Astronautics

GID-349

GID-349

command parameters. These parameters could be modified by the sequencer at activity boundaries (GN&C mode
changes).

This “CSU plus Junction Box” interface represented a compromise that allowed the higher level application to
function as an object-oriented design and to use efficient hand coded mode-ing logic, while still eliminating the hand
coding of GN&C algorithms. The inclusion of junction boxes also meant that most of the CSU-to-CSU interfaces
were defined in autocode and carried over from the RAMSES Simulink design environment to the GN&C
application. The disadvantage of this methodology was that the domain-level mode-ing logic, CSU
parameterization and any additions of new bus types did not carry over from RAMSES to autocode. The Orion
experience was that errors due to hand coding the moding and bus-level interfaces were rare, but their development
required some time and resources.

In spite of the fact that the autocode was at the CSU + Junction Box level, unit testing of the CSU was done at
the inner CSU level. This prevented the CSU designer from needing knowledge of other CSU output data types and
made the CSU test drivers independent of other CSU or domain level development. The junction box mapping is
inspected and tested as part of integrated testing.

Because a MBD process was used, no detailed, implementation level requirements were needed, and the
Simulink diagrams provided a certain amount of insight into each CSU’s design. However, the MBD process still
required documentation in several areas. First, the Software Requirements Specifications (SRS’s) for Orion often
did not specify enough detail to drive unit testing of each CSU, so Derived Design Requirements (DDR’s) were
created and documented in a “CSU memo” for each CSU (see examples in Figure 11). The CSU memo also
included several other sections that documented important design information. The major CSU document sections
were:

1. Derived Design Requirements — “Shall” statements used to drive unit testing with parent requirements in
the Orion SRS

2. Design and Theory — which provided the mathematical and logic formulation for GN&C algorithms
3. CSU Interface — included automatically generated tables of inputs, outputs and parameters created from
CSU interface bus types
4. Parameter Configuration Set Design — provided information about how to set configurable parameters
5. Assumptions and Limitations
6. Implementation Reference — link to the CSU model in html form
7. Unit Test Descriptions
On the Orion project, the Py "
Simulink CSU diagrams are treated [;&i:?:zu?; | St Ta&iﬁ;‘:ﬁiﬁf&m]zﬁ;z:";;‘;";.w I;fi:fzzﬁ:.‘
as the source for CSU algorithms. | epor paport
- . . Review CSU Design CSU Develop CSU Design CSU Review CSU
For this reason, no formal inspections Model Structure Model Structure Model Design Model Data Model P
of the autocode were performed. | e |1 eromeon || ‘orecatom |1 erouctom] pla
However, formal inspections of the B:1:1:1) ik e B1:1:9 D117
CSU model diagrams were rigorously F?J:‘liﬁi"‘“’“ Pranon o | S e Yf"‘““’
conducted and these included reviews e pripocs, | CSUDmarmen | | Desmememes | csUOvsgnReoen | Complay R
of the autocode for efficiency. Also, e G M - e R
all unit tests that are developed and e e
executed on the model ha\F/)e been [;Z:ZI:”‘““
executed on the autocode. —
Model Maturation. The model — [Mode
maturation process was well defined ““7°| Terodcion
(see Figure 12). This process was p12n e
adopted from Honeywell. It gave T;&%‘Qﬂiﬁiﬁ”“‘““ Tiﬁ*}};;e;;m Rt P omcsUeno T component s
clear steps for how to develop a Ftir PO Cosgenepon T e
model in a way that it would be ol Taa Develop C5U Perform CSU Validate CSU Review CSU
testable, standards compliant, and (A trouction - L=al roguction 1s] et bl ety
ready for InSpECtIOﬂ - [3.1.2.2] [3.1.2.3] " [3_1.2.;] |FE3.1.2.§;]
To aid the developers when j S —— .[CMS'UME e v S —
designing CSUs a “Developer ' U Tenpocs L’g;u"‘;:;:-‘ms Tfpc‘?.ﬁ”ffi”ém Ry
Checklist was crcaed. This hada S lEEme (2SR Eme
list of major items that needed tobe 0 cmetee et
“checked” off at each stage in the Figure 12. Model Maturation Process.

process (CSU Inspection readiness,

12
American Institute of Aeronautics and Astronautics

CSU Unit Test readiness, etc.). At first, many developers were unsure if their models were mature enough to even
integrate into the EBA. This checklist gave them a better picture of the maturity of the models and helped increase

the quality of the models that were being reviewed.

