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Abstract

This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational
Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will
refer to by its informal name “eLISA”) will survey for the first time the low-frequency gravitational wave band (about
0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The
measurements described here will address the basic scientific goals that have been captured in ESA’s “New Gravitational
Wave Observatory Science Requirements Document”; they are presented here so that the wider scientific community
can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with
high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier,
less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and
compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely
compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type
Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation
and of the symmetry-breaking epoch directly after the Big Bang. eLISA’s measurements will allow detailed studies of
these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA’s Cosmic
Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity
in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the
science but also gives an overview on the mission design and orbits. LISA’s heritage in the eLISA design will be clear to
those familiar with the previous proposal, as will its incorporation of key elements of hardware from the LISA Pathfinder
mission, scheduled for launch by ESA in 2014. But eLISA is fundamentally a new mission, one that will pioneer the
completely new science of low-frequency gravitational wave astronomy.
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1 Introduction

Our view of the Universe has changed dramatically over the past century. Less than a hundred years ago our own Galaxy,
the Milky Way, was believed to be our own island-Universe. The discovery of hundreds of billion galaxies like our own,
and of billion luminous sources such as Quasi Stellar Objects (QSOs), changed our perception of the cosmic landscape.
New astronomical objects were discovered with the advent of radio and X-ray Astronomy. Relativistic binaries composed
of compact stars (such as white dwarfs or neutron stars) and stellar-mass black holes are among these sources of electro-
magnetic radiation. According to the accretion paradigm, supermassive black holes at galactic centres are the simplest
explanation for the power emitted by distant, luminous QSOs, but a conclusive test of this hypothesis is still lacking.

The remarkable discovery of the recession of galaxies and of the fossil microwave background radiation, almost
contemporary to the discovery of X-ray sources, has further led to the emergence of a cosmological paradigm, the Big
Bang, that has revolutionized our description of the Universe. We now know that our Universe had a beginning and that
its luminous components (in particular, galaxies and QSOs) evolve jointly and in concordance with the evolution of the
underlying dark matter permeating the Universe.

According to General Relativity, black holes and compact binaries are expected to be powerful sources of gravitational

waves. Rather than “seeing” electromagnetic radiation, as all of astronomy has done until present, eLISA will “hear” the
vibrations of the fabric of spacetime itself, emitted coherently by macroscopic bodies. Studying these signals will convey
rich new information about the behaviour, the structure and the history of the Universe, and it will clarify several issues
in fundamental physics.

Gravitational waves travel undisturbed through spacetime, and when observed they offer a new and uniquely powerful
way to probe the very distant Universe, from the extremely early Big Bang to the early epoch of galaxy and black hole
seed formation. This may allow us to address deep questions. What powered the Big Bang? How did galaxies and their
black holes form and evolve? What is the structure of spacetime around the massive objects we believe to be black holes?
What is the nature of the mysterious dark matter and dark energy accelerating the expansion of the Universe?

eLISA is a space-based mission designed to measure gravitational radiation over a broad band at frequencies ranging
between f ∼ 0.1 mHz and f ∼ 1 Hz. In this frequency band the Universe is richly populated by strong sources of
gravitational waves. For binary systems the characteristic gravitational-wave frequency f is twice the Keplerian orbital
frequency, which in turn is proportional to (M/a3)1/2, where M is the total mass of the binary and a its semi-major axis. In
the eLISA frequency band, gravitational waves are produced by close binaries of stellar-mass objects with orbital periods
of a few to several minutes. Massive black hole binaries with M ∼ 104 M� − 107 M� and mass ratio 0.01 � q � 1 on the
verge of coalescing have orbital frequencies sweeping to higher and higher values, until the binary separation a becomes as
small as the scale of the event horizon GM/c2. Finally, eLISA could observe binaries comprising a massive black hole and
a stellar-mass compact object (e.g., a stellar-mass black hole) skimming the horizon of the larger black hole before being
captured: these systems are commonly referred to as extreme mass ratio inspirals (EMRIs). Furthermore, a stochastic
background in the eLISA frequency band can be generated by less conventional sources, such as phase transitions in the
very early Universe and/or cosmic strings.

This note is a comprehensive survey of the eLISA science case. We consider all the relevant astrophysical and cosmo-
logical gravitational wave sources and explore eLISA detection performances in terms of sensitivity, SNR distributions,
and parameter estimation.

In Section 2 we will briefly describe the mission concept and the basic design of the instrument, introducing the eLISA
sensitivity curve that will be used throughout the study.

Our survey of the eLISA science case will start in Section 3 by exploring the nearest observable sources of gravitational
waves, i.e. compact stellar-mass binaries in the Milky Way. eLISA will study the gravitational wave signals from
thousands of stellar-mass close binaries in the Galaxy and will give information on the extreme endpoints of stellar
evolution. eLISA will provide distances and detailed orbital and mass parameters for hundreds of these binaries. This
is a rich trove of information for mapping and reconstructing the history of stars in the Galaxy, and it can reveal details
of the tidal and non-gravitational influences on the binary evolution associated with the internal physics of the compact
remnants themselves.

Then we will summarize the science objectives that are relevant for the astrophysics of black holes (Section 4). Current
electromagnetic observations are probing only the tip of the black hole mass distribution in the Universe, targeting black
holes with large masses, between 107 M� and 109 M�. Conversely, eLISA will be able to detect the gravitational waves
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emitted by black hole binaries with total mass (in the source rest frame) as small as 104 M� and up to 107 M�, out to a
redshift as large as z ∼ 20. eLISA will detect fiducial sources out to redshift z ∼ 10, and so it will explore almost all the
mass-redshift parameter space relevant for addressing scientific questions on the evolution of the black hole population.
Redshifted masses will be measured to an unprecedented accuracy, up to the 0.1 – 1 % level, whereas absolute errors in the
spin determination are expected to be in the range 0.01 to 0.1, allowing us to reconstruct the cosmic evolution of massive
black holes. Black holes are expected to transit into the mass interval to which eLISA is sensitive along the course of their
cosmic evolution. Thus, eLISA will map and mark the loci where galaxies form and cluster, using black holes as clean
tracers of their assembly.

eLISA will also bring a new revolutionary perspective to the study of galactic nuclei, as shown in Section 5. Orbits
of stellar objects captured by the massive black hole at the galactic centre evolve by gravitational radiation. By capturing
their signal, eLISA will offer the deepest view of nearby galactic nuclei, exploring regions that are invisible to electro-
magnetic techniques. eLISA will probe the dynamics of compact objects in the space-time of a Kerr black hole, providing
information on the space density of those objects.

In Section 6 we address key questions concerning the nature of spacetime and gravity. GR has been extensively
tested in the weak field regime, both in the solar system and via binary pulsar observations. eLISA will provide a unique
opportunity to probe GR in the strong field limit. eLISA will observe the coalescence of massive black hole binaries
moving at speeds close to the speed of light, and enable us to test the dynamics of curved spacetime when gravitational
fields are strong. By observing a large number of orbital cycles during the last few years of the inspiral of a stellar mass
object into a massive black hole, eLISA will allow us to measure precisely the parameters of the central object (including
its quadrupole moment) in the near Universe. Any deviations in the orbital motion from GR predictions will leave an
imprint in the gravitational wave phase. Thus, measurements of the mass, spin and quadrupole moment of the central
object will allow us to check the Kerr nature of the central massive object, and to test for the first time the black hole

hypothesis.

Lastly, as we describe in Section 7, eLISA will probe new physics and cosmology with gravitational waves, and search
for unforeseen sources of gravitational waves. The eLISA frequency band in the relativistic early Universe corresponds
to horizon scales where phase transitions or extra dimensions may have caused catastrophic, explosive bubble growth
and efficient gravitational wave production. eLISA will be capable of detecting a stochastic background from such events
from about 100 GeV to about 1000 TeV, if gravitational waves in the eLISA band were produced with sufficient efficiency.

In closing the note, we will present a summary of the science objectives of the eLISA mission. We summarize the
key theoretical and observational goals of the eLISA science case in Section 8. There, in a schematic bullet-point form,
we enumerate the scientific goals related to each class of gravitational wave sources and the observational performance
of eLISA in achieving such goals. This could serve as a compact summary of eLISA science, as well as a reference point
for other space-based gravitational wave detector proposals.

2 Description of the mission

eLISA is a European-led variant of LISA that can be launched before 2022 . The basic principle of gravitational wave de-
tection for eLISA is the same as for LISA: it is a laser interferometer designed to detect the passage of a gravitational wave
by measuring the time-varying changes of optical pathlength between free-falling masses. Many design and technological
developments were migrated from LISA, however there are some substantial differences.

The two measurement arms are defined by three spacecraft orbiting the Sun in a triangular configuration (see figure 1).
A key feature of the eLISA concept is a set of three orbits that maintain a near-equilateral triangular formation with an
armlength L = 109m, without the need for station-keeping. Depending on the initial conditions of the spacecraft, the
formation can be kept in an almost constant distance to the Earth or be allowed to slowly drift away to about 70 × 109 m,
the outer limit for communication purposes. A very attractive feature of the eLISA orbits is the almost constant sun-angle
of 30 degrees with respect to the normal to the top of the spacecraft, thereby resulting in an extremely stable thermal
environment, minimizing the thermal disturbances on the spacecraft.

One of the three spacecraft serves as the “central hub” and defines the apex of a “V”. Two other, simpler spacecraft
are positioned at the ends of the V-shaped constellation. The central spacecraft houses two free-falling “test masses” that
define the endpoint of the two interferometer arms. The other spacecraft contain one test mass each, defining two more
endpoints (see figure 2). Each spacecraft accommodates the interferometry equipment for measuring changes in the arm
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1 AU

1 × 109 m

Sun

Earth

20°

60°

Figure 1: The eLISA orbits: The constellation is shown trailing the Earth by about 20 degrees (or 5 × 1010km) and is
inclined by 60 degrees with respect to the ecliptic. The trailing angle will vary over the course of the mission duration
from 10 degrees to 25 degrees. The separation between the spacecraft is L = 1 × 109 m.

length. For practical reasons, this measurement is broken up into three distinct parts (see figure 3): the measurement
between the spacecrafts, i.e. between the optical benches that are fixed to each spacecraft, and the measurement between
each of the test masses and its respective optical bench. Those measurements are recombined in a way that allows us to
reconstruct the distance between the test masses which is insensitive to the noise in the position of the spacecraft with
respect to the test masses.

A second key feature of the eLISA concept is that the test masses are protected from disturbances as much as possible
by a careful design and the "drag-free" operation. To establish the drag-free operation, a housing around the test mass
senses the relative position of test mass and spacecraft, and a control system commands the spacecraft thrusters to follow
the free-falling mass. Drag-free operation reduces the time-varying disturbances to the test masses caused by force
gradients arising in a spacecraft that is moving with respect to the test masses. The requirements on the power spectral
density of the residual acceleration of the test mass is

S x,acc( f ) = 2.13 × 10−29
(
1 +

10−4Hz
f

)
m2 s−4 Hz−1 (1)

or

S x,acc( f ) = 1.37 × 10−32
(
1 +

10−4Hz
f

)
Hz
f 4 m2 Hz−1, (2)

where f is the frequency.

The third key feature, the distance measuring system, is a continuous interferometric laser ranging scheme, similar to
that used for radar-tracking of spacecraft. The direct reflection of laser light, such as in a normal Michelson interferometer,
is not feasible due to the large distance between the spacecrafts. Therefore, lasers at the ends of each arm operate in a
"transponder" mode. A laser beam is sent out from the central spacecraft to an end spacecraft. The laser in the end
spacecraft is then phase-locked to the incoming beam thus returning a high-power phase replica. The returned beam is
received by the central spacecraft and its phase is in turn compared to the phase of the local laser. A similar scheme
is employed for the second arm. In addition, the phases of the two lasers serving the two arms are compared within the
central spacecraft. The combined set of phase measurements together with some auxiliary modulation allows to determine
the relative optical path changes with simultaneous suppression of the laser frequency noise and clock noise below the
secondary (acceleration and displacement) noise. The displacement noise has two components: the shot noise, with a
required power spectral density
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end spacecraft 2corner spacecraft

end spacecraft 1

PLL

Test masses
Laser

science measurement

local laser comparison

Figure 2: The constellation of the three eLISA spacecraft constitutes the science instrument. The central spacecraft
harbors two send/receive laser ranging terminals, while the end spacecraft has one each. The laser in the end spacecraft
is phase-locked to the incoming laser light. The blue dots indicate where interferometric measurements are taken. The
sketch leaves out the test mass interferometers for clarity.

Measurement S/C to test mass Measurement S/C to test mass

S/C to S/C measurement

Figure 3: Partition of the eLISA measurement. Each measurement between two test masses is broken up into three
different measurements: two between the respective test mass and the spacecraft and one between the two spacecraft
(S/C). As the noise in the measurement is dominated by the shot noise in the S/C-S/C measurement, the noise penalty for
the partitioning of the measurement is negligible. The blue (solid) dots indicate where the interferometric measurements
are taken.
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Figure 4: Sensitivity of eLISA (averaged over all sky locations and polarisations) versus frequency: the solid red curve
is obtained numerically using the simulator LISACode 2.0 (Petiteau et al., 2008) and the dashed blue curve is the analytic
approximation based on equation 5. For a reference, we also depict the sensitivity curve of LISA (dotted, green curve).

S x,sn( f ) = 5.25 × 10−23 m2 Hz−1 (3)

and the other (combined) measurement noise with a required power spectral density

S x,omn( f ) = 6.28 × 10−23 m2 Hz−1. (4)

According to the requirements, eLISA achieves the strain noise amplitude spectral density (often called sensitivity)
showed in figure 4 which can be analytically approximate as h̃( f ) = 2 δ̃L( f )/L =

√
S ( f ), where :

S ( f ) =
20
3

4 S x,acc( f ) + S x,sn( f ) + S x,omn( f )
L2

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +
⎛⎜⎜⎜⎜⎜⎜⎝ f

0.41
(

c
2L

)
⎞⎟⎟⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (5)

This allows to detect a strain of about 3.7 × 10−24 in a 2-year measurement with an SNR of 1 (displacement sensitivity
of 11 × 10−12m/

√
Hz over a path length of 1 × 109m). The feasible reduction of disturbances on test masses and the

displacement sensitivities achievable by the laser ranging system yield a useful measurement frequency bandwidth from
3 × 10−5 Hz to 1 Hz (the requirement is 10−4 Hz to 1 Hz; the goal is 3 × 10−5 Hz to 1 Hz).

3 Ultra-Compact Binaries

1 Overview

The most numerous sources in the low-frequency gravitational wave band are ultra-compact binary stars: double stars
in which two compact objects, such as white dwarfs and neutron stars, orbit each other with short periods. They have
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Figure 5: Artist impression of a detached double white dwarf binary (left) and an interacting binary in which a neutron
star accretes material from a white dwarf donor. The Earth is shown to set the scale. Courtesy BinSim by Rob Hynes.

relatively weak gravitational wave signals in comparison to massive black hole binaries, but are numerous in the Galaxy
and even the Solar neighbourhood.

