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ABSTRACT

This paper extends in two directions the results of prior work on generalized linear covariance analysis of

both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the

batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements

in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator.

We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

INTRODUCTION

Reference 1 gave an overview of a comprehensive approach to linear covariance analysis, closely follow-

ing the approach of Refs. 2 and 3, and including references to earlier studies of this subject. The models

presented include both batch least-squares methods, which originated with Gauss,4 and sequential estima-

tors, which were pioneered by Kalman.5 Both batch least-squares estimation and Kalman filtering methods

produce the covariance matrix encapsulating both the expected errors of the estimated parameters and the

correlations among them. The number of parameters describing a dynamical system can be quite large,

and it is often impractical to solve for all of them, especially in real-time applications. “Consider covari-

ance analysis,” the subject of Refs. 1–3, treats estimators that solve for only a subset of the parameters,

but considers the effect on the covariance of the parameters that are not solved for. Our approach differs

from the Schmidt Kalman filter,6 which takes the consider parameters into account in computing the up-

date gains, but updates neither their values nor their covariances. Our consider parameters, in contrast, are

completely ignored by the estimation algorithm. Their effect on the accuracy of the estimates obtained is

considered in the covariance analysis, though, accounting for their name. This treatment is very similar to

that described in Bierman7 and in Tapley, et al.8 The method described here follows Refs. 1 – 3 and differs

from many other treatments in explicitly partitioning the errors into subspaces containing only the influence
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of the measurement noise, process noise, and a priori solve-for and consider covariances. McReynolds9

has also implemented such a partitioning in both batch and sequential filter/smoother error budget analysis.

Explicitly exhibiting the a priori component of the covariance is useful for observability analysis because a

priori information about states that are observable is “forgotten” as more data are processed.10

The treatment of the batch estimation in Refs. 1–3 assumed that the estimator did not account for process

noise in computing the update gains, as is customary in batch least-squares estimation. The estimators

considered in this paper, which we call epoch-state estimators to distinguish them from the usual batch

estimators, take process noise into consideration. We show that the usual batch estimator is recovered when

process noise is ignored by the estimator. Process noise may or may not be included in the estimation

process, but it is always accounted for in the linear covariance analysis, as in Refs. 1 – 3, because it can

contribute to estimation errors whether the estimator knows about it or not.

We define the epoch time to be the time at which the a priori information is specified and at which the state

update is performed. The analysis of the batch estimator in Refs. 2 and 3 implicitly assumed that the epoch

time is prior to all of the measurements, which is the usual case, and which the term a priori implies. In this

case the a priori errors at the update time are uncorrelated with the process noise during the measurement

span. It is sometimes convenient to allow the epoch time to be later than some or all of the measurements,

though, and Ref. 1 considered this case. It continued to assume zero correlations between the a priori errors

and the process noise, however. It may be more reasonable to assume that the a priori errors include the

process noise accumulated between the beginning of the observation span and the epoch time, if the latter is

later than some or all of the measurements. This modifies the manner in which process noise appears in the

covariance analysis of the epoch-state estimator, and is the principal subject of this paper.

To make this paper self-contained and to establish notation, the first several sections of this paper contain

a review of the material in Ref. 1. We have, however, attempted to eliminate unnecessary duplication with

the earlier paper. We first consider the linear state dynamics models, and the partitioning of state errors into

those arising from a priori errors, from measurement errors, and from process noise. The dynamics does not

distinguish between solve-for and consider parameters, so this distinction is not made until we turn to the

processing of measurement information. The measurement update equations involve the projection matrix

onto the solve-for subspace, because the update does not affect the consider parameters. We then compute

the contributions from a priori errors, measurement errors, and process noise to the covariance matrix of

the full state. The measurement errors are uncorrelated with both the a priori errors and the process noise,
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so the contribution of the measurement errors to the covariance can be defined unambiguously. However,

we now account for correlations between the a priori errors and the process noise, and we include these

correlations in the process noise part of the covariance.

We next discuss the selection of the update gains to minimize the covariance of the estimation errors at

the epoch time, taking into account a model of the process noise in the gain specification. We show that

our results recover the usual batch least-squares filter when the process noise is zero. If process noise is

not neglected, the epoch-state estimators fall into three classes: 1) when no measurements follow the epoch

time, the estimator can be operated sequentially, but the covariance analysis of Refs. 1–3 must be modified;

2) when no measurements precede the epoch time, the covariance analysis of Refs. 1–3 is valid, but the

estimator cannot be operated sequentially; 3) when some measurements precede and some follow the epoch

time, sequential operation of the estimator is precluded, and the covariance analysis of Refs. 1–3 must be

modified.

The sequential formulation of this epoch-state estimator has been applied to an analysis of satellite close

approaches.11 For this application, two filters are run concurrently, one constrained by the condition that the

distance of closest approach is greater than some effective hard body radius, and the other constrained so

that the closest approach distance is less than the hard body radius. The constraint is implemented using the

technique of Zanetti, et al.12 An epoch state filter with epoch time in the future is required because the time

of closest approach, where the constrained update is enforced, is in the future of all the measurements.

We close the paper by showing that the sequential epoch-state estimator is equivalent to the Kalman filter.5

and by presenting a summary and our conclusions.

MODELING APPROACH

General Dynamics Model

The state vector x is an n-dimensional vector of parameters that completely characterizes a system, in-

cluding both time-dependent and constant parameters. By assumption, the state vector evolves according

to
d
dt
x(t) = f(x(t), t) + w(t) (1)

where the dynamic noise w(t) is a Gaussian white noise process with mean and covariance given by

E [w(t)] = 0n and E [w(t)w(τ)T] = Q(t)δ(t− τ), (2)
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with E [...] denoting the expectation operator and 0n denoting an n-dimensional vector of zeros. In the

covariance equation, Q is the n × n dynamic noise spectral density matrix and δ(t − τ) denotes the Dirac

delta, or unit impulse, function.