Some examples of this development checklist entrance and exit criteria for the Model Test Review include:

Avre all low level requirements satisfied

Is the code/model properly notes/commented

Is the model broken up into individually testable units
Is the complexity of each testable unit below 20

Does the model pass all of the Model Advisor checks

Do the existing Unit Test achieve 100% model coverage
Is the model “autocod-able” (does the autocoding process complete and compile successfully)

Testable Units. As familiarity with the autocoder increased, the need to define a “testable units” became more
important. The goal was to have a one-to-one match between the source Simulink Model, Stateflow Chart, or

Figure 12. External eML Function Called by Two

Parent Models.

Embedded MATLAB function and the resulting
CPP function or method. This one-to-one match
helped tracking of testing between the source
“models” and the generated functions. It also
helped avoid re-testing code due to excessive in-
lining or function duplication.

One of the biggest headaches of testing the
autocode from our models was how inconsistent
the autocoder is with various model sources. An
independently testable unit at the modeling level
does not always translate into and individually
testable unit in the autocode. Some source
blocks are in-lined in the parent model’s code,
whereas others are separate functions wither in
the parent cpp file or in the shared utilities
section.

To partially get around this issue, autocode
“directives” were used in eML functions (e.g.

%eml.inline(“never”)) and block settings to force the autocoder to create individual methods/functions from the

source eml/Statelfow function.

This solved some issues but did not result in the ideal 1-to-1 situation because

autocoded eml/Stateflow functions were coded as methods of the parent model. This caused issues with testing the

method directly and eliminated sharing these
functions between models. Figure 13 illustrates a
single external eML function called by 2 separate
Models and the placement of the autocode that
represents the eML function. All of this duplication
of code places a heavier burden on the backend
testing of the actual autocode.
The only way to ensure absolute 1-to-1 model to
code was to use “Model References” (Figure 13). If
each source function were a Model Reference, it
could be called throughout the project and result in
a single instance in the autocode. Another
advantage of the MBR approach was that each
MBR could be directly tested in a Simulink driver
as a unit — and the resultant test drivers functioned
well with the Mathworks “System Test” verification
tool. Figure 14 illustrates how a model reference
containing an eML function is placed in the
autocode.

However, many of our functions were created

_ oo Model A - s Model B
- B o 1 -

- {':- AMﬂca// '\

EMLfunction
Model

E-

autocode
autocode

EMLfunction

autocode

Model_A.cpp

EMLfunction_MR.cpp Model_B.cpp

[Modet_a0)

| | [[Emtfunction_mr() | | |[Modei_sp |

Figure 13. Model Reference Blocks as Testable Unit

13

Wrappers.

American Institute of Aeronautics and Astronautics

using eML and to a smaller degree, Stateflow. Eml functions cannot call Simulink Models (aka Model References)
—so if an algorithm needed to be written in eML, none of the shared Simulink or Stateflow models could be called.
Figure 14 illustrates the calling ability between the Simulink, Stateflow, and eML tools. From this you can see that
eML is restricted to only calling other eML functions.

Due to this issue, strong limitations were placed on the use of eML functions that were shared between models.
This caused problems with developers that favored eML for
their algorithm development.