Several thousand systems are expected to be detected individually, with their parameters determined to high precision,
while the combined signals of the millions of compact binaries in the eLISA band will form a foreground signal. This
is in contrast to less than 50 ultra-compact binaries known today. The number of detections will allow for detailed study
of the entire WD binary population. In particular, the most numerous sources are double white dwarfs, which are one of
the candidate progenitors of type Ia supernovae and related peculiar supernovae. eLISA will determine the merger rate
of these binaries. The detailed knowledge of the ultra-compact binary population also constrains the formation of these
binaries and thus many preceding phases in binary evolution. This has a strong bearing on our understanding of many
high-energy phenomena in the Universe, such as supernova explosions, gamma-ray bursts and X-ray sources, as they
share parts of the evolution history of the binaries detectable by eLISA.

As many of the Galactic sources are rather close (within a few kpc), they will be detectable at high SNR (often larger
than 50), allowing detailed studies of individual binaries. For many hundreds, the frequency and phase evolution can be
studied, enabling the study of the physics of tides and mass transfer in unprecedented detail. The extreme conditions of
short orbital periods, strong gravitational fields and high mass-transfer rates are unique in astrophysics.

The information provided by eLISA will be different from what can be deduced by electromagnetic observations.
In particular, eLISA’s capability to determine distances and inclinations, as well as the fact that the gravitational wave
signals are unaffected by interstellar dust, provide significant advantages over other detection techniques. Compared
to Gaia, eLISA will observe a quite different population. Gravitational wave observations allow us to determine the
distances to binaries that are right in the Galactic centre rather than to those close to the Sun. The distance determinations
will make it possible to map the distribution of many compact binaries in the Galaxy, providing a new method to study
Galactic structure. The inclination determinations allow the study of binary formation by comparing the average angular
momentum of the binaries to that of the Galaxy. Electromagnetic observations and gravitational wave observations are
complementary to one another; dedicated complementary observing programs as well as public data releases will allow
simultaneous and follow-up electromagnetic observations of binaries identified by eLISA.

A number of guaranteed detectable sources are known to date from electromagnetic observations. Some of these can
be used to verify instrument performance by looking for a gravitational signal at twice the orbital period and comparing the
signal with expectations. In addition, once eLISA has detected several nearby binaries and determined their sky position
they can be observed optically, thus providing an additional quantitative check on instrument sensitivity.
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2 Instrument verification

There are currently about 50 know ultra-compact binaries. They come in two flavours: systems in which the two stars are
well apart, called detached binaries, and systems in which the two stars are so close together that mass is flowing from
one star to the other, called interacting binaries (see figure 5).

A subset of the known ultra-compact binaries have been recognised as instrument verification sources, as they should
be detected in a few weeks to months and thus can be used to verify the performance of the instrument (Stroeer and
Vecchio, 2006). The most promising verification binaries, shown as green squares in figure 6, are the shortest-period in-
teracting binaries HM Cnc (RX J0806.3+1527), V407 Vul, ES Cet and the recently discovered 12 minute period detached
system SDSS J0651+28 (Brown et al., 2011), whose lightcurve is shown in figure 8. For a decade it has remained unclear
if the measured periods of HM Cnc and V407 Vul were actually orbital periods, but recent results from the Keck telescope
on HM Cnc (Roelofs et al., 2010) show conclusively that this system has an orbital period of 5.4 minutes. As V407 Vul
has almost identical properties, this implies that this also really is a binary with an orbital period of 9.5 minutes. As the
signal from the verification binaries is essentially monochromatic with a well known frequency within the eLISA mission
time, astrophysical effects such as those discussed in section 4 will not hamper their detection. As more and more wide
field and synoptical surveys are completed, the number of ultra-compact binaries is gradually increasing and is expected
to continue to do so in the future. Already several new binaries have been found in the SDSS and the PTF (Levitan et al.,
2011, Rau et al., 2010) while surveys such as Pan-Starrs, the EGAPS and in the future LSST will also find new systems.
However, most of the systems found so far have relatively long orbital periods (longer than about 30 minutes). Two pilot
surveys in principle capable of finding ultra-compact binaries with periods less than 30 minutes are underway or will start
soon: the RATS (Barclay et al., 2011) and the OmegaWhite survey.

Interacting ultra-compact binaries with neutron star accretors are strong X-ray sources and new discoveries are ex-
pected, both through the continued monitoring of the sky to search for X-ray transients with RXTE, MAXI and other
satellites, as well as through dedicated X-ray and optical surveys of the Galactic bulge that are currently happening
(Jonker et al., 2011). With these developments we expect that several tens of verification sources should be available for
eLISA, allowing detailed tests of the performance of the instrument.

3 eLISA as a workhorse: thousands of new binaries

Ultra-compact binaries will completely dominate the number of source detections by eLISA. Current estimates suggest
the numbers of resolved compact binaries that will be detected by eLISA to be in the thousands (Webbink, 2010). We
provide a visual impression in figure 6 by showing the 100 (red dots) and 1000 (black dots) strongest binaries from a
MonteCarlo realization of the galaxy compact white dwarf binary population. The shortest period systems will be the
most numerous, the majority having periods between 5 and 10 minutes. eLISA will revolutionise our knowledge of such
a population, especially given that only two of the known fifty sources have periods less than ten minutes. As these
systems are relatively short lived and faint, there is no hope to detect them in significant numbers by any other means
than via gravitational radiation, as there are only several thousand expected to exist in the whole Galaxy. Their detection
will allow us to test different models for the common-envelope phase, a significant uncertainty in our understanding of
binary evolution and many high-energy phenomena. The internal statistical accuracy delivered by the sheer number of
detected sources will ensure that the common-envelope phase will be put to the most critical test expected in the midterm
future. The same population can be used to constrain models for type Ia supernovae and peculiar supernovae, as well as
the formation of ultra-compact binaries in globular clusters.

The outcome of the common envelope phase

Only a minority of the stars in the Universe are single, leaving the majority to be part of a binary, a triple or a higher-
order system. On the order of half of the binaries formed with sufficiently small orbital separation, so that the stars will
interact during the evolution of the components into giants or super giants. Especially for low-mass stars, the majority of
interactions are unstable and will lead to runaway mass transfer. Based on the observed short orbital periods of binaries that
have passed this stage it is argued that somehow the companion of the giant ends up inside the giant’s outer layers. During
that common envelope phase, (dynamical) friction reduces the velocity of the companion, leading to orbital shrinkage
and transfer of angular momentum from the orbit into the envelope of the giant. Along with angular momentum, orbital
energy is deposited in the envelope, whose matter is then unbound from the giant’s core, leading to a very compact binary
consisting of the core of the giant and the original companion (Paczynski, 1976).
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is two years. Based on Brown et al. (2011), Roelofs et al. (2006, 2010) for the known binaries and Nelemans et al. (2004)
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Virtually all compact binaries and most of the systems giving rise to high-energy phenomena (such as X-ray binaries,
relativistic binary pulsars and possibly gamma-ray bursts) have experienced at least one common-envelope phase. Given
the importance of this phase in high-energy astrophysics, our understanding of the physics and our ability to predict
the outcome of the common-envelope phase are poor. Theoretical progress to understand the phase from first physical
principles is slow (e.g. Taam and Ricker, 2010, Taam and Sandquist, 2000) and the standard formalism described above has
been challenged by observational tests (De Marco et al., 2011, Nelemans and Tout, 2005). Comparison of the parameters
of the thousands of binaries detected by eLISA with model predictions will provide a direct test of the different proposed
outcomes of the common-envelope phase and our understanding of the preceding binary evolution in general.

3.1 Type Ia supernovae and sub-luminous supernovae

Type Ia supernovae have been the heralds of a new paradigm in Cosmology: cosmic acceleration (Perlmutter and Riess,
1999, Riess et al., 1998) for which the 2011 Nobel Prize in Physics was awarded. However, there are different scenarios
proposed for the progenitors of SN Ia. One is the merger of two (carbon-oxygen) white dwarfs that are brought together via
gravitational wave radiation (Pakmor et al., 2010) which is exactly the population eLISA will be probing. By determining
the number of systems in the Galaxy and their period distribution, the rate at which they will merge will be measured. By
comparing that to the inferred SNIa rate for an Sbc galaxy, the viability of this progenitor scenario will be determined. The
significant efforts in the past decade to find more supernovae and the advent of wide field optical surveys have revealed a
host of new types of supernovae (Kasliwal et al., 2010, Perets et al., 2011, 2010, Sullivan et al., 2011). Some of these have
been suggested to originate in the interaction between two white dwarfs at very short periods, again exactly the population
to which eLISA is sensitive (Perets et al., 2010, Waldman et al., 2011).

Formation of ultra-compact binaries in globular clusters

Globular clusters have a strong overabundance of bright X-ray sources per unit mass compared to the field, probably
due to dynamical interactions. Many of these have turned out to be so-called ultra-compact X-ray binaries, in which a
neutron star accreted material from a white dwarf companion is a very compact orbit, exactly the type of sources that
eLISA may see. However, it is not clear if the same enhancement will operate for the much more numerous white dwarf
binaries. The angular resolution that can be achieved with eLISA is such that globular clusters can be resolved, so that
the cluster sources can be distinguished from the Galactic disc sources. This enables eLISA to determine the number of
ultra-compact binaries in globular clusters and thus to provide a direct test of the overabundance of white dwarfs binaries
in globular clusters. That in turn can be used to test models for dynamical interactions in clusters.

The foreground of Galactic gravitational waves

At frequencies below a few mHz the number of sources in the Galaxy is so large (6 × 107 to 8 × 107, see e.g. Ruiter et al.,
2010, Yu and Jeffery, 2010) that only a small percentage, the brightest sources, will be individually detected. The vast
majority will form an unresolved foreground signal in the detector, which is quite different from and much stronger than
any diffuse extragalactic background (Farmer and Phinney, 2003).

This foreground is often described as an additional noise component, which is misleading for two reasons. The first
is that there is a lot of astrophysical information in the foreground. The overall level of the foreground is a measure
of the total number of ultra-compact binaries, which gives valuable information given the current uncertainty levels in
the normalisation of the population models. The spectral shape of the foreground also contains information about the
homogeneity of the sample, as simple models of a steady state with one type of binary predict a very distinct shape. In
addition, the geometrical distribution of the sources can be detected by eLISA.

Due to the concentration of sources in the Galactic centre and the inhomogeneity of the eLISA antenna pattern, the
foreground is strongly modulated over the course of a year (see figure 7), with time periods in which the foreground is
more than a factor two lower than during other periods (Edlund et al., 2005). The characteristics of the modulation can
be used to learn about the distribution of the sources in the Galaxy, as the different Galactic components (thin disk, thick
disk, halo) contribute differently to the modulation and their respective amplitude can be used, for example, to set upper
limits on the halo population (e.g. Ruiter et al., 2009).
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Figure 7: Level of the Galactic gravitational wave signal as a function of time. Black is the total signal, the red after
removal of the resolved binaries. The yearly variation of the Galactic foreground is clearly seen. Based on the Ruiter et al.
(2009) Galactic model.

4 Studying the astrophysics of compact binaries using eLISA

Although the effect of gravitational radiation on the orbit will dominate the evolution of the binaries detected by eLISA,
additional physical processes will cause strong deviations from the simple point-mass approximation. The two most
important interactions that occur are tides – when at least one of the stars in a binary system is not in co-rotation with
the orbital motion or when the orbit is eccentric – and mass transfer. Because many binaries will be easily detected,
these interactions do not hamper their discovery, but instead will allow tests of the physics underlying these deviations.
By providing a completely complementary approach, gravitational wave measurements are optimal to the study of short
period systems, in contrast to the current bias towards bright electromagnetic systems and events.

Physics of tidal interaction

eLISA measurements of individual short-period binaries will give a wealth of information on the physics of tides and the
stability of the mass transfer. For detached systems with little or no interaction, the frequency evolution is well understood
as that of two point masses. The strain amplitude h, the frequency f and its derivatives then are connected by

h ∝ M5/3 f 2/3D−1 , (6)

ḟ ∝ M5/3 f 11/3 , (7)

f̈ =
11
3

ḟ

f
, (8)

where M = (m1m2)3/5 / (m1 + m2)1/5 is the chirp mass, m1,m2 are the masses of the binary constituents and D is the
distance. Thus the measurement of h, f , ḟ provides chirp mass and distance; the additional measurement of f̈ gives a
direct test of the dominance of gravitational wave radiation in the frequency evolution. Tidal interaction between white
dwarfs in detached systems before the onset of mass transfer will give rise to distinct deviations of the frequency evolution
as compared to systems with no or little tidal interaction. The strength of the tidal interaction is virtually unknown, with
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(2011)

estimates ranging over many orders of magnitude (Marsh et al., 2004), although the high temperature of the white dwarf
in the recently discovered 12 min double white dwarf may suggest efficient tidal heating (Piro, 2011). Knowledge of the
strength of the tides is not only important for understanding the physics of tides in general and of white dwarf interiors,
it also has important consequences for the tidal heating (and possibly optical observability) of eLISA sources and for the
stability of mass transfer between white dwarfs (Fuller and Lai, 2011, Marsh, 2011, Racine et al., 2007, Willems et al.,
2010).

In globular clusters, dynamical interactions may produce eccentric double white dwarf systems, which can be used to
constrain white dwarf properties and masses (Valsecchi et al., 2011).

Physics of mass-transfer stability

Detached ultra-compact binaries will evolve to shorter and shorter periods due to the angular momentum loss through
gravitational wave radiation. At sufficiently short orbital periods (a few minutes) one of the stars becomes larger than its
Roche lobe – the equipotential surface that crosses the minimum of the potential between the two stars – and material
leaks out of the potential well of one star upon the other star. Depending on the difference between the change of the
radius of this star and the Roche lobe upon mass transfer, there may be positive or negative feedback, leading to either
limited, stable mass transfer, or a runaway mass-transfer instability.

For double white dwarfs and white dwarf-neutron star binaries the stability of the ensuing mass transfer has important
consequences, for the number of detectable sources, as well as for a number of open astrophysical questions. The stable
systems will form interacting binaries, AM CVn systems or ultra-compact X-ray binaries, that can be detected through
their gravitational wave emissions. eLISA will detect a number of detached double white dwarfs and AM CVn systems
that are so close to the onset of mass transfer that the stability of the mass transfer can be tested directly by comparing their
numbers. In addition, eLISA will detect several ultra-compact X-ray binaries at the very early stages of mass transfer,
providing a test of the mass transfer stability in these systems as well (Marsh, 2011).

For AM CVn systems, a major uncertainty in the mass-transfer stability is again the tidal interaction between the two
white dwarfs. Most likely the mass transfer will proceed via the direct impact configuration: due to the proximity of the
two stars, the mass transfer stream lands directly on the surface of the accreting white dwarf, rather than wrapping around
the accreting stars and interacting with itself to form a flat accretion disk in the plane of the orbit (Marsh and Steeghs,
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2002, Webbink, 1984). The stability of the mass transfer depends critically on the tidal interaction between the two white
dwarfs (Marsh et al., 2004): In the absence of any tidal interaction, there will be additional angular momentum loss from
the orbit due to the transfer of angular momentum from the orbit to the accreting star which will consequently spin up.
This is different from cases where the accretion is via a disc for which most of the angular momentum generally is stored
in the disc and eventually via very efficient tidal interaction put back into the orbit. Efficient tidal coupling between the
accreting star and the companion has the ability to return the angular momentum back to the orbit (see D’Souza et al.,
2006, Racine et al., 2007), thus reducing the magnitude of the spin-up. The difference between efficient and inefficient
tidal coupling is rather dramatic: the fraction of double white dwarfs estimated to survive the onset of mass transfer can
drop from about 20 % to 0.2 % (Nelemans et al., 2001) depending on assumptions about the tidal coupling. This difference
is easily measurable with eLISA. Short-term variations in the secular evolution of the systems experiencing mass transfer
will change the frequency evolution, but are likely to be rare and will not prevent the detection of these systems (Stroeer
and Nelemans, 2009).