The true value of the state vector is never exactly known, but can only be estimated. The state estimate

vector, x̂, evolves according to
d
dt
x̂(t) = f(x̂(t), t). (3)

The state error vector, given by

e(t) = x(t)− x̂(t), (4)

is assumed to always remain small. Then first-order linear error analysis techniques, as commonly found in

an extended Kalman filter, give
d
dt
e(t) = A(t)e(t) + w(t), (5)

where

A(t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣
x̂(t)

. (6)

Formal integration of equation (5) gives

e(t) = Φ(t, t′)e(t′) + wd(t, t′) (7)

where e(t′) the error vector at time t′, the state transition matrix, Φ(t, t′), is the solution of

d
dt

Φ(t, t′) = A(t)Φ(t, t′) (8)

with the initial condition

Φ(t′, t′) = In = the n× n identity matrix, (9)

and the random excitation vector, wd(t, t′), is given by the formal integral

wd(t, t′) =

∫ t

t′
Φ(t, τ)w(τ)dτ. (10)

We will never need to evaluate this mathematically ill-defined integral, but we use it to formally compute

4



covariances, which are the well-defined quantities of interest.

The state vector error at time t can be written as the sum of three contributions: the error ea(t), due to an

a priori error at an epoch time t∗, the error ev(t) due to noise in the measurements used for the estimation,

and the error ew(t) due to dynamic noise.

e(t) = ea(t) + ev(t) + ew(t). (11)

Equation (7) can be used to propagate the components of the state error vector from the epoch time t∗ to

some other time t:

ea(t) = Φ(t, t∗)ea(t∗), (12a)

ev(t) = Φ(t, t∗)ev(t∗), (12b)

ew(t) = Φ(t, t∗)ew(t∗) + wd(t, t∗). (12c)

General Estimation Model

It is usually not necessary to produce estimates of all of the state parameters, but only of a subset of

ns solve-for parameters. The remaining nc = n − ns parameters are called consider parameters because

they are not estimated but contain uncertainties that must be considered in the error analysis. The solve-for

parameter vector s(t) and the consider parameter vector c(t) are given by

s(t) = S(t)x(t) and c(t) = C(t)x(t) (13)

where the ns × n matrix S(t) and the nc × n matrix C(t) are such that the matrix

M =

S
C

 (14)

is non-singular∗. The inverse of M is partitioned into an n× ns matrix S̃ and an n× nc matrix C̃:

M−1 =
[
S̃, C̃

]
. (15)

∗Here and subsequently we suppress the time arguments where there is no ambiguity so as to simplify the notation.
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The properties of the matrix inverse then lead immediately to the identities

SS̃ = Ins , CC̃ = Inc , SC̃ = 0ns×nc , CS̃ = 0nc×ns , (16)

and

S̃S + C̃C = In. (17)

In the usual case that the elements of the solve-for and consider vectors are merely selected and possibly

permuted components of the state vector, the matrix M is an orthogonal permutation matrix. In this case,

and in any case for which M is orthogonal, the matrices S̃ and C̃ are just the transposes of S and C,

respectively, which makes inversion of M unnecessary and simplifies many of the following equations.

It follows from equations (13) and (17) that

x(t) = S̃(t)s(t) + C̃(t)c(t). (18)

We also have an estimated value ŝ(t) of the solve-for vector and an assumed value ĉ(t) of consider vector.

Both are propagated by the dynamics, but only the solve-for vector is updated by the estimator. Relations

similar to equation (13) give the estimated solve-for vector and the assumed consider vector the in terms of

the estimate of the full state x̂(t). Thus, the error vector can also be expressed in terms of its solve-for and

consider components as

es(t) = s(t)− ŝ(t) = S(t)e(t) (19a)

ec(t) = c(t)− ĉ(t) = C(t)e(t) (19b)

and

e(t) = S̃(t)es(t) + C̃(t)ec(t). (20)

The subscripts s and c are independent of the subscripts a, v, and w in the previous section. Both the solve-

for errors and the consider errors have contributions arising from the a priori estimate, the measurement

noise, and the process noise. We will avoid double subscripts, however.

An estimator produces its state estimates based on an a priori estimate at an epoch time t∗ and infor-

mation obtained from measurements obtained at discrete times ti. Let yi be an mi-dimensional vector of
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measurement values obtained at times ti. Measurements are related to the state vector by the following

measurement model:

yi = hi(xi, ti) + vi, (21)

where vi is a Gaussian white noise process with mean and covariance given by

E [vi] = 0, E [viv
T
i ] = Ri, and E

[
viv

T
j

]
= 0, for i 6= j. (22)

The functions hi are assumed to be known functions of imprecisely known arguments. Therefore, it is

possible to compute predicted measurements from

ŷ−i = hi(x̂
−
i , ti) (23)

where x̂−i is the state estimate before incorporating the measurement information. Conversely, x̂+
i denotes

the state estimate at time ti including the measurement information.† A Taylor series expansion gives the

difference between the observed and computed measurements, or “o-minus-c,” to first order in e, as

r−i = yi − ŷ−i = Hie
−
i + vi, (24)

where the measurement sensitivity matrix Hi is given by

Hi =
∂hi(xi, ti)

∂xi

∣∣∣∣
x̂−i

. (25)

This linearization is familiar from the extended Kalman filter. The o-minus-c before the update, r−i , is

commonly referred to as the “innovation,” and the o-minus-c after the update as the “residual,” though this

terminology is by no means universal.

†We use this notation in the sequel to denote a priori and a posteriori values of various quantities.
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Epoch State Estimator

An epoch-state estimator produces an estimate by performing a single update at the epoch time t∗ based

on a single batch measurement y that combines the N measurements yi made at various times. Thus,

y =


y1

...

yN

 , ŷ =


ŷ1

...

ŷN

 , r = y − ŷ =


r1
...

rN

 (26)

The update is given by:

ŝ+∗ = ŝ−∗ +Kr = ŝ−∗ +

N∑
i=1

Kiri, (27)

where ŝ−∗ is the a priori estimate of s(t∗) and K is a gain matrix consisting of a “row” of gain matrices for

each measurement, Ki. Substituting equations (24) and (7), with t = ti and t′ = t∗, into equation (26) gives

r = H̃e−∗ + ud + v (28)

where

H̃ =


H1,∗

...

HN,∗

 =


H1Φ(t1, t∗)

...