Develop meaningful complexity requirements for MBD. //
During early Orion development, functionality and capability ///’

were given priority over modularity, complexity and other m: ’m

software engineering considerations. This was due partly to

the need to use GN&C algorithms early to perform time
domain analysis for vehicle systems integration and due to _) =

the fact that complexity definitions and guidelines were Figure 13. Legal Execution Hierarchy.
evolving. The Orion project Software Development plan

(SDP) required that the cyclomatic complexity (CC) (Ref. 2) of functional units be no more than 20 (hand code and
autocode). It was soon discovered, however that automatically generated code often had higher CC than hand code
and testable units in the model didn’t translate into testable units in the autocode (as discussed above).

The Cyclomatic Complexity metric is a very useful way to measure the testability of the code. However, it
posed a bit of a challenge for functions that were developed in Simulink because there is no direct way to find the
CC of the code without actually autocoding the model and analyzing the autocode. Simulink provides the ability to
find the Model Complexity, but on Orion, the
SDP requirement is applied to the autocode

Matrix Multiply block of Model Complexity O:

T only, regardless of model source. Also, the

M®m1 g o standard way of measuring the CC of the

@ — et 2 | M [atout autocode did not reflect the testability of the

Matrix_2) source model. This disconnect is mainly due
Resulting Autocode of Complexity 3: to the liberal use of for loops in the autocode

for data initialization, data assignment, and

0 vector/matrix math. The standard way of

+'13) = Example U.A[3 * i1+ 1] * Example_U.B(3 * calculating CC counts each for loop as an

e em Ay additional unit of complexity whether the loop

) is static or not. This issue caused the Model

Complexity and the Code Complexity to differ

Figure 14. Effect of Autocoding on Complexity. greatly and added confusion to the developer.

Figure 15 illustrates how a single block in the

model is translated into code that has a complexity of 3 due to the nested static for loops arising from a matrix
multiplication. These additional static for loops do not add to the complexity of the code.

Ensuring that the resulting autocode for each function would have a CC value of <20 is difficult. The team
found that if static for-loops are ignored, the CC for autocoded functions closely matched the source model
complexity. Since these static for loops did not truly add complexity to the code, it was agreed that our CC metric
should exclude them. To measure the modified CC, a tool was developed that calculated complexity and ignored
static for loops. The CC limits were reviewed in both the Model Inspection and Unit Test Inspection.

In the 2010b version of Simulink, the complexity of a model is not easy to obtain and caused issues in metric
reporting, this issue has been improved in future versions.

Other Metrics. Using SLOC is a good way to calculate project metrics such as project size and for estimating
work load for future tasks. However, with MBD, model size is a better metric than lines of code. The SLOC count
of the autocode was not consistently proportional to the size of the Model for many reasons. Instead, a “Model
Size” metric was created to take into account components from all three tools (Simulink/Stateflow/eML) and is
calculated via the following formula (calculated automatically via script):

for (i =

Model Size = Simulink Blocks + lines of eml code + Stateflow Transitions

14
American Institute of Aeronautics and Astronautics

The ORION project did not have a SLOC limit requirement for functions or files since function complexity was
governed by Cyclomatic Complexity requirements. But, the team found this tool useful in tracking progress and
project size.

Model coverage vs Code coverage. ldeally, to minimize the testing difference between Models and Code, the
coverage of the model should be the same as the code. This is not always the case. In addition to the code reuse
issues described above, the autocoder will optimize out certain blocks, remove unreachable paths (dead code) based
on specific use, and insert protection around certain operations (e.g. integer overflow). Also, some blocks that may
have internal paths, are not represented as such in the source model. In Simulink, a block is either executed or is not
executed; internal branching is not revealed until the block is autocoded. Some of these discrepancies between the
model and autocode can be prevented by changing options in the configuration setting and some could be removed
by modifying block settings. However, 1-to-1 model and code coverage was not 100%.

Unit Testing. Simulink System Test (Figure 16) was chosen as the official Orion GN&C tool for Unit Testing
the models. Developing the tests from within the System Test tool proved troublesome due to both stability issues
and limited functionality. For example, error reporting for simulations was limited to either pass or fail, with no
insight to the cause of problems. As the team grew more accustomed to the tool, we found workarounds for many of
the issues. A Standards and Guidelines document was created for unit testing as well. This document listed the
standard formats, process, and APIs for developing unit tests for models. This document help standardize the unit
tests across the entire GN&C project.