For ultra-compact X-ray binaries (see e.g. figure 9), the stability issue is completely different. At the onset, the mass
transfer is orders of magnitude above the Eddington limit for a neutron star (the mass transfer rate at which the potential
energy liberated in the accretion can couple to the infalling gas to blow it away). For normal stars and white dwarfs, this
would likely lead to a complete merger of the system, but the enormous amount of energy liberated when matter is falling
into the very deep potential well of a neutron star allows matter to be dumped on it at rates up to a thousand times the
Eddington limit if the white dwarf has a low mass (see Yungelson et al., 2002). This allows the formation of ultra-compact
X-ray binaries from white dwarf-neutron star pairs. eLISA will unambiguously test this prediction by detecting several
tens of ultra-compact X-ray binaries with periods between 5 and 20 minutes.

Double white dwarf mergers

The 80% to 99.8% of the double white dwarfs that experience run-away mass transfer and merger give rise to quite
spectacular phenomena. Mergers of double white dwarfs have been proposed as progenitors of single subdwarf O and
B stars, R Corona Borealis stars and maybe all massive white dwarfs (e.g. Webbink, 1984). In addition, the merger
of a sufficiently massive double white dwarf can be a trigger for type Ia supernova events (see Pakmor et al., 2010).
Alternatively, if the merger does not lead to an explosion, a (rapidly spinning) neutron star will be formed. This is one
possible way to form isolated millisecond radio pulsars as well as magnetars, which have been proposed as sites for short
gamma-ray bursts (e.g. Levan et al., 2006).

Although it is not expected that eLISA will witness the actual merger of a double white dwarf as the event rate in our
Galaxy is too low, it will certainly detect the shortest-period binaries known, expected at a period of about two minutes,
and give an extremely good estimate of their merger rate. In addition, if the actual merger takes many orbits as recently
found in simulations (Dan et al., 2011), eLISA may observe them directly.

By measuring (chirp) masses and coalescence times, eLISA will directly determine the merger rate for double white
dwarfs with different masses, which can then be compared with the rates and population of their possible descendants
determined by other means (Stroeer et al., 2011).

Neutron star and black hole binaries

The current observational and theoretical estimates of the formation rate of neutron star binaries are highly uncertain and
predict several tens of neutron star binaries to be detected by eLISA (e.g. Belczynski et al., 2010, Nelemans et al., 2001).
The number of ultra-compact stellar-mass black hole binaries in the Galaxy is even more uncertain (e.g. Belczynski et al.,
2002); furthermore, these binaries are likely to be detectable only through their gravitational wave emission as they are
electromagnetically quiet.

eLISA will thus constrain the formation rate estimates and the numbers of neutron star binaries and ultra-compact
stellar mass black hole binaries. As these systems can be seen throughout the Galaxy, the samples for all these populations
will be complete at the shortest periods. Thus the sample will be independent of selection effects, such as those present
in radio pulsar surveys and X-ray surveys, that pick up only transient X-ray sources. In addition, by the time eLISA will
fly, Advanced LIGO and Virgo will likely have detected a number of double neutron star mergers from far away galaxies,
so these measurements together will test our ability to extrapolate our population models from our own galaxy to the rest
of the Universe.
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Figure 9: Imprint of the 40 min orbital period on the arrival times of the X-ray pulsations in the ultra-compact X-ray
binary XTE J0929-314. From Galloway et al. (2002).
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A special situation might arise for the case of millisecond X-ray pulsars, in ultra-compact X-ray binaries. In the
last decade, observations of X-ray pulsations from many ultra-compact X-ray binaries have enabled astrophysicists to
determine the rotation rate of the neutron star in the binary using the NASA mission RXTE (Wijnands, 2010). As had
been expected on theoretical grounds, neutron stars are spinning rapidly (several hundred times per second) due to the
angular momentum gained from infalling matter. The measurements give credence to the idea that these rapidly spinning
neutron stars observed as millisecond radio pulsars are descendants of accreting neutron stars in binary systems (e.g.
Bhattacharya and van den Heuvel, 1991). However, the exact role of ultra-compact binaries in the formation of these
pulsars has yet to be established. The distribution of spin periods discovered in X-ray binaries suggests additional neutron
star angular momentum loss on top of the plasma physics interaction between the accretion and magnetic field of the
spinning neutron stars (Chakrabarty et al., 2003) which could be due to strong gravitational wave emission (Bildsten
(1998); but see Watts et al. (2008) and Patruno et al. (2011)). In that case, ultra-compact X-ray binaries might be the only
sources that could be studied simultaneously with eLISA and ground based detectors, with eLISA detecting the orbital
period and the ground based detector detecting the neutron star spin period.

5 Studies of galactic structure with eLISA

One of the major capabilities of eLISA is that it will determine distances for hundreds of compact binaries by measuring
their ḟ (see equation 7). The ability of eLISA to determine distances depends on the mission lifetime, as larger life times
lead to more accurate ḟ measurements. The directional dependence of the Galactic foreground as well as the directional
accuracy for the resolved systems allow a statistical assessment of the contributions of the different Galactic components,
such as the Galactic bulge (with its bar), the thin and thick disc and the Galactic halo (for a realistic MW model, see in
figure 10).

The Galactic center is one of the most interesting areas of the Galaxy, with a central massive black hole surrounded by
a dense assembly of stars with intriguing properties. Dynamical effects, in particular mass segregation, will lead to many
interactions close to the central black hole so that wide binaries will become tighter or will be disrupted (for a review see
Alexander, 2005). This likely leads to an increase in the number of ultra-compact binaries as well as the possibility of
EMRIs (see 2). eLISA will put much more stringent constraints on these populations than current observations (see e.g.
Roelofs et al., 2007), which are limited by the electromagnetic faintness of the sources, or theoretical predictions, which
are limited by our current understanding of the processes leading to compact binary formation. Distance determinations
to the many ultra-compact binaries around the Galactic centre will allow for an independent distance determination.

The level and shape of the double white dwarf foreground as well as the distribution of resolved sources will provide
information on the scale height of the ultra-compact binary population (Benacquista and Holley-Bockelmann, 2006) in
the disc of the Galaxy.

The distribution of sources in the Galactic halo will be significantly different from the other Galactic components. In
principle the halo population is expected to be much smaller than the rest of the Galaxy (Ruiter et al., 2009, Yu and Jeffery,
2010), but it might be enhanced as the formation and evolution of binaries in the halo may have been quite different. Such
old and metal-poor population can be studied locally only in globular clusters, where the formation and evolution of
binaries is generally completely altered by dynamical effects. Two of the known AMCVn systems may belong to the halo.
They have very low metal abundances and have anomalous velocities. If true this implies that a large number of AMCVn
stars are in the halo, maybe as many as in the rest of the Galaxy.

The eLISA directional sensitivity will immediately pick up any strong halo population if it exists.

Finally, for many of the resolved sources the eLISA measurements will also provide an accurate estimate of their
orbital inclination. For the first time, this will give hints on the dynamics of the formation of binaries from interstellar
clouds, because the angular momentum vectors of the binaries is related (in a statistical way) to the overall angular
momentum of the Galaxy.
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Figure 10: Spitzer GLIMPSE model of the Milky Way, showing bulge, bar and spiral arms. The resolved binaries are
expected to trace the old stellar populations of the Milky Way. Courtesy NASA/JPL-Caltech/R. Hurt (SSC/Caltech)
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4 Astrophysical Black Holes

1 Overview

Astrophysical black holes appear to come in nature into two flavours: the “stellar mass” black holes of 3 M� to approx-
imately 100 M� resulting from the core collapse of very massive stars, and the “supermassive” black holes of 106 M� –
109 M� that, according to the accretion paradigm, power the luminous QSO. The former light up the X-ray sky, albeit
only in our neighbourhood, as stellar mass black holes fade below detection limits outside our local group. The latter
are detected as active nuclei, over the whole cosmic time accessible to our current telescopes. Electromagnetic evidence
of black holes in the mass range 102 M�– 106 M� is less common, due to the intrinsic difficulty of detecting such faint
sources in external galaxies. However, it is in this mass interval, elusive to electromagnetic observations, that the history
of supermassive black hole growth is imprinted.

Supermassive black holes inhabit bright galaxies, and are ubiquitous in our low-redshift Universe. The discovery of
close correlations between the mass of the supermassive black hole with key properties of the host has led to the notion that
black holes form and evolve in symbiosis with their galaxy host. In agreement with the current paradigm of hierarchical
formation of galactic structures and with limits imposed by the cosmic X-ray background light, astrophysical black holes
are believed to emerge from a population of seed black holes with masses in the range 100 M� – 105 M�, customarily
called intermediate mass black holes. The mass and spin of these black holes change sizably in these interactions as
they evolve over cosmic time through intermittent phases of copious accretion and merging with other black holes in
galactic halos. In a galactic merger, the black holes that inhabit the two colliding galaxies spiral in under the action
of dynamical friction, and pair on sub-galactic scales forming a Keplerian binary: binary black holes thus appear as the
inescapable outcome of galaxy assembly. When two massive black holes coalesce, they become one of the loudest sources
of gravitational waves in the Universe.

eLISA is expected to target coalescing binaries of 105 M� – 107 M� during the epoch of widespread cosmic star
formation and up to z ∼ 20, and to capture the signal of a coalescing binary of 104 M� – 105 M� beyond the era of
the earliest known QSO (z ∼ 7). Gravitational waveforms carry information on the spins of the black holes that eLISA
will measure with exquisite precision, providing a diagnostic of the mechanism of black hole growth. The detection of
coalescing black holes not only will shed light into the phases of black hole growth and QSO evolution, but will pierce
deep into the hierarchical process of galaxy formation.

2 Black holes in the realm of the observations

Dormant and active supermassive black holes

QSOs are active nuclei so luminous that they often outshine their galaxy host. They are sources of electromagnetic energy,
with radiation emitted across the spectrum, almost equally, from X-rays to the far-infrared, and in a fraction of cases, from
γ−rays to radio waves. Their variability on short timescales revealed that the emitting region is compact, only a few light
hours across.

There is now scientific consensus that the electromagnetic power from QSO and from the less luminous AGN results
from accretion onto a supermassive black hole of 106 M� – 109 M� (Krolik, 1999, Salpeter, 1964, Zel’dovich and Novikov,
1964). Escaping energy in the form of radiation, high velocity plasma outflows, and ultra relativistic jets can be generated
with high efficiency (ε ∼ 10 %, higher than nuclear reactions) just outside the event horizon, through viscous stresses on
parcels of gas orbiting in the gravitational potential of the black hole. The accretion paradigm has thus been, and still is,
at the heart of the hypothesis of black holes as being “real” sources in our cosmic landscape. eLISA will offer the new
perspective of revealing these black holes as powerful sources of gravitational waves, probing the smallest volumes of the
large scale Universe.

Massive black holes are tiny objects compared to their host galaxies. The event horizon of a Kerr black hole of mass
M• scales as Rhorizon ∼ GM•/c

2, and it is far smaller than the optical radius of the galaxy host: Rhorizon ∼ 10−11 Rgal. The
distance out to which a black affects the kinematic of stars and gas (the gravitational influence radius), Rgrav ∼ GM•/σ

2,
is also small compared to the optical radius of the host, Rgrav ∼ 10−4 Rgal (where σ is the velocity dispersion of the stars
of the galactic bulge).

For a long time, QSO and more generally the less luminous AGN phenomena were understood as caused by a process
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Figure 11: The correlation between the black hole mass M• and the luminosity of the host galaxy’s stellar bulge (left),
and host galaxy’s bulge velocity dispersion σ (right) for all detections in galaxies near enough for current instruments to
resolve the region in which the black hole mass dominates the dynamics (adapted from Gültekin et al., 2009)

exclusively confined to the nuclear region of the host. This picture of disjoint black hole and galaxy evolution changed
with the advent of the HST (Ferrarese and Ford, 2005).

Observations of almost all bright galaxy spheroids in the near universe reveal that the velocities of stars and gas start
to rise in a Keplerian fashion at their centres, highlighting the presence of a dark point-mass which dominates the central
gravitational potential. The same observations provide the mass of this dark object, hypothesised to be a quiescent black
hole. The proximity of these galaxies to Earth allowed for a full optical characterisation of the host, and this ultimately led
to the discovery of tight correlations – depicted in figure 11, from Gültekin et al. (2009) – between the black hole mass M•
and the optical luminosity and velocity dispersion σ of the stars measured far from the black hole (Ferrarese and Merritt,
2000, Gebhardt et al., 2000, Graham et al., 2011, Gültekin et al., 2009, Tremaine et al., 2002). The relations state that
galaxy spheroids with higher stellar velocity dispersions, i.e. with deeper gravitational potential wells and higher stellar
masses and luminosities, host heavier central black holes with little dispersion in the correlation. Thus more massive
galaxies grow more massive black holes: the black hole sees the galaxy that it inhabits, and the galaxy sees the black hole
at its centre despite its small influence radius (Häring and Rix, 2004, Magorrian et al., 1998, Marconi and Hunt, 2003).

Consensus is rising that the M•−σ relation of figure 11 is fossil evidence of a co-evolution of black holes and galaxies.
The relation may have been established along the course of galactic mergers and in episodes of self-regulated accretion
(Croton et al., 2006, Di Matteo et al., 2005, Hopkins et al., 2006, 2008, 2009, Johansson et al., 2009, Lamastra et al., 2010,
Mihos and Hernquist, 1996, Somerville et al., 2008). However, the origin of the M• −σ relation (Ciotti et al., 2010, King,
2003, Silk and Rees, 1998, Wyithe and Loeb, 2003), and its evolution at look-back times is still unclear (Peng, 2007,
Robertson et al., 2006, Treu et al., 2007, Woo et al., 2008). The similarity between the evolution, over cosmic time, of
the luminosity density of QSOs and the global star formation rate (Boyle and Terlevich, 1998, Kauffmann and Haehnelt,
2000) points to the presence of a symbiotic growth, which is still under study (Schawinski et al., 2010, 2011).

The census of black holes, from the study of the kinematics of stars and gas in nearby galaxies, has further led to the
estimate of the black hole local mass density: ρ• ∼ 2 × 105 M� Mpc−3 − 5 × 105 M� Mpc−3 (Aller and Richstone, 2002,
Lauer et al., 2007, Marconi et al., 2004, Tundo et al., 2007). Whether this mass density traces the initial conditions, i.e.
the mass since birth, obtained at most by rearranging individual masses via coalescences, or the mass acquired via major
episodes of accretion in active AGN phases can only be inferred using additional information: that resulting from the
AGN demographics and from studies of the X-ray cosmic background.
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Two arguments provide information about how much of the black hole growth occurred through accretion of gas,
in phases when the black hole is active as AGN. The first is the existence of a limiting luminosity for an accreting
black hole, corresponding to when the radiation pressure force equals gravity. Above this limit material that would be
responsible for the emission can not fall onto the black hole, as it is pushed away. This limit is the Eddington luminosity
LE = 4πGM•mpc/σT ∼ 1046 erg s−1(M•/(108 M�) (σT and mp are the Thomson cross section and proton mass). The AGN
luminosity L is normally a fraction fE � 1 of the Eddington luminosity, since as soon as L approaches LE the radiation
pressure force against gravity self-regulates the accretion flow to L ∼ LE, providing also a lower bound on M. The second
argument is that “light is mass”, i.e. that any light output from accretion (at a luminosity level L = εṀc2) increases the
black hole’s mass at a rate dM•/dt = (1 − ε)Ṁ, where Ṁ is the rest-mass accreted per unit time and ε the accretion
efficiency, i.e. how much of the accreted mass is converted into radiation. Accordingly, the black hole’s mass increases
exponentially in relation to the self-regulated flow, with an e-folding time τBH ≈ 4.7 × 108 ε[ fE(1 − ε)]−1yr. For ε ≈ 0.1
– typical of radiatively efficient accretion onto a non-rapidly rotating black hole (Shapiro and Teukolsky, 1979) – and
fE ≈ 0.1, this timescale is short (about 3 %) compared to the age of the Universe, indicating that black holes can enhance
their mass via accretion by orders of magnitude.