HNΦ(tN , t∗)

 , ud =


ud1

...

udN

 =


H1wd(t1, t∗)

...

HNwd(tN , t∗)

 , v =


v1

...

vN

 . (29)

The state estimates must be propagated from the epoch time t∗ to the measurement times ti in order to

compute the measurement sensitivity matrices Hi by equation (25), and these are propagated back to the

epoch time to obtain the matrices Hi,∗.

Since the estimation process does not alter the consider parameters, the estimation error after an update

is related to its value before the update by

e+∗ = e−∗ + S̃∗
(
e+s∗ − e−s∗

)
= e−s∗ − S̃∗

N∑
i=1

Ki

(
Hi,∗e

−
∗ + vi + udi

)
, (30)

where S̃∗ = S̃(t∗). Now equation (11) is used to partition the state error into a priori, measurement, and
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process noise components:

e+a∗ =

(
In − S̃∗

N∑
i=1

KiHi,∗

)
e−∗ (31a)

e+v∗ = −S̃∗
N∑
i=1

Kivi (31b)

e+w∗ = −S̃∗
N∑
i=1

Kiudi. (31c)

COVARIANCE ANALYSIS

The function of an estimator is to produce an estimate ŝ+∗ given measurements yi. Error analysis, however,

does not actually compute an estimate, but determines how good an estimate would be produced in a given

situation. The covariance matrix of the estimation error, defined, assuming E [e] = 0, by

P (t∗) = E [e(t∗)e(t∗)
T] , (32)

provides a statistical measure of the quality of an estimate at the epoch time t∗ of a given scenario‡. The a

priori covariance is simply

P−∗ = E
[
e−∗ (e−∗ )T

]
(33)

The post-update (a posteriori) covariance is obtained by substituting equation (31) into

P+
∗ = E

[
e+∗ (e+∗ )T

]
= E

[
(e+a∗ + e+v∗ + e+w∗)(e

+
a∗ + e+v∗ + e+w∗)

T
]

(34)

This computation is complicated by correlations between e+a∗ and e+w∗. To see how these arise, consider a

time t0 (not the epoch time) prior to the epoch time t∗ and to all of the measurement times ti. Equation (7)

relates the a priori error at the epoch time t∗ to the error at t0 by

e−∗ = Φ(t∗, t0)e
−
0 + wd(t∗, t0). (35)

Reference 1 assumed that e−∗ is not correlated with e+w∗, but it is more natural to assume that e−0 is not

correlated with e+w∗, with the result that the second term on the right side of equation (35) will give rise

‡It should be kept in mind that if systematic errors cause E [e] 6= 0, then P (t∗) will describe the mean square error matrix,
rather than the covariance.
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to correlations between e−∗ and e+w∗ unless the epoch time is earlier than all the measurement times.§ This

is where the “arrow of time” enters the picture. The a priori error e−∗ depends on the process noise in the

past of t∗, but not on process noise in the future. We will see that the correlations introduced only involve

integrals of the process noise power spectral density over the overlaps of the interval between t∗ and t0 and

the intervals between t∗ and ti, so the time t0 will not appear in our final equations.

The covariance matrix can be written as the sum of a priori, measurement noise, and dynamic noise

contributions. We include the correlation between e+a∗ and e+w∗ in the process noise part, giving

P+
∗ = P+

a∗ + P+
v∗ + P+

w∗, where (36a)

P+
a∗ = E

[
e+a∗(e

+
a∗)

T
]
, (36b)

P+
v∗ = E

[
e+v∗(e

+
v∗)

T
]
, (36c)

P+
w∗ = E

[
e+w∗(e

+
w∗)

T
]

+ E
[
e+w∗(e

+
a∗)

T
]

+ E
[
e+a∗(e

+
w∗)

T
]
. (36d)

The a priori error is uncorrelated with the measurement errors because the a priori estimate is assumed to

contain no information from the measurements, even from those collected prior to the epoch time.

Substituting equation (31) into equation (36) now gives¶

P+
a∗ =

(
In − S̃∗

N∑
i=1

KiHi,∗

)
P−∗

(
In − S̃∗

N∑
i=1

KiHi,∗

)T

(37a)

P+
v∗ = S̃∗

(
N∑
i=1

KiRiK
T
i

)
S̃T
∗ , (37b)

P+
w∗ = S̃∗

N∑
i,j=1

KiE
[
udiu

T
dj

]
KT

j S̃
T
∗ − S̃∗

N∑
i=1

KiE [udiw
T
d (t∗, t0)]

In − S̃∗ N∑
j=1

KjHj,∗

T

−

(
In − S̃∗

N∑
i=1

KiHi,∗

)
N∑
j=1

E
[
wd(t∗, t0)u

T
dj

]
KT

j S̃
T
∗

= S̃∗

N∑
i,j=1

KiΓijK
T
j S̃

T
∗ − S̃∗

N∑
i=1

KiE [udiw
T
d (t∗, t0)]−

N∑
j=1

E
[
wd(t∗, t0)u

T
dj

]
KT

j S̃
T
∗ , (37c)

§Correlations between e−∗ and e+
w∗ are absent in Refs. 2 and 3 because these references implicitly assumed the epoch time to be

prior to all the measurement times.
¶We use the notation

∑
i,j(·) ≡

∑
i

∑
j(·).
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where

Γij ≡ E
[
udiu

T
dj

]
+ E [udiw

T
d (t∗, t0)]H

T
j,∗ +Hi,∗E

[
wd(t∗, t0)u

T
dj

]
. (38)

We define the process noise covariance integrals

Q∗(ti, tj) ≡
∫ ti

tj

Φ(t∗, τ)Q(τ)ΦT(t∗, τ)dτ, (39a)

Q∗,j ≡ Q∗(t∗, tj), (39b)

the second of which, Q∗,j , is the usual equivalent discrete-time process noise covariance for the transition

from time tj to t∗. In evaluating these and many subsequent integrals of process noise, care must be taken

to observe sign changes from reversing the direction of the integration, especially of integrals involving the

Dirac delta function. In particular, we note that Q∗(ti, tj) is positive definite if ti > tj and negative definite

if ti < tj , assuming that the power spectral density Q(τ) is positive definite. Using these definitions and the

relation Φ(ti, τ) = Φ(ti, t∗)Φ(t∗, τ), we have

E
[
udiu

T
dj

]
= HiE [wd(ti, t∗)w

T
d (tj , t∗)]H

T
j

= Hi

∫ tj

t∗

∫ ti

t∗

Φ(ti, τ)Q(τ)δ(τ − τ ′)ΦT(tj , τ
′)dτdτ ′HT

j

=


−Hi,∗Q∗,min(i,j)H

T
j,∗ t∗ < ti, t∗ < tj

Hi,∗Q∗,max(i,j)H
T
j,∗ ti < t∗, tj < t∗,

0 otherwise.

