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Cratons are typically underlain by large, deep, and old lithospheric keels (to > 200 km 
depth, > 2.5 Ga old) projecting into the asthenosphere (e.g., Jordan, 1978; Richardson et al., 
1984).  This has mystified Earth scientists as the dynamic and relatively hot asthenosphere 
should have eroded away these keels over time (e.g., Sleep, 2003; O'Neill et al., 2008; Karato, 
2010).  Three key factors have been invoked to explain cratonic root survival: 1) Low density 
makes the cratonic mantle buoyant (e.g., Poudjom Djomani et al., 2001).  2) Low 
temperatures (e.g., Pollack, 1986; Boyd, 1987), and 3) low water contents (e.g., Pollack, 
1986), would make cratonic roots mechanically strong.  Here we address the mechanism of 
the longevity of continental mantle lithosphere by focusing on the water parameter.  Although 
‘nominally anhydrous’, olivine, pyroxene and garnet can accommodate trace amounts of 
water in the form of H bonded to structural O in mineral defects (e.g., Bell & Rossman, 1992).  
Olivine softens by orders of magnitude if water (1-1000 ppm H2O) is added to its structure 
(e.g., Mackwell et al., 1985).  Our recent work has placed constraints on the distribution of 
water measured in peridotite minerals in the cratonic root beneath the Kaapvaal in southern 
Africa (Peslier et al., 2010).  At P > 5 GPa, the water contents of pyroxene remain relatively 
constant while those of olivine systematically decrease from 50 to less than 10 ppm H2O at 
6.4 GPa. We hypothesized that at P > 6.4 GPa, i.e. at the bottom of the cratonic lithosphere, 
olivines are essentially ‘dry’ (< 10 ppm H2O).  As olivine likely controls the rheology of the 
mantle, we calculated that the ‘dry’ olivines could be responsible for a contrast in viscosity 
between cratonic lithosphere and surrounding asthenosphere large enough to explain the 
resistance of cratonic root to asthenospheric delamination. 
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