Active black holes in galaxies are known to contribute to the rise of a cosmic X-ray background resulting mostly
from unresolved and obscured AGN of mass 108 M� – 109 M�, in the redshift interval 0.5 < z < 3 (Merloni, 2004). As
energy from accretion is equivalent to mass, the X-ray light present in the background mirrors the increment experienced
by the black holes over cosmic history due to accretion. This mass-density increment is found to be Δρ• ≈ 3.5 ×
105 (ε/0.1)−1 M� Mpc−3 (Marconi et al., 2004, Soltan, 1982, Yu and Tremaine, 2002).

As the contribution to the local (zero redshift) black hole mass density ρ• results from black holes of comparable mass
108 M� – 109 M�, the close match between the two independent measures, ρ• and Δρ•, indicates that radiatively efficient
accretion (ε ≈ 0.1) played a large part in the building of supermassive black holes in galaxies, from redshift z ∼ 3 to
now. It further indicates that information residing in the initial mass distribution of the, albeit unknown, black hole seed
population is erased during events of copious accretion, along the course of cosmic evolution.

Massive black holes in the cosmological framework

These key findings hint in favour of the existence, at any redshift, of an underlying population of black holes of a smaller
variety, with masses of 104 M� – 107 M�, that grew in mass along cosmic history inside their galaxies, through episodes
of merging and accretion. The evolution of black holes mimics closely that of their host galaxies within the currently
favoured cosmological paradigm: a Universe dominated by cold dark matter (CDM).

Observations show that the mass content of the Universe is dominated by CDM, with baryons contributing only at a
10 % level to the CDM, and that the spectrum of primordial density perturbations contains more power at lower masses
(Mo et al., 2010). Thus, at the earliest epoch, the Universe was dominated by small density perturbations. Regions with
higher density grow in time, to the point where they decouple from the Hubble flow and collapse and virialise, forming
self gravitating halos. The first objects that collapse under their own self-gravity are small halos that grow bigger through
mergers with other halos and accretion of surrounding matter. This is a bottom up path, and the process is known as
hierarchical clustering. As halos cluster and merge to build larger ones, baryons follow the CDM halo potential well and,
similarly, black holes form and evolve in the same bottom-up fashion (Haehnelt et al., 1998, Haiman and Loeb, 1998,
Volonteri et al., 2003, White and Rees, 1978, Wyithe and Loeb, 2002).

State-of-the-art hydrodynamical cosmological simulations (Di Matteo et al., 2008) illustrate (figure 12) where and
when the massive black holes form and how they are connected with the evolving background baryonic density field.
As illustrated in figure 12 and as inferred in statistical models based on the extended Press-Schechter (EPS) formalism,
most of the black holes transit into the mass interval for which eLISA is sensitive during their cosmic evolution (Volonteri
et al., 2003). Figure 13 sketches and simplifies conceptually the complex net terminating with the formation of a bright
galaxy at zero redshift, highlighting the sites where black holes form, cluster within halos, pair with other black holes,
and eventually coalesce.

Black holes in the sensitivity window of eLISA

Is there any observational evidence of black holes of this variety in the Universe that may be observed by eLISA? The
Milky Way hosts in its bulge a black hole of (4±0.06±0.35)×106 M� (Ghez et al., 2005, Gillessen et al., 2009), providing
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Figure 12: A state-of-art hydrodynamical simulation by Di Matteo et al. (2008) visualising the cosmic evolution of the
baryonic density field and of their embedded black holes, in the ΛCDM cosmology. Each panel shows the same region of
space (33.75 h−1 Mpc on a side) at different redshift, as labelled. The circles mark the positions of the black holes, with
a size that encodes the mass, as indicated in the top left panel (numerical force resolution limits the lowest black hole
mass to 105 M�). The projected baryonic density field is colour-coded with brightness proportional to the logarithm of
the gas surface density. The images show that the black holes emerge in halos starting at high redshift (as early as z ∼ 10)
and later grow by accretion driven by gas inflows that accompany the hierarchical build-up of ever larger halos through
merging. As the simulation evolves the number of black holes rapidly increases and larger halos host increasingly larger
black holes. No black holes as massive as 109 M� are present in the simulated box because they are extremely rare.
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Figure 13: A cartoon of the merger-tree history for the assembly of a galaxy and its central black holes. Time increases
along the arrow. Here the final galaxy is assembled through the merger of twenty smaller galaxies housing three seed
black holes, and four coalescences of binary black holes.
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an example of a black hole that does not fall into the population that can be traced by luminous QSO. Black holes in the
mass range 105 M� – 107 M� are now increasingly found in low mass spiral galaxies and dwarfs with and without a bulge
(Barth et al., 2004, Greene and Ho, 2004, Greene et al., 2008, Jiang et al., 2011a,b, Kuo et al., 2011, Xiao et al., 2011) and
evidence exists that some of these low mass black holes of M < 105 M� cohabit nuclear star clusters (Barth et al., 2009,
Bekki and Graham, 2010, Ferrarese et al., 2006, Graham and Spitler, 2009, Seth et al., 2008, Wehner and Harris, 2006).

Dwarf galaxies in the galactic field are believed to undergo a quieter merger and accretion history than their brighter
analogues. They may represent the closest example of low mass halos from which galaxy assembly took off. Late type
dwarfs are thus the preferred site for the search of pristine black holes (Volonteri and Natarajan, 2009). NGC 4359, a
close-by bulgeless, disky dwarf houses in its centre a black hole of only 3.6 × 105 M� (Peterson et al., 2005). This key
discovery shows that nature provides a channel to black hole formation also in potential wells much shallower than that
of the massive spheroids.

These middleweight mass black holes are numerous at high redshifts (Di Matteo et al., 2008), but are invisible with
today instrumentation, given their low intrinsic luminosity and far-out distance. Furthermore, they become invisible to
electromagnetic observations near z � 11 as close to this redshift the intergalactic medium becomes opaque to their light,
due to intervening absorption of the neutral hydrogen (Fan et al., 2006a, Miralda-Escude, 1998). ULAS J1120+0641
holds the record of being the further distant known QSO, at redshift z = 7.085 ± 0.003, and hosts a bright, very massive
black hole of ∼ 2 × 109 M� (Mortlock et al., 2011). Its light was emitted before the end of the reionisation, i.e. before
the theoretically predicted transition of the interstellar medium from an electrically neutral to an ionised state (Fan et al.,
2006a).

3 Galaxy mergers and black hole coalescence

A grand collision between two galaxies of comparable mass (called major merger) is not destructive event, but rather a
transformation, as the two galaxies, after merging, form a new galaxy with a new morphology. Individual stars do not
collide during the merger, as they are tiny compared to the distances between them. The two galaxies pass through each
other and complex, time-varying gravitational interactions redistribute the energy of each star in such a way that a new
bound galaxy forms. Gas clouds instead collide along the course of the merger: new stars form, and streams of gas flow
in the nuclear region of the newly forming galaxy. The massive black holes in the grand collision behave like stars. A key
question for the eLISA science case is: do black holes coalesce as their galaxies merge?

The fate of black holes in merging galaxies can only be traced using numerical simulations at the limits of current
numerical resolution. Not only isolated black holes are tiny, but also binary black holes are. They form a tight binary
system within a galaxy when the mass in stars enclosed in the binary orbit becomes negligible compared to the total mass
of the binary M, and their Keplerian velocity exceeds the velocity of the stars, σ. This occurs when their relative separation
aB decays below about GM/σ2, i.e. when aB � 10−4 −10−5 Rgal. Binary black holes on the verge of coalescing within less
than a Hubble time are even smaller, as they touch when their separation is of the size of the event horizon. The timescale
for coalescence by gravitational waves only is a sensitive function of the binary separation, scaling as a4 (Peters, 1964).
Therefore, gravitational waves guide the inspiral only when a is less than a critical value aGW ∼ 0.003 aB(M/106 M�)1/4

(using scaling relations) that is of 0.01 pc – 0.001 pc for a circular binary in the eLISA mass interval. Typical orbital
periods at aGW are of a few years to tens of years, and the hole’s relative velocities are as high as 3000 km/s – 5000 km/s.

Black holes have to travel a distance from 0.1 kpc – 10 kpc down to 0.01 pc – 0.001 pc, before entering the gravitational
wave inspiral regime, in a galaxy. Given the huge dynamical range, different physical mechanisms are guiding their
sinking (Colpi and Dotti, 2011). We can distinguish four phases for the dynamics of black holes on their way to and after
merging:

1. the pairing phase, when the black holes pair on galactic scales following the dynamics of the galaxies they inhabit
until they form a Keplerian binary (on pc scales);

2. the binary phase, when the Keplerian binary continues to harden at the centre of the galaxy remnant;

3. the gravitational wave phase, when black hole inspiral is dominated by loss of energy and angular momentum by
gravitational waves; and finally

4. the recoiling phase, when the now single black hole either oscillates or escapes the galaxy following gravitational
recoil.
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Figure 14: The different stages of the merger between two identical Milky-Way-like gas-rich disc galaxies (from Mayer
et al., 2007). The panels show the density maps of the gas component in logarithmic scale, with brighter colours for higher
densities. The four panels to the left show the large-scale evolution at different times. The boxes are 120 kpc on a side
(top) and 60 kpc on a side (bottom). During the interaction tidal forces tear the galactic disks apart, generating spectacular
tidal tails and plumes. The panels to the right show a zoom in of the very last stage of the merger, about 100 million
years before the two cores have fully coalesced (upper panel), and 2 million years after the merger (middle panel), when a
massive, rotating nuclear gaseous disc embedded in a series of large-scale ring-like structures has formed. The boxes are
now 8 kpc on a side. The two bottom panels, with a grey colour scale, show the detail of the inner 160 pc of the middle
panel; a massive nuclear disc, shown edge-on (left) and face-on (right), forms in the aftermath of the merger (of 109 M�).
The two black holes continue to sink inside the disc and form a Keplerian binary; they are shown in the face-on image.
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In major merger of galaxies the black holes pair under the action of dynamical friction against the dark matter back-
ground, that brakes the disc/bulge which they inhabit (Begelman et al., 1980, Chandrasekhar, 1943, Colpi et al., 1999,
Ostriker, 1999). Pairing occurs on the typical timescale of a galactic merger of a few billion years. A few million years
after the new galaxy has formed, a Keplerian binary forms on the scale of 1 pc – 10 pc, under the action of dynamical fric-
tion by stars and gas (Mayer et al., 2007). Figure 14 shows the evolution of the two gas-discs in merging galaxies similar
to the Milky Way. The galaxies host a central black hole, and the black holes end forming a Keplerian binary embedded
in a massive nuclear disc (Mayer et al., 2007). The subsequent hardening of the binary orbit (phase II) is controlled by the
inflow of stars from larger radii, and by the gas rotating in a circum-binary disc (Callegari et al., 2009, Colpi and Dotti,
2011, Dotti et al., 2006, 2007, 2009b, Escala et al., 2004, Merritt and Milosavljević, 2005). In gas rich environments,
and for black holes of mass smaller than about 107 M�, gas-dynamical torques on the binary suffice to drive the system
down to the gravitational wave inspiral domain (Armitage and Natarajan, 2005, Cuadra et al., 2009, Gould and Rix, 2000,
Hayasaki et al., 2008, Hayasaki and Okazaki, 2009, Ivanov et al., 1999, MacFadyen and Milosavljević, 2008) if the gas
does not fragment in stars (Lodato et al., 2009).

Stars are ubiquitous, and in stellar bulges the black holes lose orbital energy and angular momentum by ejecting stars
that scatter individually off the black holes (Berczik et al., 2005, Makino and Funato, 2004, Merritt, 2006, Merritt et al.,
2007, Merritt and Milosavljević, 2005, Merritt and Poon, 2004, Milosavljević and Merritt, 2001, Perets and Alexander,
2008, Quinlan, 1996, Sesana et al., 2006, 2007a, 2008a). These stars approach the binary from nearly radial orbit, and
shrink the binary down to the gravitational wave phase, if they are present in sufficient number to carry away the energy
for the binary to decay down to aGW. These stars, ejected with high velocities, are lost by the galaxy, and the timescale
of sinking of the binary depends on the rate at which new stars are supplied from far-out distances. Self-consistent
high resolution direct N-body simulations (Berczik et al., 2006, Khan et al., 2011, Preto et al., 2011) indicate that the
stellar potential of the remnant galaxy retains, in response to the anisotropy of the merger, a sufficiently high degree of
rotation and triaxiality to guarantee a large reservoir of stars on centrophilic orbits that can interact with the black holes
down to the transit from the binary phase to the gravitational wave phase. This seems to be a universal process. When
coalescence occurs, the merger remnant “recoils”because of the anisotropic emission of gravitational waves (Baker et al.,
2008), moving away from the gravitational centre of the galaxy. The kicked black hole, may return after a few oscillations
down to the nuclear regions of the host galaxy, or escape the galaxy depending on the magnitude of the kick (Blecha et al.,
2011, Blecha and Loeb, 2008, Gualandris and Merritt, 2008, Guedes et al., 2011).

4 Dual, binary and recoiling AGN in the cosmic landscape

Surprisingly, the closest example of an imminent merger is in our Local Group. Andromeda (M31) along with a
handful of lesser galaxies does not follow Hubble’s law of cosmic expansion: it is falling toward us at a speed of about
120 km/s. M31 is a member of a group of galaxies, including the Milky Way, that form a gravitationally bound system,
the Local Group. M31 and the Milky Way each house a massive black hole (van der Marel et al., 1994) and are on a
collision course, with a merger possibly before the Sun expands into a red giant (∼ 4 billion years) (Cox and Loeb, 2008).
Observations are now revealing the presence of many colliding galaxies in the Universe, and in a number of cases two
active black holes are visible through their X-ray or radio emission.

The existence of binary AGN, i.e. of two active black holes bound in a Keplerian fashion, is still debatable at the ob-
servational level, as they are rare objects (Volonteri et al., 2009). Two cases deserve attention. The first case is 0402+379,
a radio source in an elliptical galaxy showing two compact flat-spectrum radio nuclei, only 7 pc apart (Rodriguez et al.,
2006, 2009). The second case is OJ 287, a source displaying a periodic variability of 12 years (Valtonen et al., 2008,
2011, 2010, 2006) that has been interpreted as being a Keplerian binary with evidence of orbital decay by emission of
gravitational waves. A number of sub-parsec binary black hole candidates have been proposed (Eracleous et al., 2011,
Tsalmantza et al., 2011) based on the recognition that gas clouds orbiting one/two black hole(s) can leave an imprint in the
optical spectra of the AGN (Barrows et al., 2011, Bogdanović et al., 2008, Boroson and Lauer, 2009, Decarli et al., 2010,
Montuori et al., 2011, Shen and Loeb, 2010, Shields et al., 2009). Follow-up observations will be necessary to assess their
true nature.