(40)

We also have

E [udiw
T
d (t∗, t0)] = HiE [wd(ti, t∗)w

T
d (t∗, t0)]

= −Hi,∗

∫ t∗

t0

∫ t∗

ti

Φ(t∗, τ)Q(τ)δ(τ − τ ′)ΦT(t∗, τ
′)dτdτ ′

=


0 t∗ ≤ ti

−Hi,∗Q∗,i ti < t∗.

(41)

This expectation is simpler than E
[
udiu

T
dj

]
because t0 is less than t∗ and ti by assumption. We can combine
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these to compute Γij :

Γij =



−Hi,∗Q∗,min(i,j)H
T
j,∗ for t∗ < ti, t∗ < tj ,

Hi,∗
(
Q∗,max(i,j) −Q∗,i −Q∗,j

)
HT

j,∗ = −Hi,∗Q∗,min(i,j)H
T
j,∗ for ti < t∗, tj < t∗,

−Hi,∗Q∗,jH
T
j,∗ = −Hi,∗Q∗,min(i,j)H

T
j,∗ for ti > t∗, tj < t∗,

−Hi,∗Q∗,iH
T
j,∗ = −Hi,∗Q∗,min(i,j)H

T
j,∗ for ti < t∗, tj > t∗.

(42)

Remarkably, Γij takes the same form for any ordering of ti, tj , and t∗. Putting this together gives

P+
w∗ = −S̃∗

N∑
i,j=1

KiHi,∗Q∗,min(i,j)H
T
j,∗K

T
j S̃

T
∗ +

k∗∑
i=1

(
S̃∗KiHi,∗Q∗,i +Q∗,iH

T
i,∗K

T
i S̃

T
∗

)
, (43)

where k∗ is the index of the latest measurement time earlier than t∗, i.e. tk∗ < t∗ ≤ tk∗+1. If t∗<min(ti, tj),

then Q∗,min(i,j) is negative. The process noise component of the net covariance is always positive, however,

because of the process noise component in P+
a∗ implied by equation (35). Equation (43) reduces to the form

in Refs. 1–3 when t∗ ≤ t1; the second sum is identically zero, and all of the Q∗,min(i,j) terms in the first sum

give positive contributions to P+
w∗.

The state estimation errors propagate to any other time according to equation (12). Therefore, the various

components of the error covariances at such other times are given by‖

Pa(t) = Φ(t, t∗)P
+
a∗Φ

T(t, t∗) (44a)

Pv(t) = Φ(t, t∗)P
+
v∗Φ

T(t, t∗) (44b)

Pw(t) = Φ(t, t∗)P
+
w∗Φ

T(t, t∗) + E [wd(t, t∗)w
T
d (t, t∗)]

+ Φ(t, t∗)E
[
(e+w∗ + e+a∗)w

T
d (t, t∗)

]
+
{

Φ(t, t∗)E
[
(e+w∗ + e+a∗)w

T
d (t, t∗)

]}T
. (44c)

We find that

E [wd(t, t∗)w
T
d (t, t∗)] = Φ(t, t∗)Q∗(max(t, t∗),min(t, t∗))Φ

T(t, t∗), (45)

‖Remember that P+
w∗ contains the correlations with the process noise in the a priori error at time t∗.
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and, with equation (35),

E
[
(e+w∗ + e+a∗)w

T
d (t, t∗)

]
=

(
In − S̃∗

N∑
i=1

KiHi,∗

)
E [wd(t∗, t0)w

T
d (t, t∗)]− S̃∗

N∑
i=1

KiE [udiw
T
d (t, t∗)]

=


[
−Q∗(t∗, t) + S̃∗

∑N
i=k+

KiHi,∗Q∗(min(t∗, ti), t)
]

ΦT(t, t∗) t ≤ t∗,

−S̃∗
∑N

i=k+
KiHi,∗Q∗(min(t, ti), t∗)Φ

T(t, t∗) t > t∗,

(46)

where k+ is the index of the earliest measurement time later than either t or t∗, i.e. tk+−1≤min(t∗, t)<tk+ .

This gives

Pw(t) = Φ(t, t∗)[P
+
w∗ −Q∗(t∗, t) +B(t, t∗) +BT(t, t∗)]Φ

T(t, t∗), (47)

where

B(t, t∗) ≡ S̃∗
N∑

i=k+

KiHi,∗Q∗(min(t∗, ti),min(t, ti)). (48)

Note that Q∗(t∗, t) is positive if t < t∗ and negative if t > t∗.

Formal Covariance and Delta Covariances

The estimation system does not take the consider states into account, possibly out of ignorance but more

likely by deliberate choice to simplify its structure, so it updates an ns-dimensional solve-for state error

vector. Denoting the a priori estimate of this state error vector at the epoch time by ê∗|0 and the updated

value incorporating all N measurements by ê∗|N , we have in parallel with equation (30)

ê∗|N = ê∗|0 −
N∑
i=1

Ki

(
Hi,∗ê∗|0 + v̂i + ûdi

)
=

(
In −

N∑
i=1

KiĤi,∗

)
ê∗|0 −

N∑
i=1

Ki(v̂i + ûdi). (49)

This equation lacks the projection operator onto the solve-for space, because the estimator only deals with

the solve-for parameters. In this equation

Ĥi,∗ ≡ ĤiΦ̂(ti, t∗). (50)

where Ĥi is the mi × ns measurement sensitivity matrix with respect to the solve-for states, Φ̂(ti, t∗) an

ns × ns transition matrix of the solve-for states, v̂i is a Gaussian white measurement noise, and ûdi is

defined analogously to equation (29). These are all the imprecise values modeled by the estimator, and are
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not assumed to be equal to the projection onto the solve-for space of their true values.∗∗ Of course, an

estimator that more closely approximates the truth can be expected to provide better estimates. The same

gain matrices appear in the equations for the true and formal covariances, however, because the true gain

matrix is the one provided by the estimator.