Due to the general issues of System Test, our unit testing framework was
designed to rely as little as possible on System Test itself. All of the input data, Pre Test
initialization routines, and comparison data were created outside of the tool.
System Test was basically used to execute the test, return results, and generate
the test report and coverage files. The quality of the test and coverage reports Main Test
were a highlight of the tool. Due to the independent way our unit tests were
developed, switching to a more capable tool in the future is expected to be
fairly seamless.

LDRA and SIL/PIL Mode integration. The official Code analysis tool on
Orion was LDRA (Liverpool Data Research Associates) Testbed. LDRA
Testbed provides the core static and dynamic analysis engines for our software.
By default, The MathWorks tools only worked with Bullseye Coverage tool
with the C target. The GN&C FSW team worked with Mathworks support to
achieve compatibility with LDRA for generating unit test scripts that could be
run with LDRA.

One highly useful feature of the Simulink tool is the ability to run the
autocode of a model in “SIL” or “PIL” mode. This allows the developer to Post Test
generate unit tests with the source models, then run the same tests on that actual Clalnup and
compiled FSW (SIL mode) and on the actual FSW running in an emulated .
target environment (PIL mode). Unfortunately, our pioneering use of the C++ -
Encapsulated Target and our use of the LDRA Tools, the SIL and PIL mode Figure 15. System Test
were not yet compatible “out of the box”. Upon request from Orion, The Execution Flow.
Mathworks provided a patch to enable this functionality. Later versions of
Simulink have LDRA compatibility built in and support SIL and PIL mode for the C++ (encapsulated) target.

Setup/
inport

VI. Conclusions

The Orion GN&C team has successfully used a MBD process to generate software for GN&C algorithms for the
EFT-1 mission. The team incurred considerable up-front cost for the transition to an MBD process, but downstream
benefits are now being realized. Some of the upfront costs were unavoidable, but others may be avoided in future
programs by heeding the lessons learned enumerated here. Some of the costs included:

e A steep learning curve for engineers not familiar with MBD tools

e Slow and complex development tools and processes

e Configuration management issues.
These issues will be mitigated in algorithm development and test for future Orion missions since many of the tools
and techniques have been established. The team now has mature MBD coding standards and automated standards
checking via the Model Advisor. Faster build and autocode times have arisen from improvements in Mathworks

15
American Institute of Aeronautics and Astronautics

tools and better application of the tools. And the team has a better understanding of how to perform configuration
management with MBD artifacts as described above.
Some of the benefits that GN&C is now observing include:
e No schedule time was needed for hand coding GN&C algorithms (60,000+ SLOC were autocoded by
CDR)
o Detailed requirements review was replaced by review of MBD artifacts which had proven functionality
e Automated test framework and report generation has simplified testing and production of test artifacts
e Automated standards checking tools (e.g. Model Advisor) and graphical artifacts have facilitated the
inspection process
The Orion GN&C team is ready to complete GN&C software integration for the EFT-1 mission and to move
forward to generate GN&C algorithms for other flight phases. Other programs desiring to use an MBD process
should not start from scratch. Many tools, techniques and lessons learned are available from the authors and other
Orion GN&C team members.

Acknowledgments

To acknowledge all the contributors to the Orion MBD process is not possible since it was a product of a large,
diverse team as described above. However, the authors wish to acknowledge certain key individuals who made
particularly large contributions, including Scott Tamblyn from NASA, David Shoemaker from Lockheed Martin,
David Oelschlaeger and Kevin Morrill from Honeywell and lan Mitchell from Draper Lab.

References

Trick Simulation Environement, Trick User’s Guide, Version 2007.20, Automation, Robotics and Simulation Division,
NASA Johnson Space Center, November, 2009.

2McCabe, T., “A Complexity Measure,” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO.4, pp
308-320, December, 1976.

16
American Institute of Aeronautics and Astronautics