Recoiling AGN, i.e. recoiling black holes observed in an active phase (Devecchi et al., 2009, Loeb, 2007, Merritt et al.,
2009b, O’Leary and Loeb, 2009), have been searched recently, and there has been a claim of a discovery (Komossa et al.,
2008), even though alternative interpretations are also viable (Bogdanović et al., 2009, Dotti et al., 2009a). Two spatially
off-set AGN have been found in deep surveys with kinematic properties that are consistent with being two recoiling black
holes (Civano et al., 2010, Jonker et al., 2010).
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Figure 15: Active black holes in colliding galaxies. Arp 299 (upper left panel) is the interacting system resulting from
the collision of two gas-rich spirals, and hosts a dual AGN, i.e. two black holes “active” during the pairing phase. The
accreting black holes are visible in the X-rays and are located at the optical centres of the two galaxies, at a separation of
4.6 kpc(Ballo et al., 2004). X-ray view of NGC6240 (lower left panel) an ultra luminous infrared galaxy considered to be
a merger in a well advanced phase (Komossa et al., 2003). X-ray observations with the Chandra Observatory let to the
discovery of two strong hard X-ray unresolved sources embedded in the diluted soft X-ray emission (red) of a starburst.
The dual AGN are at a separation of 700 pc. Composite X-ray (blue)/radio (pink) image of the galaxy cluster Abell 400
(upper right panel) showing radio jets immersed in a vast cloud of multimillion degree X-ray emitting gas that pervades
the cluster. The jets emanate from the vicinity of two supermassive black holes (a dual radio-loud AGN) housed in two
elliptical galaxies in the very early stage of merging. Composite optical and X-ray image of NGC 3393 (lower right
panel), a spiral galaxy with no evident signs of interaction. In its nucleus, two active black holes have been discovered
at a separation of only 150 pc (Fabbiano et al., 2011). The closeness of the black holes embedded in the bulge, provide a
hitherto missing observational point to the study of galaxy-black hole evolution: the phase when the black holes are close
to forming a Keplerian binary. The regular spiral morphology and predominantly old circum-nuclear stellar population of
this galaxy, indicates that a merger of a dwarf with a large spiral led to the formation of the binary (Callegari et al., 2011,
2009).
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The most remarkable, albeit indirect, evidence of coalescence events is found in bright elliptical galaxies that are
believed to be product of mergers. Bright elliptical galaxies show light deficits (cores) in their surface brightness profiles,
i.e. lack of stars in their nuclei (Kormendy and Bender, 2009), and this missing light correlates with the mass of the central
black hole (Merritt, 2006, Merritt et al., 2007). Thus, cores are evidence of binary black holes scouring out the nuclear
stars via three-body scattering (Merritt et al., 2007) or even via post-merger relaxation following a kick (Boylan-Kolchin
et al., 2004, Gualandris and Merritt, 2008, Guedes et al., 2009). Lastly, mergers change the black hole’s spin directions
due to conservation of angular momentum. Reorientation of the black hole spin following coalescence is now believed
to be at the heart of X-shaped radio galaxies, where an old jet coexists with a new jet of different orientation (Liu, 2004,
Merritt and Ekers, 2002). This would be again a sign of a fully accomplished coalescence event.

5 Seed black holes

Models of hierarchical structure formation predict that galaxy sized dark matter halos start to become common at redshift
z ∼ 10 − 20 (Mo et al., 2010). This is the beginning of the nonlinear phase of density fluctuations in the Universe, and
hence also the epoch of baryonic collapse leading to star and galaxy formation. Different populations of seed black holes
have been proposed in the range 100 M� – 106 M� (Volonteri, 2010).

Small mass seeds (100 M� – 1000 M�) may result from the core collapse of the first generation of massive stars
(Pop III) that form from unstable metal-free gas clouds, at z ∼ 20 and in halos of 106 M� (Abel et al., 2002, Bromm et al.,
2002, Haiman et al., 1996, Omukai and Palla, 2001, 2003, Ripamonti et al., 2002, Tegmark et al., 1997). Pop III stars as
massive as 260 M� or larger collapse into a black hole of similar mass after only about 2 Myr (Heger et al., 2003, Madau
and Rees, 2001). The formation of Pop III stars remains a poorly understood process (Zinnecker and Yorke, 2007) and
the maximum mass reached by individual stars is unknown (see, e.g., Clark et al., 2011).

Large seeds form in heavier halos (of 108 M�) from the collapse of unstable gaseous discs of 104 M� – 106 M�.
This route, ending with the formation of a very massive quasi-star, assumes that fragmentation is suppressed possibly by
turbulence and by an intense ultraviolet background light, in an environment of low metallicity (Begelman et al., 2006,
Bromm and Loeb, 2003, Dijkstra et al., 2008, Dotan et al., 2011, Haehnelt and Rees, 1993, Koushiappas et al., 2004,
Lodato and Natarajan, 2006, Loeb and Rasio, 1994). Collapsing clouds can have significant angular momentum (Bullock
et al., 2001), and thus additional momentum transport is required for the self-gravitating disc to form a supermassive star
(Begelman and Shlosman, 2009, Shlosman et al., 1989). The very massive quasi-star of about 105 M�, burns hydrogen
and helium in its core and once formed, the star collapses into a black hole when metallicity is below some threshold, as
the alternative is its entire explosion (Montero et al., 2011, Shibata and Shapiro, 2002). Recently, other formation routes
have been explored for the large seeds (103 M� – 104 M�). They comprise the formation of a massive star via stellar
runaway collisions in young dense star clusters (Devecchi and Volonteri, 2009, Gürkan et al., 2004, Portegies Zwart and
McMillan, 2002), and the relativistic collapse of stellar mass black holes in nuclear star clusters invaded by a large inflow
of gas (Davies et al., 2011). Lastly, much heavier seeds resulting from direct collapse of nuclear gas in a gas-rich galactic
merger have been proposed as the origin of black holes (Mayer et al., 2010).

The subsequent step is to follow the evolution of the black hole seeds according to the growth of the halos they inhabit,
and the mode of accretion (Devecchi and Volonteri, 2009, Volonteri and Begelman, 2010, Volonteri et al., 2008). This is
an inherently model dependent process. Observations of nearby dormant black holes and of AGN at higher redshift help
in constraining their evolution, but theoretical models still have some unconstrained degrees of freedom.

6 Evolving massive black hole spins via coalescence and accretion events

Astrophysical black holes are fully described by the mass M• and angular momentum J, referred to as spin. The modulus
J of J is usually specified in terms of the dimensionless spin parameter a• defined so that J = a•(GM2

•/c). For a specified
mass M•, a black hole described by GR cannot have a• > 1, without showing a naked singularity (and this is forbidden by
the Cosmic Censorship conjecture).

Both coalescences and accretion change M•, J (or a•) and the orientation of J in a significant manner (Berti and
Volonteri, 2008, Volonteri et al., 2007).
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Spins in black hole coalescences

With the advent of numerical relativity, it became possible to accurately determine the evolution of the initial spins of
the black holes to the final spin of the remnant black hole in a merger event (Baker et al., 2006, Campanelli et al., 2006,
Centrella et al., 2010, Pretorius, 2005, Rezzolla et al., 2008a).

Numerical relativity simulations for equal mass, non spinning black holes find a spin a• = 0.686 46±0.000 04 (Scheel
et al., 2009) for the merged black hole, resulting from the angular momentum of the orbit. Extrapolation of black hole
coalescences with large initial spins (larger than approximately 0.9) exactly aligned with the orbital angular momentum
find a final a• = 0.951 ± 0.004 (Marronetti et al., 2008). When mergers occur with retro- and pro-grade orbits equally
distributed, as it is expected in the case of astrophysical black holes (Hughes and Blandford, 2003), the average spin of
the merger remnant is about 0.7, close to the expectation for non spinning holes (Berti and Volonteri, 2008).

For almost any configuration of spins and mass ratio, the emission pattern of the gravitational wave is anisotropic,
leading to a gravitational recoil (Campanelli et al., 2007, González et al., 2007, Lousto and Zlochower, 2011b).

Numerical studies show that initially nonspinning black holes or binaries with spins aligned with the orbital angu-
lar momentum are recoiling with a velocity below about 200 km/s. By contrast, the recoil is dramatically larger, up to
approximately 5000 km/s, for binaries of comparable mass and black holes with large spins in peculiar non-aligned con-
figurations (Lousto and Zlochower, 2011a). Thus, unexpectedly, spins (regulated by coalescence and accretion) affect the
retention fraction of black holes in galactic halos, and this has consequences on the overall evolution of black holes in
galaxies (Kesden et al., 2010, Schnittman, 2007, Schnittman and Buonanno, 2007, Volonteri et al., 2010).

Spins and black hole accretion

The evolution of mass and spin of astrophysical black holes are strongly correlated, also when considering accretion.
Spins determine directly the radiative efficiency ε(a•), and so the rate at which mass is increasing. In radiatively efficient
accretion discs (Shakura and Sunyaev, 1973) ε varies from 0.057 (for a• = 0) to 0.151 (for a• = 0.9) and 0.43 (for
a• = 1). Accretion on the other hand determines black hole spins since matter carries with it angular momentum (the
angular momentum at the innermost stable circular orbit of a Kerr black hole). A non-rotating black hole is spun-up to
a• = 1 after increasing its mass by a factor

√
6, for prograde accretion (Bardeen, 1970). Conversely, a maximally rotating

black hole is spun-down by retrograde accretion to a• ∼ 0, after growing by a factor
√

3/2.

Accretion imposes limits on the black hole spin. Gas accretion from a geometrically thin disc limits the black-hole
spin to aacc

• = 0.9980 ± 0.0002, as photons emitted by the disc and with angular momentum anti-parallel to the black hole
spin are preferentially captured, having a larger cross section, limiting its rotation (Thorne, 1974). The inclusion of a jet,
as studied in magneto-electrodynamic simulations, reduces this limit to a

jet
• � 0.93 (Gammie et al., 2004), and changes in

the accretion geometry produce a similar effect (Popham and Gammie, 1998).

How black holes are fed from the large scale down to the hole’s influence radius (Rgrav) is presently unknown, and
the spin is sensitive to the way gas is accreted with time (Volonteri et al., 2007). Two limiting modes of accretion can
occur. Coherent accretion refers to accretion from a geometrically thin disc, lasting longer than a few black hole mass
growth e-folding times. During coherent accretion the black hole can more than double its mass, bringing its spin up to
the limit imposed by basic physics, either aacc

• or a
jet
• . By contrast, chaotic accretion refers to a succession of accretion

episodes that are incoherent, i.e. randomly oriented. The black hole can then spin-up or down, and spin-down occurs when
counter-rotating material is accreted, i.e. when the angular momentum L of the disc is strongly misaligned with respect to
J (i.e. J ·L < 0). If accretion proceeds via short-lived, uncorrelated episodes with co-rotating and counter-rotating material
equally probable, spins tend to be small (King and Pringle, 2006, 2007, Moderski et al., 1998): counter-rotating material
spins the black hole down more than co-rotating material spins it up, as the innermost stable orbit of a counter-rotating
test particle is located at a larger radius than that of a co-rotating particle, and accordingly carries a larger orbital angular
momentum.

The direction of the black hole spin is also an important element in the study of black holes. In a viscous accretion disc
that is misaligned with the spin of the black hole, Lense-Thirring precession of the orbital plane of fluid elements warps
the disc, forcing the gas close to the black hole to align (either parallel or anti-parallel) with the spin of the black hole.
Warping is a rapid process that causes alignment of the disc out to 100 Rhorizon – 103 Rhorizon, depending on a• (Bardeen
and Petterson, 1975). Following conservation of total angular momentum, the black hole responds to the warping through
precession and alignment, due to dissipation in the disc (Perego et al., 2009, Scheuer and Feiler, 1996) evolving into a
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configuration of minimum energy where the black hole and disc are aligned (King et al., 2005). This process is short
(105 yrs) compared to the typical accretion time scale, allowing astrophysical black holes to evolve into a quasi-aligned
spin-orbit configuration prior to coalescence (Dotti et al., 2010).

According to these theoretical findings, masses and spins evolve dramatically following coalescence and accretion
events. The spin offers the best diagnostics on whether the black holes prior to coalescence have experienced either
coherent or chaotic accretion episodes. Both, mass and spin, are directly encoded into the gravitational waves emitted
during the the merger process. eLISA will measure the masses and spins of the black holes prior to coalescence, offering
unprecedented details on how black hole binaries have been evolving along of the course of the galactic merger and along
cosmic history.

7 Cosmological massive black hole merger rate

As eLISA creates a new exploratory window on the evolution of black holes, covering a mass and redshift range that is
out of the reach of current (and planned) instruments, its expected detection rate is observationally unconstrained. Today
we can probe dormant black holes down to masses of about 105 M� (Magorrian et al., 1998, Xiao et al., 2011) in the local
Universe only, and their massive (i.e. heavier than 108 M�) active counterparts out to redshift � 6 (Fan et al., 2004, 2001,
2006b, 2003). Any estimate of the eLISA detection rate necessarily has to rely on extrapolations based on theoretical
models matching the properties of the observable black hole population.

Observationally, the black hole merger rate can be inferred only at relatively low redshift, by counting the fraction of
close pairs in deep galaxy surveys. Given a galaxy density per co-moving megaparsec cube nG, a fraction of close pairs φ,
and a characteristic merger timescale TM , the merger rate density of galaxies (number of mergers per year per co-moving
megaparsec cube), is given by ṅM = φnG/(2TM).

Estimates of ṅM have been produced by several groups in the last decade (Bell et al., 2006, De Propris et al., 2007, de
Ravel et al., 2009, Lin et al., 2004, 2008, Patton et al., 2002, Xu et al., 2011), using deep spectroscopic galaxy surveys like
COMBO, COSMOS and DEEP2. Surveys are obviously flux limited, and usually an absolute magnitude cutoff (which
translate into a stellar mass lower limit) is applied to obtain a complete sample of galaxy pairs across a range of redshifts.
The galaxy merger rate is therefore fairly well constrained only at redshift z � 1 for galaxies with stellar mass larger
than approximately 1010 M�. From compilation of all the measurement (Xu et al., 2011), typical average massive galaxy
merger rates ṅM at z < 1 lie in the range 5 × 10−4 < ṅM < 2 × 10−3h3

100Mpc−3 Gyr−1. By applying the black hole-host
relations (Gültekin et al., 2009), the galaxy stellar mass cutoff is converted into a lower limit to the hosted black hole mass.
Assuming a black hole occupation fraction of one (appropriate for massive galaxies) and integrating over the appropriate
co-moving cosmological volume, this translates into an observational estimate of the massive black hole merger rate for
z < 1 and M > few × 106 M�.

These estimates can be compared to the rate predicted by Monte Carlo merger trees (Volonteri et al., 2003) based
on the EPS formalism (Lacey and Cole, 1993, Press and Schechter, 1974, Sheth and Tormen, 1999), which are used to
reconstruct the black hole assembly, and thus to infer eLISA detection rates, in the ΛCDM cosmology. The evolutionary
path (outlined in the previous sections) can be traced back to very high redshift (z > 20) with high resolution via numerical
EPS Monte Carlo realisations of the merger hierarchy. Sesana et al. (2008b) carried a detailed comparison of the merger
rate predicted by such models in the z < 1 and M > few × 106 M� range with those inferred by galaxy pair counting,
finding a generally broad consistency within a factor of 2.