In addition to providing a solve-for parameter estimate, the estimator will also compute an ns × ns

covariance matrix estimate, known as the formal error covariance,

P̂∗|N ≡ E
[
ê∗|N êT

∗|N

]
= P̂+

a∗ + P̂+
v∗ + P̂+

w∗, (51)

Following a path parallel to that leading to equations (37) and (43) gives

P̂+
a∗ =

(
Ins −

N∑
i=1

KiĤi,∗

)
P̂∗|0

(
Ins −

N∑
i=1

KiĤi,∗

)T

(52a)

P̂+
v∗ =

N∑
i=1

KiR̂iK
T
i (52b)

P̂+
w∗ = −

N∑
i,j=1

KiĤi,∗Q̂∗,min(i,j)Ĥ
T
j,∗K

T
j +

k∗∑
i=1

(KiĤi,∗Q̂∗,i + Q̂∗,iĤ
T
i,∗K

T
i ). (52c)

In these equations P̂∗|0 is the a priori covariance, R̂i ≡ E [v̂iv̂
T
i ] is the measurement error covariance,

Q̂∗(ti, tj) ≡
∫ ti

tj

Φ̂(t∗, τ)Q̂(τ)Φ̂T(t∗, τ)dτ, (53a)

Q̂∗,j ≡ Q̂∗(t∗, tj) (53b)

with Q̂(τ) an ns × ns power spectral density of the process noise assumed by the estimator. As was noted

above, none of these quantities is assumed to be equal to the projection onto the solve-for space of its

corresponding true value.

∗∗In the same spirit, Φss(ti, t∗) and H̃si in Ref. 1 can be replaced by Φ̂(ti, t∗) and Ĥi,∗, respectively.
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The formal covariance is propagated to other times by the analogs of equations (44a), (44b), and (47)

P̂ (t) = P̂a(t) + P̂v(t) + P̂w(t) (54a)

P̂a(t) = Φ̂(t, t∗)P̂
+
a∗Φ̂

T(t, t∗) (54b)

P̂v(t) = Φ̂(t, t∗)P̂
+
v∗Φ̂

T(t, t∗) (54c)

P̂w(t) = Φ̂(t, t∗)[P̂
+
w∗ − Q̂∗(t∗, t) + B̂(t, t∗) + B̂T(t, t∗)]Φ̂

T(t, t∗), (54d)

where

B̂(t, t∗) ≡
N∑

i=k+

KiĤi,∗Q̂∗(min(t∗, ti),min(t, ti)). (55)

The full covariance matrix is needed for computation, but in most cases we are only interested in its

solve-for part

Pss(t) = E [es(t)e
T
s (t)] = SPa(t)ST + SPv(t)ST + SPw(t)ST. (56)

This will generally differ from the formal covariance due to estimator mistuning and/or neglect of consider

parameters in the formal covariance. We express the difference as

Pss(t) = P̂ (t) + ∆Pa(t) + ∆Pv(t) + ∆Pw(t), (57)

where the delta covariance matrices are

∆Pa = SPaS
T − P̂a, ∆Pv = SPvS

T − P̂v, and ∆Pw = SPwS
T − P̂w (58)

The formal covariance matrices can provide either underestimates or overestimates of the errors, so the delta

covariance matrices can be positive or negative.

COMPUTATION OF THE OPTIMAL GAIN MATRIX

The optimal update gain matrix is chosen to minimize the post-update covariance at the epoch time. The

total covariance can be written, from equations (51) and (52) as

P̂∗|N = P̂∗|0 +

N∑
i,j=1

KiWijK
T
j −

N∑
i=1

[
KiĤi,∗(P̂∗|0 − Q̂→∗,i) + (P̂∗|0 − Q̂→∗,i)ĤT

i,∗K
T
i

]
, (59)
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where

Wij ≡ Ĥi,∗(P̂∗|0 − Q̂∗,min(i,j))Ĥ
T
j,∗ + R̂iδij = WT

ji . (60)

The forward process noise covariance is defined as

Q̂→∗,i ≡


Q̂∗,i ti < t∗

0 ti ≥ t∗,
(61)

and δij is the Kronecker delta

δij =


1 for i = j

0 for i 6= j.

(62)

We now define the symmetric matrix W̃N as an N ×N matrix of mi ×mj blocks Wij :

W̃N =



W11 W12 . . . W1N

W21 W22 . . . W2N

...
...

. . .
...

WN1 WN2 . . . WNN


. (63)

The inverse W̃−1N can also be written an N ×N matrix of mi ×mj blocks,

W̃−1N =



[W̃−1N ]11 [W̃−1N ]12 . . . [W̃−1N ]1N

[W̃−1N ]21 [W̃−1N ]22 . . . [W̃−1N ]2N
...

...
. . .

...

[W̃−1N ]N1 [W̃−1N ]N2 . . . [W̃−1N ]NN


, (64)

and the relations W̃NW̃
−1
N = W̃−1N W̃N = I imply that

N∑
j=1

Wij [W̃
−1
N ]jk =

N∑
j=1

[W̃−1N ]ijWjk = δikImi . (65)
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Now equation (51) can be written by completing the square as

P̂∗|N = P̂∗|0 −
N∑

i,j=1

(P̂∗|0 − Q̂→∗,i)ĤT
i,∗ [W̃−1N ]ij Ĥj,∗(P̂∗|0 − Q̂→∗,j)

+
N∑

i,j=1

[
Ki −

N∑
k=1

(P̂∗|0 − Q̂→∗,k)ĤT
k,∗[W̃

−1
N ]ki

]
Wij

[
Kj −

N∑
k=1

(P̂∗|0 − Q̂→∗,k)ĤT
k,∗[W̃

−1
N ]kj

]T

. (66)

If A and B are real symmetric matrices, we say that A ≥ B if the matrix A−B is positive semidefinite.