On the theoretical side, massive black hole merger rates can be computed from semi-analytic galaxy formation models
coupled to massive N-body simulations tracing the cosmological evolution of dark matter halos (Bertone et al., 2007, De
Lucia et al., 2006, Guo et al., 2011), such as the Millennium Run (Springel et al., 2005). Such models are generally bound
to the limiting resolution of the underlying N-body simulations, and are therefore complete only for galaxy masses larger
than approximately 1010 M�. In a companion study, Sesana et al. (2009) also showed that the merging black hole mass
functions predicted by EPS based merger trees is in excellent agreement with those extracted by semi-analytic galaxy
formation model in the mass range M > 107 M�, where semi-analytic models can be considered complete.

Merger rates obtained by EPS merger trees are therefore firmly anchored to low redshift observations and to theoretical
galaxy formation models. Nevertheless, the lack of observations in the mass range of interest for eLISA leaves significant
room for modelling, and theoretical astrophysicists have developed a large variety of massive black holes formation
scenarios that are compatible with observational constraints (Begelman et al., 2006, Koushiappas et al., 2004, Lodato and
Natarajan, 2006, Volonteri et al., 2003). The predicted coalescence rate in the eLISA window depends on the peculiar
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details of the models, ranging from a handful up to few hundred events per year (Enoki et al., 2004, Haehnelt, 1994,
Koushiappas and Zentner, 2006, Rhook and Wyithe, 2005, Sesana et al., 2004, 2005, 2007b, Wyithe and Loeb, 2003). A
recent compilation, encompassing a wide variety of assembly history models, can be found in (Sesana et al., 2011).

8 Massive black hole binaries as gravitational waves sources: what can eLISA discover?

In the eLISA window of detectability massive black hole binary coalescence is a three-step process comprising the in-

spiral, merger, and ring-down (Flanagan and Hughes, 1998). The inspiral stage is a relatively slow, adiabatic process in
which the black holes spiral together on nearly circular orbits. The black holes have a separation wide enough so that
they can be treated analytically as point particles through the Post Newtonian (PN) expansion of their binding energy and
radiated flux (Blanchet, 2006). The inspiral is followed by the dynamical coalescence, in which the black holes plunge
and merge together, forming a highly distorted, perturbed remnant. At the end of the inspiral, the black hole velocities
approach v/c ∼ 1/3. At this stage the PN approximation breaks down, and the system can only be described by a numer-
ical solution of the Einstein equations. The distorted remnant settles into a stationary Kerr black hole as it rings down, by
emitting gravitational radiation. This latter stage can be, again, modelled analytically in terms of black hole perturbation
theory. At the end of the ring-down the final black hole is left in a quiescent state, with no residual structure besides its
Kerr spacetime geometry.

In recent years there has been a major effort in constructing accurate waveforms inclusive of the inspiral merger and
ring-down phases (Baker et al., 2006, Campanelli et al., 2006, Pretorius, 2005). Even a few orbital cycles of the full
waveform are computationally very demanding. “Complete” waveforms can be designed by stitching together analytical
PN waveforms for the early inspiral with a (semi)phenomenologically described merger and ring-down phase (Damour
et al., 2011, Pan et al., 2011, Santamaría et al., 2010), calibrated against available numerical data. In the following estima-
tions we will mostly employ phenomenological waveforms constructed in frequency domain, as described in Santamaría
et al. (2010). Self-consistent waveforms of this type (the so called PhenomC waveforms) are available for non-spinning
binaries and for binaries with aligned spins. In the case of binaries with misaligned spins, we use “hybrid” waveforms
obtained by stitching precessing PN waveforms for the inspiral with PhenomC waveforms for the merger/ring-down. This
stitching is performed by projecting the orbital angular momentum and individual spins onto the angular momentum of
the distorted black hole after merger. Given a waveform model, a first measure of the eLISA performance is the SNR of
a binary merger with parameters in the relevant astrophysical range.

Detector performance

Figure 16 shows eLISA SNRs for equal mass, non-spinning coalescing binaries. Here we use PhenomC waveforms and
we compute the SNR as a function of the rest-frame total binary mass M and of the redshift z, averaging over all possible
source sky locations and wave polarisation, for two-year observations. The plot highlights the exquisite capabilities of
the instrument in covering almost all the mass-redshift parameter space relevant to massive black hole astrophysics. It is
of importance to emphasise that current electromagnetic observations are probing only the tip of the massive black hole
distribution in the Universe. Our current knowledge of massive black holes is bound to instrument flux limits, probing
only the mass range 107 M� – 109 M� at 0 � z � 7. Conversely, eLISA will be able to detect the gravitational waves
emitted by sources with total mass (in the source rest frame) as small as 104 M� at cosmological distances inaccessible to
any other astrophysical probe. A binary with total mass in the interval 104 M� – 107 M� can be detected out to a redshift
as remote as z ∼ 20 with a SNR ≥ 10. By contrast, a binary as massive as a few 108 M� can be detected with high SNR
in our local Universe (z � 1). Binaries with total mass between 105 M� – 107 M� can be detected with a SNR � 100,
between 0 � z � 5. These intervals in mass and redshift can be considered as optimal for a deep and extensive census of
the black hole population in the Universe.

Figure 17 shows constant-contour levels of the SNR expected from binaries with different mass ratios q (defined as
q = m2/m1, where m2 is the mass of the less massive black hole in the binary) located at redshift z = 1 and z = 4. The
plots show the SNR reduction that occurs with decreasing q, as unequal mass binaries have lower strain amplitudes than
equal mass binaries. They also show how SNR decreases with increasing redshift, and thus with increasing luminosity
distance. Notice however that even at z = 4, binaries in the mass range 105 M� – 107 M� with mass ratio q � 10−1 can be
detected with SNR > 20.
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Figure 16: Constant-contour levels of the sky and polarisation angle-averaged signal-to-noise ratio (SNR) for equal mass
non-spinning binaries as a function of their total mass M and cosmological redshift z. The total mass M is measured in the
rest frame of the source. The SNR is computed using PhenomC waveforms (Santamaría et al., 2010), which are inclusive
of the three phases of black hole coalescence (in jargon: inspiral, merger, and ring-down, as described in the text).
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Figure 17: The figure shows constant-contour levels of the sky and polarisation angle averaged signal-to-noise ratio (SNR)
for non-spinning binaries, at cosmological redshift z = 1 (left panel) and z = 4 (right panel) in the M–q plane. Here M

is the total mass of the binary in the source rest frame, and q is the mass ratio. The SNR is computed from the full non
spinning PhenomC waveform inclusive of inspiral, merger and ring-down, as in figure 16.

Parameter estimation

Figures 16 and 17 describe the detectability of single events, and for these individual events, it is possible to extract
information on the physical parameters of the source. Waveforms carry information on the redshifted mass (the mass
measured at the detector is (1 + z) times the mass at the source location) and on the spin of the individual black holes
prior to coalescence. The measure of the mass and spin is of importance in astrophysics. Except for the Galactic centre
(Ghez et al., 2005, Gillessen et al., 2009), the mass of astrophysical black holes is estimated with uncertainties ranging
from 15 % to a factor of about 2, depending on the technique used and the type of source. As far as spin is concerned, its
measure is only indirect, and it is derived through modelling of the spectrum, or of the shape of emission lines, mainly by
fitting the skewed relativistic Kα iron line. There are few notable examples, but uncertainties are still large. By contrast,
spins leave a distinctive peculiar imprint in the waveform.

In section 5 and 6 we explored different routes to seed black hole formation and to their subsequent assembly and
growth through mergers and accretion episodes. Different physically motivated assumptions lead to different black hole
evolution scenarios, and, as we highlighted above, the lack of observational constraints allowed theoretical astrophysicists
to develop a large variety of massive black holes formation scenarios. To assess the astrophysical impact of eLISA, we
simulate observations assuming a fiducial set of four cosmological black hole evolution scenarios: SE refers to a model
where the seeds have small (S) mass about 100 M� (from Pop III stars only) and accretion is coherent, i.e. resulting from
extended (E) accretion episodes: SC refers to a model where seeds are small but accretion is chaotic (C), i.e., resulting
from uncorrelated episodes; and finally, LE and LC refer to models where the seed population is heavy (L stands for large
seeds of 105 M�) and accretion is extended and chaotic, respectively. The models are almost the same used in previous
studies by the LISA Parameter Estimation Task Force (Arun et al., 2009). The only difference is that in the extended
accretion model, spins are not assumed to be perfectly aligned to the binary orbital angular momentum. The angles of
misalignment relative to the orbit are drawn randomly in the range 0 to 20 degree, consistent with the finding of recent
hydrodynamical simulations of binaries forming in wet mergers (Dotti et al., 2010). These models encompass a broad
range of plausible massive black hole evolution scenarios, and we use them as a testbed for eLISA capabilities in a fiducial
astrophysical context. Each massive black hole binary, coalescing at redshift z, is characterised by the (rest frame) total
mass M = m1+m2 (with m1 and m2 the mass of the primary and secondary black hole), mass ratio q = m2/m1, spin vectors
J1 and J2 ; spin magnitudes are denoted by a1 and a2. The orientations of the spins are drawn as described above for the
extended (E) accretion models, and completely random for the chaotic (C) accretion models. Here we generate several
Monte Carlo realisations of each model and we sum up all the generated sources in a single “average” catalogue (we will
consider models separately in the next section). Catalogues are generated by selecting M, q, z, a1, a2 according to the
distribution predicted by the individual models, and by randomising other source parameters (sky location, polarisation,
inclination, initial phase, coalescence time) according to the appropriate distribution.
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Figure 18: SNR distribution as a function of cosmological redshift, computed using the inspiral, merger and ring-down
waveform PhenomC for spinning binaries (Santamaría et al., 2010). The solid line corresponds to the mean value, and the
grey area to the distribution corresponding to 10th and 90th percentile of SNR distribution. These results are based on a
catalogue of 15360 sources obtained combining 25 realisations of each of the four fiducial massive black hole evolution
models. For reference, the dashed-blue line indicates the sky-averaged SNR, for one year of integration, computed for an
equal mass coalescing binary of 106 M�.
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Figure 19: Parameter estimation accuracy evaluated on a source catalogue, obtained combining ten Monte Carlo realisa-
tions of the coalescing massive black hole binary population, predicted by the four SE-SC-LE-LC models. The top panels
show the distributions of the fractional errors in the estimation of the redshifted masses of the primary (left) and secondary
(right) black hole. The middle panels show the absolute error distributions on the measurement of the primary (left) and
secondary (right) black hole spin, while the bottom panels show the DL fractional error distribution on the luminosity
distance DL, and the sky location accuracy ΔΩ (in deg2). Errors are evaluated considering full waveforms.
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Figure 18 shows the average source SNR as a function of the source redshift. According to the simulated models,
eLISA will detect sources with SNR � 10 out to z � 10. Note that the astrophysical capabilities of eLISA are not limited
by the detector design, but by the population of astrophysical sources. If there were a coalescing black hole binary of
104 M� – 106 M� out to redshift z ∼ 20, eLISA would reveal such a source. Our models, and accordingly our SNR
distribution, do not have such an event.

Figure 19 shows error distributions in the source parameter estimation, for all the events in the combined catalogue.
We used a hybrid approach of joining inspiral with PhenomC waveforms, as described above, to evaluate uncertainties
based on the Fisher matrix approximation.

The figure illustrates the importance and power of including the full waveform modelling, comprising all the stages
of the binary merger, in order to reach a high level of precision measurements. It is found that individual black hole
redshifted masses can be measured with unprecedented precision, i.e. with an error of 0.1 % – 1 %, on both components.
No other astrophysical tool has the capability of reaching a comparable accuracy. As far as spins are concerned, the
analysis shows that the spin of the primary massive black hole can be measured with an exquisite accuracy, to a 0.01 – 0.1
absolute uncertainty. This precision in the measure mirrors the fact that the primary black hole leaves a bigger imprint in
the waveform. The measurement is more problematic for a2 that can be either determined to an accuracy of 0.1, or remain
completely undetermined, depending on the source mass ratio and spin amplitude. We emphasise that the spin measure is
a neat, direct measurement, that does not involve complex, often degenerate, multi-parametric fits of high energy emission
processes.

The source luminosity distance error DL has a wide spread, usually ranging from 50% to only few percent. Note
that this is a direct measurement of the luminosity distance to the source, which, again, cannot be directly obtained (for
cosmological objects) at any comparable accuracy level by any other astrophysical means. eLISA is a full sky monitor,
and the localisation of the source in the sky is also encoded in the waveform pattern. Sky location accuracy is typically
estimated in the range 10 – 1000 square degrees.

9 Reconstructing the massive black hole cosmic history through eLISA observations

eLISA will be an observatory. The goal is not only to detect sources, but also to extract valuable astrophysical information
from the observations. While measurements for individual systems are interesting and potentially very useful for making
strong-field tests of GR (see section 2), it is the properties of the set of massive black hole binary mergers that are observed
which will carry the most information for astrophysics. Gravitational wave observations of multiple binary mergers may
be used together to learn about their formation and evolution through cosmic history.

As any observatory, eLISA will observe a set of signals. After signal extraction and data analysis, these observations
will provide a catalogue of coalescing binaries, with measurements of several properties of the sources (masses, mass
ratio, spins, distances, etc) and estimated errors. The interesting questions to ask are the following: can we discriminate

among different massive black hole formation and evolution scenarios on the basis of gravitational wave observations

alone? Given a set of observed binary coalescences, what information can be extracted about the underlying population?
For example, will gravitational wave observations alone tell us something about the mass spectrum of the seed black
holes at high redshift, that are inaccessible to conventional electromagnetic observations, or about the poorly understood
physics of accretion? These questions were extensively tackled in (Sesana et al., 2011) in the context of LISA.

Selection among a discrete set of models

First we consider a discrete set of models. As argued above, in the general picture of massive black hole cosmic evolution,
the population is shaped by the seeding process and the accretion history. The four models we study here are the SE,
SC, LE, and LC models introduced in the previous section (Arun et al., 2009). As a first step, we test here if eLISA
observations will provide enough information to enable us to discriminate between those models, assuming that the
Universe is well described by one of them.

Each model predicts a theoretical distribution of coalescing massive black hole binaries. A given dataset D of observed
events can be compared to a given model A by computing the likelihood p(D|A) that the observed dataset D is a realisation
of model A. When testing a dataset D against a pair of models A and B, we assign probability pA = p(D|A)/(p(D|A) +
p(D|B)) to model A, and probability pB = 1 − pA to model B. The probabilities pA and pB are a measure of the relative
confidence we have in model A and B, given an observation D. Once eLISA data is available, each model comparison will
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Table 1: Summary of all possible comparisons of the pure models. Results are for one year of observation with eLISA.
We take a fixed confidence level of p = 0.95. The numbers in the upper-right half of each table show the fraction of
realisations in which the row model will be chosen at more than this confidence level when the row model is true. The
numbers in the lower-left half of each table show the fraction of realisations in which the row model cannot be ruled out

at that confidence level when the column model is true. In the left table we consider the trivariate M, q, and z distribution
of observed events; in the right table we also include the observed distribution of remnant spins, S r.