It is clear that

P̂∗|N ≥ P̂∗|0 −
N∑

i,j=1

(P̂∗|0 − Q̂→∗,i)ĤT
i,∗ [W̃−1N ]ij Ĥj,∗(P̂∗|0 − Q̂→∗,j) (67)

in this sense, with equality if the measurement gain matrix is chosen to be

Ki =
N∑
k=1

(P̂∗|0 − Q̂→∗,k)ĤT
k,∗[W̃

−1
N ]ki. (68)

We will use this gain matrix to achieve the minimum P̂∗|N , which can be expressed more compactly as

P̂∗|N = P̂∗|0 −
N∑
j=1

Kj Ĥj,∗(P̂∗|0 − Q̂→∗,j) (69)

Batch Least-Squares Case

We want to show that our formulation reduces to the usual batch least-squares estimator if the assumed

process noise is zero. In that case

W̃N = Ĥ∗ P̂∗|0 Ĥ
T
∗ + R̂, (70)

where

Ĥ∗ ≡


Ĥ1,∗

...

ĤN,∗

 (71)

and R̂ is block-diagonal with the matrices R̂i along its main diagonal. The Sherman-Morrison-Woodbury

matrix inversion lemma13 gives

W̃−1N = R̂−1 − R̂−1Ĥ∗
(
P̂−1∗|0 + ĤT

∗ R̂
−1 Ĥ∗

)−1
ĤT
∗ R̂
−1
j (72)
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or

[W̃−1N ]ki = R̂−1k δki − R̂−1k Ĥk,∗

P̂−1∗|0 +

N∑
j=1

ĤT
j,∗ R̂

−1
j Ĥj,∗

−1 ĤT
i,∗R̂

−1
i (73)

Substituting into equation (68) with Q̂→∗,k = 0 gives

Ki = P̂∗|0

Ins −
N∑
k=1

ĤT
k,∗R̂

−1
k Ĥk,∗

P̂−1∗|0 +

N∑
j=1

ĤT
j,∗ R̂

−1
j Ĥj,∗

−1 ĤT
i,∗R̂

−1
i (74)

Now writing Ins =
(
P̂−1∗|0 +

∑N
k=1 Ĥ

T
k,∗ R̂

−1
k Ĥk,∗

)(
P̂−1∗|0 +

∑N
j=1 Ĥ

T
j,∗ R̂

−1
j Ĥj,∗

)−1
and performing ap-

propriate cancellations gives

Ki =

P̂−1∗|0 +

N∑
j=1

ĤT
j,∗ R̂

−1
j Ĥj,∗

−1 ĤT
i,∗R̂

−1
i , (75)

which is just the usual result obtained by minimizing a quadratic loss function with weighted contributions

from the measurement innovations and the a priori estimate, as in Refs. 1 – 3.

Sequential Implementation

Inverting the very large matrix W̃N is a formidable problem in the general case, and the Sherman-

Morrison-Woodbury lemma is not applicable if process noise is present. The inversion of this large matrix

can be avoided even when process noise is present by implementing a sequential estimation procedure. In

developing a sequential estimator, it will be convenient to denote the gain matrices by Ki|k, where the index

k is the number of measurements included in the update. The estimation errors after processing k− 1 and k

measurements are given by equation (49) as

ê∗|k−1 =

(
Ins −

k−1∑
i=1

Ki|k−1Ĥi,∗

)
ê∗|0 −

k−1∑
i=1

Ki|k−1(v̂i + ûdi), (76)

ê∗|k =

(
Ins −

k∑
i=1

Ki|kĤi,∗

)
ê∗|0 −

k∑
i=1

Ki|k(v̂i + ûdi). (77)

For a sequential method, we need to be able to write

ê∗|k = (Ins −Kk|kĤk,∗)ê∗|k−1 −Kk|k(v̂k + ûdk). (78)
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Substituting equation (76) into equation (78) and comparing with equation (77) gives the consistency re-

quirement

Ki|k = (Ins −Kk|kĤk,∗)Ki|k−1 i < k. (79)

It is not difficult to see that complete agreement among all the terms of equations (76)−(78) follows if the

gain matrices satisfy this condition. It is shown in the Appendix that equation (79) is always satisfied if the

estimator ignores process noise, but it can only be satisfied in the presence of process noise if Q̂→∗,i = Q̂∗,i

for i < k, which means that ti ≤ t∗. We will thus assume that t∗ is in the future of all of the measurements,

which means that we can remove the arrow from every appearance of Q̂→∗,i in the following.

To make further progress, let W̃k denote the matrix defined by equation (63), but only including k mea-

surements. We write this in partitioned form as

W̃k =

W̃k−1 Vk

V T
k Wkk

 , (80)

where

Vk ≡



W1k

W2k

...

W(k−1)k


. (81)

Letting P̂∗|k denote the formal covariance incorporating k measurements, equations (60) and (67) (with

equality) can be used to show that

Ĥk,∗(P̂∗|0 − P̂∗|k−1)ĤT
k,∗ =

k−1∑
i,j=1

Wki[W̃
−1
k−1]ijW

T
jk = V T

k W̃
−1
k−1Vk, (82)

from which it follows that

Wkk − V T
k W̃

−1
k−1Vk = Ĥk,∗(P̂∗|k−1 − Q̂∗,k) ĤT

k,∗ + R̂k. (83)
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The standard equation for the inverse of a partitioned matrix gives

W̃−1k =

(W̃k−1 − VkW−1kk V
T
k )−1 Uk

UT
k (Wkk − V T

k W̃
−1
k−1Vk)−1

 , (84)

where

Uk = −W̃−1k−1Vk(Wkk − V T
k W̃

−1
k−1Vk)−1 = −W̃−1k−1Vk[W̃−1k ]kk. (85)

These relations give the gain matrix Kk|k, which is the only one needed for the sequential estimator, as