Without spins With spins
SE SC LE LC SE SC LE LC

(l) SE × 0.48 0.99 0.99 SE × 0.96 0.99 0.99
SC 0.53 × 1.00 1.00 SC 0.13 × 1.00 1.00
LE 0.01 0.01 × 0.79 LE 0.01 0.01 × 0.97
LC 0.02 0.02 0.22 × LC 0.02 0.02 0.06 ×

yield this single number, pA, which is our confidence that model A is correct. Since the eLISA data set is not currently
available, we can only work out how likely it is that we will achieve a certain confidence with future eLISA observations.

We therefore generate 1000 independent realisations of the population of coalescing massive black hole binaries in the
Universe predicted by each of the four models. We then simulate gravitational wave observations by producing datasets
D of observed events (including measurement errors), which we statistically compare to the theoretical models. We
consider only sources that are observed with SNR larger than eight in the detector. We set a confidence threshold of
0.95, and we count what fraction of the 1000 realisations of model A yield a confidence pA > 0.95 when compared to an
alternative model B. We repeat this procedure for every pair of models. For simplicity, in modelling gravitational wave
observations, we focus on circular, non-spinning binaries; therefore, each coalescing black hole binary in the population
is characterised by only three intrinsic parameters – redshift z, mass M, and mass ratio q – and we compare the theoretical

trivariate distribution in these parameters predicted by the models to the observed values in the dataset D. In terms of
gravitational waveform modelling, our analysis can therefore be considered extremely conservative.

Results are shown in the left-hand panel of table 1, for a one year observation. The vast majority of the pair compar-
isons yield a 95 % confidence in the true model for almost all the realisations — we can perfectly discriminate among
different models. Similarly, we can always rule out the alternative (false) model at a 95 % confidence level. Noticeable
exceptions are the comparisons of models LE to LC and SE to SC, i.e., among models differing by accretion mode only.
This is because the accretion mode (efficient versus chaotic) particularly affects the spin distribution of the coalescing
systems, which was not considered here. To extend this work, we added to our analysis the distribution of the merger
remnant spins S r, and compared the theoretical distribution predicted by the models to the observed values (including
determination errors once again). The spin of the remnant can be reasonably determined in about 30 % of the cases only;
nevertheless, by adding this information, we are able to almost perfectly discriminate between the LE and LC and the SE
and SC models, as shown in the right hand panel of table 1.

Constrains on parametric models

In the preceding section we demonstrated the potential of eLISA to discriminate among a discrete set of “pure” models
given a priori. However, the true massive black hole population in the Universe will probably result from a mixing of
known physical processes, or even from a completely unexplored physical mechanism. A meaningful way to study this
problem is to construct parametric models that depend on a set of key physical parameters, λi, describing, for instance,
the seed mass function and redshift distribution, the accretion efficiency etc. and to investigate the potential of eLISA
to constrain these parameters. Such a parametric family of models is not available at the moment, but we can carry out
a similar exercise by mixing two of our pure models, A and B, to produce a model in which the number of events of a
particular type is given by F [A]+(1 − F )[B], where [A] is the number of events of that type predicted by model A, [B] is
the corresponding number predicted by model B and F is the “mixing fraction”. In this case we generate datasets D from
a mixed model with a certain unknown F , and we estimate the F parameter by computing the likelihood that the data D

is drawn from a mixed distribution, as a function of F . A specific example is shown in figure 20. Here the underlying
model is F [SE]+(1 − F )[LE], with F = 0.45. eLISA observations will allow us to pin-down the correct value of the
mixing parameter with an uncertainty of ∼ 0.1. More complex examples of multi-model mixing can be found in (Sesana
et al., 2011). Although highly idealised, this exercise demonstrate the potential of eLISA observations to constrain the
physics and astrophysics of massive black hole along their entire cosmic history, in a mass and redshift range inaccessible
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Figure 20: Likelihood distribution of the mixing fraction F , for a particular realisation of the model F [S E]+(1−F )[LE].
The true mixing parameter, marked by a dashed vertical line, was F = 0.45.
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to conventional electromagnetic observations.

5 Extreme mass ratio inspirals and astrophysics of dense stellar systems

1 The Galactic Centre: a unique laboratory

The discovery, in the local Universe, of dark, massive objects lurking at the centres of nearly all bright galaxies is one
of the key findings of modern-day astronomy, the most spectacular being the case of the dark object in our own Galaxy
(Eisenhauer et al., 2005, Ghez et al., 2003, 2005, 2008, Gillessen et al., 2009, Schödel et al., 2003). The nucleus of the
Milky Way is one hundred times closer to Earth than the nearest large external galaxy Andromeda, and one hundred
thousand times closer than the nearest QSO. Due to its proximity, it is the only nucleus in the Universe that can be studied
and imaged in great detail. The central few parsecs of the Milky Way house gas cloud complexes in both neutral and
hot phases, a dense luminous star cluster, and a faint radio source SgrA∗ of extreme compactness (3 – 10 light minutes
across). Observations, using diffraction-limited imaging and spectroscopy in the near-infrared, have been able to probe
the densest region of the star cluster and measure the stellar dynamics of more than two hundred stars within a few light
days of the dynamic centre. The latter is coincident, to within 0.1 arcsec, with the compact radio source SgrA∗. The stellar
velocities increase toward SgrA∗ with a Kepler law, implying the presence of a (4±0.06±0.35)×106 M� central dark mass
(Gillessen et al., 2009). This technique has also led to the discovery of nearly thirty young stars that orbit the innermost
region: the so called S0 (or S) stars. These young stars are seen to move on Keplerian orbits, with S02 (or S2) the
showcase star orbiting the putative black hole on a highly eccentric (0.88) orbit with a period of 15.9 years. The periapsis
of this orbit requires a lower limit on the density of the dark point-like mass concentration of more than 1013 M� pc−3

(Maoz, 1998). Additionally, a lower limit of more than 1018 M� pc−3 can be inferred from the compactness of the radio
source (Genzel et al., 2010). These limits provide compelling evidence that the dark point-mass at SgrA∗ is a black hole.
A cluster of dark stars of this mass and density (e.g. composed of neutron stars, stellar black holes or sub-stellar entities
such as brown dwarfs, planets and rocks) can not remain in stable equilibrium for longer than 107 years (Genzel et al.,
2000, 2006, Maoz, 1998), and the only remaining, albeit improbable, hypothesis is a concentration of heavy bosons (a
boson star, (Colpi et al., 1986)) or of hyperlight black holes (Maoz, 1998, M• < 0.005 M�,). Overall, the measurements
at the Galactic Centre are consistent with a system composed of a massive black hole and an extended close-to-isotropic
star cluster, with the young S0 (or S) stars the only population showing a collective rotation pattern in their orbits (Genzel
et al., 2010).

2 Extreme Mass Ratio Inspirals in galactic nuclei

Can we probe the nearest environs of a massive black hole other than the Galactic Centre? Massive black holes are
surrounded by a variety of stellar populations, and among them are compact stars (stellar black holes, neutron stars and
white dwarfs). White dwarfs, neutron stars, and stellar-mass black holes all share the property that they reach the last stable
orbit around the central massive black hole before they are tidally disrupted. A compact star can either plunge directly
toward the event horizon of the massive black hole, or gradually spiral in and fall into the hole, emitting gravitational
waves. The latter process is the one of primary interest for eLISA. Gravitational waves produced by inspirals of stellar-
mass compact objects into massive black holes are observable by eLISA. The mass of the compact object is typically of
the order of a few solar masses, while the mass of the central black holes detectable by eLISA is from 104 M� to 107 M�.
Because the mass ratio for these binaries is typically around 105, these sources are commonly referred to as EMRI.

The extreme mass ratio ensures that the inspiralling object essentially acts as a test particle in the background space-
time of the central massive black hole. EMRI detections thus provide the best means to probe the environment of an
astrophysical black hole and its stellar surroundings. White dwarfs, neutron stars, and stellar-mass black holes can all
in principle lead to observable EMRI signals. However, stellar-mass black holes, being more massive, are expected to
dominate the observed rate for eLISA, for two reasons: mass segregation tends to concentrate the heavier compact stars
nearer the massive black hole, and black hole inspirals have higher signal-to-noise, and so can be seen within a much
larger volume.

Three different mechanisms for the production of EMRI have been explored in the literature. The oldest and best-
understood mechanism is the diffusion of stars in angular-momentum space, due to two-body scattering. Compact stars
in the inner 0.01 pc will sometimes diffuse onto very high eccentricity orbits, such that gravitational radiation will then
shrink the orbit’s semi-major axis and eventually drive the compact star into the massive black hole. Important physical
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effects setting the overall rate for this mechanism are mass segregation, which concentrates the more massive stellar-mass
black holes (� 10 M�) close to the central black hole, and resonant relaxation, which increases the rate of orbit diffusion
in phase-space (Hopman and Alexander, 2006b): the orbits of stars close to a massive black hole are nearly Keplerian
ellipses, and these orbits exert long term torques on each other, which can modify the angular momentum distribution
of the stars and enhance the rate of EMRI formation (Gürkan and Hopman, 2007). However, subtle relativistic effects
can reduce the estimated rates from relaxation processes (Merritt et al., 2011). In addition to the two-body scattering
mechanism, other proposed channels for EMRI are tidal disruption of binaries that pass close to the central black hole
(Miller et al., 2005), and creation of massive stars (and their rapid evolution into black holes) in the accretion discs
surrounding the central massive black hole (Levin, 2007). Tidal break up of incoming stellar binaries may already have
been seen in the Milky Way following the remarkable discovery of a number of so-called hypervelocity stars observed
escaping from our Galaxy (e.g., Brown et al., 2009). They are believed to be the outcome of an ejection following the
break-up of two bound stars by the tidal field of SgrA∗. All these mechanisms give specific predictions on the eccentricity
and inclination of EMRI events that can be extracted from the gravitational wave signal (Miller et al., 2005).

When the orbiting object is close enough (within a few horizon radii from the large black hole) gravitational radiation
dominates energy losses from the system, and the semimajor axis of the orbit shrinks. Radiation is emitted over hundreds
of thousand of orbits as the object inspirals to the point where it is swallowed by the central massive black hole. Over short
periods of time, the emitted radiation can be thought of as a snapshot that contains detailed information about the physical
parameters of the binary. The detection of the emitted gravitational wave signal will give us very detailed information
about the orbit, the mass, and spin of the massive black hole as well as the mass of the test object (Gair et al., 2010,
Hopman, 2009, Preto and Amaro-Seoane, 2010).

The measurement of even a few EMRI will give astrophysicists a totally new and different way of probing dense
stellar systems determining the mechanisms that shape stellar dynamics in the galactic nuclei and will allow us to recover
information on the emitting system with a precision which is not only unprecedented in the history of astrophysics, but
beyond that of any other technique (Amaro-Seoane et al., 2007, Babak et al., 2010, Porter, 2009).

3 A probe of galactic dynamics

The centre-most part of the stellar spheroid, i.e. the galactic nucleus, constitutes an extreme environment in terms of
stellar dynamics. With stellar densities higher than 106 M� pc−3 and relative velocities exceeding 100 km/s, collisional
processes (i.e. collective gravitational encounters among stars) are important in shaping the density profiles of stars. The
mutual influence between the massive black hole and the stellar system occurs thanks to various mechanisms. Some are
global, like the capture of stars via collisional relaxation, or accretion of gas lost by stars through stellar evolution, or
adiabatic adaptation of stellar orbits to the increasing mass of the black hole. Others involve a very close interaction, like
the tidal disruption of a star or the formation of an EMRI.

The distribution of stars around a massive black hole is a classical problem in stellar dynamics (Bahcall and Wolf,
1976, 1977), and of importance for EMRI is the distribution of stellar black holes. Objects more massive than the average
star, such as stellar black holes, tend to segregate at the centre of the stellar distribution in the attempt to reach, through
long-distance gravitational encounters, equipartition of kinetic energy. A dense, strongly mass-segregated cusp of stellar
black hole is expected to form near a massive black hole, and such a cusp plays a critical role in the generation of EMRI.
The problem of the presence of a dark cusp has been addressed, for the Galactic Centre, by different authors, from a
semi-analytical and numerical standpoint (Freitag et al., 2006a,b, Hopman and Alexander, 2006a, Miralda-Escudé and
Gould, 2000, Sigurdsson and Rees, 1997). A population of stellar black holes can leave an imprint on the dynamics of
the S0 (or S) stars at the Galactic Centre, inducing a Newtonian retrograde precession on their orbits (Mouawad et al.,
2005). Current data are not sufficient to provide evidence of such deviations from Keplerian orbits, so that the existence
of a population of stellar black holes is yet to be confirmed (Gillessen et al., 2009, Merritt et al., 2009a).

4 A probe of the masses of stellar and massive black holes

It is very difficult to measure the mass of black holes, both of the massive and stellar variety. In the case of massive
black holes, methods based on following the innermost kinematics are difficult for low-mass black holes in the range
105 M� – 107 M�. These black holes have low intrinsic luminosities even when they are active, making detection hard.
Performing dynamical measurements at these masses through stellar kinematics requires extremely high spatial resolution.
Nowadays with adaptive optics we could optimistically hope to get a handful of measurements through stellar kinematics
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Figure 21: Left: The maximum detectable redshift z (or horizon) for EMRIs assuming a two year mission lifetime, and
a SNR = 20. The red curve is computed using the analytic waveform model and has a maximum redshift of z ∼ 0.7 for
black hole masses at the source rest-frame of 4×105 M�. The green and blue curves are sky-averaged horizons, computed
using the Teukolsky waveform model, for two different values of the spin of the central black holes, a• = 0 (green) and
a• = 0.9 (blue).
Right: The distribution of maximum EMRI SNRs versus redshift for eLISA. The dashed horizontal line denotes the SNR
threshold of 20.

about 5 kpc away, although future 20 m – 30 m telescopes can reach out to the Virgo cluster (16.5 Mpc). Exquisite gas-
dynamical measurements are possible for only a handful of active black holes using water megamaser spots in a Keplerian
circumnuclear disk (Kuo et al., 2011). Still, the black hole in the centre of our own galaxy lies in this range, and placing
constraints on the mass function of low-mass black holes has key astrophysical implications. Observations show that the
masses of black holes correlate with the mass, luminosity and the stellar velocity dispersion of the host (Gültekin et al.,
2009). These correlations imply that black holes evolve along with their hosts throughout cosmic time. One unanswered
question is whether this symbiosis extends down to the lowest galaxy and black hole masses due to changes in the accretion
properties (Mathur and Grupe, 2005), dynamical effects (Volonteri et al., 2007), or cosmic bias (Volonteri and Natarajan,
2009). eLISA will discover the population of massive black holes in galaxies smaller than the Milky Way, that are difficult
to access using other observational techniques, and provide insights on the co-evolution of black holes and their hosts.