Kk|k =

k∑
i=1

(P̂∗|0 − Q̂∗,i) ĤT
i,∗[W̃

−1
k ]ik =

k−1∑
i=1

(P̂∗|0 − Q̂∗,i) ĤT
i,∗[W̃

−1
k ]ik + (P̂∗|0 − Q̂∗,k) ĤT

k,∗[W̃
−1
k ]kk

= (P̂∗|k−1 − Q̂∗,k) ĤT
k,∗[W̃

−1
k ]kk = (P̂∗|k−1 − Q̂∗,k) ĤT

k,∗

[
Ĥk,∗(P̂∗|k−1 − Q̂∗,k) ĤT

k,∗ + R̂k

]−1
(86)

The third equality uses, for i < k,

[W̃−1k ]ik = [Uk]i = −
k−1∑
j=1

[W̃−1k−1]ij [Vk]j [W̃
−1
k ]kk = −

k−1∑
j=1

[W̃−1k−1]ijWjk[W̃−1k ]kk

= −
k−1∑
j=1

[W̃−1k−1]ijĤj,∗(P̂∗|0 − Q̂∗,j) ĤT
k,∗[W̃

−1
k ]kk (87)

and then
k−1∑
i,j=1

(P̂∗|0 − Q̂∗,i) ĤT
i,∗[W̃

−1
k−1]ijĤj,∗(P̂∗|0 − Q̂∗,j) = P̂∗|0 − P̂∗|k−1, (88)

and the fourth equality uses equation (83). Equation (86) expresses Kk|k in terms of only P̂∗|k−1 and

quantities available at the measurement time tk. Completing the development of the recursive estimator

requires a recursion relation for P̂∗|k. Using the consistency condition on the gain matrix, equation (79), in
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equation (69) gives

P̂∗|k = P̂∗|0 −
k∑

j=1

Kj|k Ĥj,∗(P̂∗|0 − Q̂∗,j) = P̂∗|0 −Kk|k Ĥk,∗(P̂∗|0 − Q̂∗,k) −
k−1∑
j=1

Kj|k Ĥj,∗(P̂∗|0 − Q̂∗,j)

= (Ins −Kk|k Ĥk,∗)

P̂∗|0 − k−1∑
j=1

Kj|k−1 Ĥj,∗(P̂∗|0 − Q̂∗,j)

+Kk|k Ĥk,∗Q̂∗,k

= (Ins −Kk|k Ĥk,∗)P̂∗|k−1 +Kk|k Ĥk,∗Q̂∗,k = P̂∗|k−1 −Kk|k Ĥk,∗(P̂∗|k−1 − Q̂∗,k). (89)

It is not surprising that the final form strongly resembles equation (69) with an update from only the last

measurement and with P̂∗|k−1 as the a priori covariance.

Relation to the Kalman Filter

If we define

P̂∗,k ≡ P̂∗|k−1 − Q̂∗,k, (90)

then equation (86) becomes

Kk|k = P̂∗,k Ĥ
T
k,∗(Ĥk,∗P̂∗,k Ĥ

T
k,∗ + R̂k)−1 (91)

and equation (89) becomes

P̂∗,k+1 = (Ins −Kk|k Ĥk,∗)P̂∗,k + Q̂∗,k − Q̂∗,k+1 = (Ins −Kk|k Ĥk,∗)P̂∗,k + Q̂∗(tk+1, tk), (92)

which are equivalent to the equations of the epoch-state estimator used by Montenbruck.14 It should be

pointed out, though, that P̂∗,k is not the covariance of any obvious error vector.

If we further make the identification

P̂∗,k = Φ̂(t∗, tk)P̂k|k−1Φ̂
T(t∗, tk) (93)

and use

Φ̂(t′, t) = Φ̂(t′, τ)Φ̂(τ, t), (94)
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then equations (91) and (92) become

Kk|k = Φ̂(t∗, tk)K̂k (95)

and

P̂k+1|k = Φ̂(tk+1, tk)(Ins − K̂k Ĥk)P̂k|k−1Φ̂
T(tk+1, tk) + Φ̂(tk+1, t∗)Q̂∗(tk+1, tk)Φ̂T(tk+1, t∗), (96)

where

K̂k ≡ P̂k|k−1Ĥ
T
k (ĤkP̂k|k−1 Ĥ

T
k + R̂k)−1. (97)

Notice that Ĥk appears in these equations rather than Ĥk,∗. Equation (96) can be written as the usual

two-step Kalman filter process

P̂k|k = (Ins − K̂k Ĥk)P̂k|k−1 (98)

P̂k+1|k = Φ̂(tk+1, tk)P̂k|kΦ̂T(tk+1, tk) +

∫ tk+1

tk

Φ̂(tk+1, τ)Q̂(τ)Φ̂T(tk+1, τ)dτ, (99)

where the expression for the process noise follows from equation (53). It is now easy to recognize P̂k|k−1

and P̂k|k as the pre- and post-update covariances of the estimation error at the measurement time tk.

SUMMARY AND CONCLUSION

We have updated and extended previous work on consider covariance analysis to improve the treatment

of process noise when the update time is not prior to all of the measurements. Consider covariance analysis

treats estimators that account for only a subset of the parameters, possibly out of ignorance but more likely

by deliberate choice to simplify their structure. The covariance analysis, however, considers the effect on the

covariance of all the variables, including those ignored by the estimator. Our analysis explicitly partitions

the full covariance and solve-for covariance into three subspaces containing the influence of measurement

noise, process noise, and a priori errors, respectively. Explicitly exhibiting the a priori component of the

covariance is useful because a priori information about observable parameters is “forgotten” as more data

are processed, providing a useful test of observability.

We have found an expression for the gain of an optimal epoch-state estimator incorporating a model of

process noise, and showed that this reduces to the usual batch estimator if process noise is ignored when

computing the measurement update gains. Our formulation agrees with our previous analysis of batch

filtering methods if the epoch time is prior to all measurement times, but differs if the epoch time is amid
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the data or in the future of all data. If the epoch time is no earlier than the time of the last measurement

processed, a sequential implementation of the filter is possible, and we show that this is basically equivalent

to an extended Kalman filter.

APPENDIX: CONSISTENCY CONDITION FOR SEQUENTIAL IMPLEMENTATION

We will first show that the consistency condition requires that either the estimator ignores process noise

or that ti ≤ t∗ for i < k. We will use a very simple model with a one-component state vector and two scalar

measurements with Ĥ1,∗ = Ĥ2,∗ = 1. The blocks

Wij = (P̂∗|0 − Q̂∗,min(i,j)) + R̂iδij (100)

of W̃k are scalars, so we have

W̃−11 =
1

W 11
(101a)

W̃−12 =
1

W11W22 −W 2
12

 W22 −W12

−W12 W11

 . (101b)

The gains are given by equation (68) as

K1|1 =
P̂∗|0 − Q̂→∗,1

W 11
(102a)

K1|2 =
(P̂∗|0 − Q̂→∗,1)W22 − (P̂∗|0 − Q̂→∗,2)W12

W11W22 −W 2
12

(102b)

K2|2 =
(P̂∗|0 − Q̂→∗,2)W11 − (P̂∗|0 − Q̂→∗,1)W12

W11W22 −W 2
12

(102c)

The consistency condition, equation (79) then gives

(P̂∗|0 − Q̂→∗,1)[W11W22 −W 2
12 − (P̂∗|0 − Q̂→∗,2)W11 + (P̂∗|0 − Q̂→∗,1)W12] =

W11[(P̂∗|0 − Q̂→∗,1)W22 − (P̂∗|0 − Q̂→∗,2)W12] (103)

Canceling the common term of (P̂∗|0 − Q̂→∗,1)W11W22 from the two sides of the equation and rearranging

gives

[(P̂∗|0 − Q̂→∗,2)W11 − (P̂∗|0 − Q̂→∗,1)W12](P̂∗|0 − Q̂→∗,1 −W12) = 0 (104)

23



The quantity in square brackets is certainly not zero, because there is nothing to cancel the term R1 in W11.

Thus we must have

0 = P̂∗|0 − Q̂→∗,1 −W12 = Q̂∗,1 − Q̂→∗,1 (105)

This equation is satisfied if either the estimator ignores process noise entirely or if t1 ≤ t∗. In the latter case

it follows by by induction that we must have ti ≤ t∗ for all i < k.

The next task is to show that the consistency condition holds if Q̂→∗,i = Q̂∗,i for i ≤ k. We will show this in

the general case. Equation (68) gives, with the subscripting notation used for the sequential implementation,

Ki|k =
k∑

j=1

(P̂∗|0−Q̂∗,j)ĤT
j,∗[W̃

−1
k ]ji =

k−1∑
j=1

(P̂∗|0−Q̂∗,j)ĤT
j,∗[W̃

−1
k ]ji+(P̂∗|0−Q̂∗,k)ĤT

k,∗[W̃
−1
k ]ki. (106)

We use equation (84) and the Sherman-Morrison-Woodbury matrix inversion lemma write the upper left-

hand corner of W̃−1k in the form

(W̃k−1 − VkW−1kk V
T
k )−1 = W̃−1k−1 + W̃−1k−1Vk(Wkk − V T

k W̃
−1
k−1Vk)−1V T

k W̃−1k−1

= W̃−1k−1 + W̃−1k−1Vk [W̃−1k ]kkV
T
k W̃−1k−1, (107)

which is made up of the blocks

[W̃−1k ]ji = [W̃−1k−1]ji + [W̃−1k−1Vk]j [W̃−1k ]kk [V T
k W̃−1k−1]i, . (108)

We also have

[W̃−1k ]ki = [UT
k ]i = −[W̃−1k ]kk [V T

k W̃−1k−1]i (109)

With these substitutions,

Ki|k =
k−1∑
j=1

(P̂∗|0 − Q̂∗,j)ĤT
j,∗[W̃

−1
k−1]ji +

k−1∑
j=1

(P̂∗|0 − Q̂∗,j)ĤT
j,∗[W̃

−1
k−1Vk]j [W̃−1k ]kk [V T

k W̃−1k−1]i

− (P̂∗|0 − Q̂∗,k)ĤT
k,∗[W̃

−1
k ]kk [V T

k W̃−1k−1]i. (110)

The first term on the right side of this equation is easily recognized to be Ki|k−1. The sum over j in the
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second term can be written as

k−1∑
j=1

(P̂∗|0 − Q̂∗,j)ĤT
j,∗[W̃

−1
k−1Vk]j =

k−1∑
j,m=1

(P̂∗|0 − Q̂∗,j)ĤT
j,∗[W̃

−1
k−1]jm[Vk]m

=
k−1∑

j,m=1

(P̂∗|0 − Q̂∗,j)ĤT
j,∗[W̃

−1
k−1]jmWmk

=
k−1∑

j,m=1

(P̂∗|0 − Q̂∗,j)ĤT
j,∗[W̃

−1
k−1]jmĤm,∗(P̂∗|0 − Q̂∗,m)ĤT

k,∗ = (P̂∗|0 − P̂∗|k−1)ĤT
k,∗, (111)

where equation (67) (with equality) gives the last line. Putting all this together gives

Ki|k = Ki|k−1 + (P̂∗|0 − P̂∗|k−1)ĤT
k,∗[W̃

−1
k ]kk [V T

k W̃−1k−1]i − (P̂∗|0 − Q̂∗,k)ĤT
k,∗[W̃

−1
k ]kk [V T

k W̃−1k−1]i

= Ki|k−1 − (P̂∗|k−1 − Q̂∗,k)ĤT
k,∗[W̃

−1
k ]kk

k−1∑
j=1

[V T
k ]j [W̃

−1
k−1]ji

= Ki|k−1 − (P̂∗|k−1 − Q̂∗,k)ĤT
k,∗[W̃

−1
k ]kk

k−1∑
j=1

Wkj [W̃
−1
k−1]ji

= Ki|k−1 − (P̂∗|k−1 − Q̂∗,k)ĤT
k,∗[W̃

−1
k ]kk

k−1∑
j=1

Ĥk,∗(P̂∗|0 − Q̂∗,j)ĤT
j,∗[W̃

−1
k−1]ji

= [Ins − (P̂∗|k−1 − Q̂∗,k)ĤT
k,∗[W̃

−1
k ]kkĤk,∗]Ki|k−1,= (Ins −Kk|kĤk,∗)Ki|k−1 (112)

recognizing equation (86) in the last line. This is the desired relation.
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