Difficulties, albeit of a different nature, exist in measuring the masses and mass distribution of stellar black holes.
Stellar black holes are observed as accreting X-ray sources in binaries. According to stellar evolution, black holes result
from the core collapse of very massive stars, and their mass is predicted to be in excess of the maximum mass of a neutron
star, which is still not fully constrained. Depending on the state of nuclear matter, this limit varies from about 1.6 M� to
about 3 M� (Shapiro and Teukolsky, 1986). The maximum mass of a stellar black hole is not constrained theoretically,
and is known to depend sensitively on the metallicity of the progenitor star. The masses of stellar black holes are inferred
using Kepler’s third law, or through spectral analysis of the emission from the hole’s accretion disc. These techniques can
be used only for black holes in a binary system. Current measurements of the black hole mass indicate a range for stellar
black holes from about 5 M� up to 20 M�, but uncertainties in the estimate can be as large as a factor of two (Orosz, 2003).
In addition, stellar black holes in interacting binaries are a very small and probably strongly biased fraction of the total
stellar black hole population. They are formed from stars that have lost their hydrogen mantle due to mass transfer (and
thus formed in a different way than the vast majority of stellar black holes. eLISA will measure the mass of the stellar
black holes again with unprecedented precision providing invaluable insight on the process of star formation in the dense
nuclei of galaxies, where conditions appear extreme.

5 Detecting extreme mass ratio inspirals with eLISA

EMRI are compact stars moving on relativistic orbits around a massive black hole. As the compact object spends most
of its time in the strong field regime, its orbit is very complex and difficult to model. While not fully realistic, a set of
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Figure 22: The distribution of errors from a Markov Chain Monte Carlo analysis for a source at z = 0.55 with an SNR of
25. The plot shows the error distributions for the central black holes mass M• and spin a•, the mass of the compact object
m and the eccentricity at plunge ep.
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phenomenological waveforms have been developed (Barack and Cutler, 2004), the AK waveforms, which fully capture the
complexity of the model. These waveforms are defined by a 14 dimensional parameter set, of which the most physically
relevant are the masses of the central black hole and of the compact object, M• and m respectively, the spin of the massive
black hole a•, the eccentricity of the orbit at plunge, ep, the sky position of the source with respect to the detector, and
the luminosity distance to the source, DL. In addition to these approximate models, more accurate EMRI waveform
models have been computed using black hole perturbation theory, in which the inspiraling object is regarded as a small
perturbation to the background spacetime of the large black hole. The perturbation theory framework was first outlined
in (Teukolsky, 1973) and gave rise to the Teukolsky equation. However, the solution of this equation is computationally
expensive, and results have only recently been obtained for a selection of generic orbits (Drasco and Hughes, 2006).
Nonetheless, results have been fully tabulated for certain restricted types of orbit. For the calculations described here we
will use data for circular-equatorial orbits (Finn and Thorne, 2000, Gair, 2009a). We can use both models to compute the
maximum detectable redshift, or the horizon for EMRI detection, as a function of mass.

To calculate the detection limit of EMRI for eLISA using the AK waveforms, we must perform a Monte Carlo sim-
ulation over the waveform parameters. We explore the mass range 104 M� � M � 5 × 106 M�. As not much is known
about the distribution of spins or eccentricities for EMRI, we consider uniform distributions for the spins in the range
−0.95 ≤ a ≤ 0.95, and for eccentricities at plunge in the interval 0.05 ≤ ep ≤ 0.4. We fix the mass of the inspiraling
body to 10 M� to represent the inspiral of a stellar black hole, as these are expected to dominate the event rate (Gair et al.,
2004). The detection horizon for neutron star and white dwarf inspirals is significantly less than for black holes. The final
assumption required is to set a threshold of detection. While a SNR threshold of 30 was thought to be justified in the past,
advances in search algorithms have recently demonstrated that EMRI with SNR about 20 is sufficient for detection (Babak
et al., 2010, Cornish, 2011, Gair et al., 2008), allowing us to assume an SNR threshold of 20 in this analysis. Assuming a
mission lifetime T of two years, and plunge times between 0 yr ≤ tp ≤ 5 yr, a large scale Monte Carlo simulation was run
over all 14 parameters. In figure 21 (left) we plot the maximum detectable redshift z (also referred to as horizon) as a func-
tion of intrinsic mass of the massive black hole. Systems with intrinsic mass in the range from 104 M� ≤ M ≤ 5× 106 M�
are detectable in the local Universe at redshift of z � 0.1, while systems in the range from 105 M� ≤ M ≤ 106 M� should
be detectable by eLISA to z ∼ 0.7, corresponding to a co-moving volume of about 70 Gpc3.

Figure 21 (left) also shows the maximum detectable redshift z as a function of the mass of the central massive black
hole, computed for circular-equatorial inspirals using the Teukolsky equation for the same masses of the inspiralling
compact object and massive black holes. This curve shows the sky-averaged horizon, i.e., the maximum redshift at which
the SNR averaged over inclinations and orientations of the EMRI system reaches the threshold value of 20. Tabulated
Teukolsky results are only available for selected values of the spin of the central black hole, so we show the horizon
assuming all the central black holes have either spin a• = 0 or a• = 0.9. The Teukolsky horizon appears significantly
lower than the AK horizon, but this is a result of the sky-averaging approximation – the sky averaged SNR is expected
to be a factor of about 2.5 lower than the SNR of an “optimally oriented” binary. The AK horizon was computed using
a Monte Carlo simulation over orientations and sky locations for the source and will therefore approach the value for an
optimally-oriented binary. The difference between the sky-averaged Teukolsky horizon and the AK horizon is therefore
consistent with the expected level of difference. The maximum horizon for the Teukolsky curves is at a similar value for
the mass of the central black hole as the AK results – somewhat lower for a• = 0 and higher for a• = 0.9, as we would
expect since inspirals into more rapidly spinning black holes emit radiation at higher frequencies, which shifts the peak
sensitivity to higher masses. For the same reason, we see that the eLISA horizon is at a higher redshift for more rapidly
spinning central black holes.

In figure 21 (right) we plot the distribution of maximum SNR as a function of redshift for the Monte Carlo simulation
performed using the AK waveforms. A nearby EMRI will be detectable with SNR of many tens, with SNRs of 30 being
available out to z = 0.5. EMRI can be detected with an SNR of 20 up to z � 0.7, up to a volume of about 70 Gpc3,
encompassing the last 6 billion years of the Universe.

EMRIs are the most complex sources to model and to search for. However, if they can be detected, this complexity
will allow us to estimate the parameters of the system with great accuracy (Babak et al., 2010, Cornish, 2011, Gair
et al., 2008). For an EMRI detected with a certain SNR, the parameter estimation accuracy does not strongly depend
on the detector configuration, since any detected EMRI will be observed for many waveform cycles. For this reason the
parameter estimation accuracy achievable with eLISA is essentially the same as reported in the published LISA literature
(Barack and Cutler, 2004, Huerta and Gair, 2009). For any EMRI observed with SNR above the detection threshold of
20, we expect to measure the mass M• and spin a• of the central massive black hole with a precision to better than a part
in 104. This is illustrated in Figure 22, that shows the results from a Markov Chain Monte Carlo analysis (Cornish and
Porter, 2006) of a source at z = 0.55 with SNR = 25. The plots show the distribution of errors for a particular source that
would be recovered by analysing the data from the detector. Results are shown for the mass M•/M� and spin a• of central
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Table 2: Estimated number of EMRI events detectable by eLISA. The first three columns shows the results computed
using the Teukolsky waveform model, assuming all black holes have fixed spin of 0, 0.5 or 0.9. The last column shows
results computed using the analytic kludge waveform model.

Teukolsky
Waveform model with black hole spin Analytic Kludge

a• = 0 a• = 0.5 a• = 0.9
Number of events 30 35 55 50

black hole, the mass m/M• of the stellar black hole, and the eccentricity at plunge ep. Our analysis also shows that the
luminosity distance DL to the source is determined with an accuracy of less than 1 % and the source sky location can be
determined to around 0.2 square degrees. While the SNR is quite low for this source, the accuracy in the estimation of
parameters is very good.

6 Estimating the event rates of extreme mass ratio inspirals for eLISA

We can use the horizon distances described in the preceding section to compute the likely number of EMRI events
that eLISA will detect, if we make further assumptions about the EMRI occurring in the Universe. This depends on
the black hole population and on the rate at which EMRI occur around massive black holes with particular properties.
The latter is poorly known, and we will use results from Hopman (2009) and Amaro-Seoane and Preto (2011) for the
rate of inspirals involving black holes. The rate Γ• is found to scale with the central black hole mass, M•, as Γ• ∼
400 Gyr−1

(
M•/3 × 106 M�

)−0.19
. We do not consider neutron star and white dwarf inspirals in these rate estimates as the

expected number of detections with eLISA is less than one in both cases, due to the considerably reduced horizon distance
for these events. We therefore fix the mass of the inspiraling body at 10 M�, as in the previous section.

To model the black hole population, we take the mass function of black holes to be in the intrinsic mass range
104 M� � M• � 5 × 106 M�. Using the assumption that there is no evolution in the black hole mass function, we sampled
sources from a uniform distribution in co-moving volume. These assumptions are consistent with the mass function
derived from the observed galaxy luminosity function using the M• − σ relation, and excluding Sc-Sd galaxies (Aller
and Richstone, 2002, Gair, 2009a, Gair et al., 2004). For the results using the AK waveform model, we choose the spin
of the central object uniformly in the range 0 ≤ a ≤ 0.95, the eccentricity of the orbit at plunge uniformly in the range
0.05 ≤ ep ≤ 0.4 and all angles to be uniform or uniform in cosine as appropriate. For the Teukolsky based results we do
not need to specify the angles, as we use a sky and orientation averaged sensitivity, and we do not specify the eccentricity
or inclination as the orbits are all circular and equatorial (although we assume equal numbers of prograde and retrograde
inspirals). As before, the Teukolsky results are available for fixed values of the spin only, so we estimate the event rate
assuming that all the black holes have spin 0, 0.5 or 0.9.

It is important also to correctly randomise over the plunge time of the EMRI. For the AK calculation, we choose
the plunge time uniformly in 0 yr ≤ tp ≤ 5 yr, with time measured relative to the start of the eLISA observation and
assuming an eLISA lifetime of 2 years. Although sufficiently nearby events with plunge times greater than 5 years in
principle could be detected, it was found that such events contribute less than one event to the total event rate. For
the Teukolsky calculation, we evaluated the observable lifetime for every event, which is the amount of time during the
inspiral that eLISA could start to observe that will allow sufficient SNR to be accumulated over the mission lifetime to
allow a detection (Gair, 2009a).

In table 2 we give the results of this calculation for different waveform models and black hole spins. The predicted
number of events depends on the assumptions about the waveform model and the spin of the black holes, but it is in the
range of 25 – 50 events in two years. The number of events predicted for the AK model is higher because the presence
of eccentricity in the system tends to increase the amount of energy radiated in the eLISA band. The analytic kludge
estimates include randomisation over the black hole spin, orbital eccentricity and inclination, so the true detection rate is
likely to be closer to this number, although this depends on the unknown astrophysical distribution of EMRI parameters.
Even with as few as 10 events, Gair et al. (2010) show that the slope of the mass function of massive black holes in the
mass range 104 M� – 106 M� can be determined to a precision of about 0.3, which is the current level of observational
uncertainty.
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7 Black hole coalescence events in star clusters

In closing this section on astrophysical black holes, we explore briefly the possibility that an instrument like eLISA
will detect coalescences between low-mass massive black holes (called also intermediate-mass black holes) in the mass
range 102 M� – 104 M�. These coalescence events do not result from the assembly of dark matter halos, but rather they
are local coalescence events occurring in star clusters under extreme (and largely unexplored) astrophysical conditions.
Given the tiny radius of gravitational influence (about 0.01 pc) of such light black holes on the surrounding dense stellar
environment, their detection is extremely difficult, and their existence has never been confirmed, though evidence has
been claimed in a number of globular clusters (see Miller, 2009, Miller and Colbert, 2004, and references therein).

An intermediate-mass black hole may form in a young cluster if the most massive stars sink to the cluster’s centre due
to mass segregation before they evolve and explode. There, they start to physically collide. The most massive star gains
more and more mass and forms a runaway star that may collapse to form an intermediate-mass black hole (Freitag et al.,
2006a,c, Gürkan et al., 2004, Portegies Zwart et al., 2004, Portegies Zwart and McMillan, 2000). Intermediate-mass black
holes can be observed by eLISA via the inspiral of compact objects such as stellar mass black holes (Konstantinidis et al.,
2011), or when they form a binary. The formation of an intermediate-mass black hole binary can occur via star-cluster
star-cluster collisions like those found in the Antennæ galaxy (Amaro-Seoane et al., 2010a, Amaro-Seoane and Freitag,
2006a), or via formation in situ (Gürkan et al., 2006).

eLISA will observe intermediate-mass black hole binaries with SNR > 10 out to a few Gpc (Santamaría et al., 2010),
and it will detect stellar-mass black holes plunging into an intermediate-mass black hole in a massive star cluster in the
local Universe (Konstantinidis et al., 2011). Event rates are hard to predict due to large uncertainties in the dynamical
formation of intermediate mass black holes in star clusters, but we may observe as many as a few events per year (Amaro-
Seoane and Freitag, 2006a). The detection of even a single event would have great importance for astrophysics, probing
the existence of black holes in this unexplored mass range and shedding light on the complex dynamics of dense stellar
clusters.

6 Confronting General Relativity with Precision Measurements
of Strong Gravity

1 Setting the stage

GR is a theory of gravity in which gravitational fields are manifested as curvature of spacetime. GR has no adjustable
parameters other than Newton’s gravitational constant, and it makes solid, specific predictions. Any test can therefore
potentially be fatal to its viability, and any failure of GR can point the way to new physics. Confronting GR with
experimental measurements, particularly in the strong gravitational field regime, is therefore an essential enterprise. In
fact, despite its great successes, we know that GR cannot be the final word on gravity, since it is a classical theory that
necessarily breaks down at the Planck scale. As yet there is no complete, quantum theory of gravity, and gravitation is
not unified with the other fundamental forces. Under such a premise, several stress tests of GR have been proposed, each
of them potentially fatal to the theory, however all of them involve low energies and length-scales much larger than the
Planck scale.

Although so far GR has passed all the tests to which it has been subjected (Will, 2006), most of these tests were set
in the weak-field regime, in which the parameter ε = v2/c2 ∼ GM/(Rc2) is much smaller than one. Here v is the typical
velocity of the orbiting bodies, M their total mass, and R their typical separation.

For the tests of GR that have been carried out in our Solar System, expected second-order GR corrections to the
Newtonian dynamics are of the order ε ∼ 10−6 − 10−8 , and so to date it has been sufficient to expand GR equations to the
first Post-Newtonian (PN) order. Solar System tests are completely consistent with GR to this order of approximation.

Binary pulsars, which are essentially very stable and accurate clocks with typical orbital velocities v/c ∼ 10−3 (ε ∼
10−6), are excellent laboratories for precision tests of GR (Lorimer, 2008). Current observations of several binary pulsars
are perfectly consistent with the GR predictions, with orbits again calculated to the first PN order. Observations of the first
binary pulsar to be discovered, PSR 1913+16, also provided the first astrophysical evidence for gravitational radiation,
a 2.5-PN-order effect. Loss of energy due to gravitational-wave emission (radiation reaction) causes the binary orbit to
shrink slowly; its measured period derivative Ṗ agrees with GR predictions to within 0.2 %, consistent with measurement
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Figure 23: Gravitational wave signal for the final few orbits, plunge, merger and ringdown of a coalescing binary. The
total mass of system M(1 + z) = 2 × 106 M�, mass ratio m1/m2 = 2, spin magnitudes a1 = 0.6 a2 = 0.55, misalignment
between spins and orbital angular momentum few degrees, the distance to the source z = 5. The inset shows the signal on
a larger data span.

error bars (Weisberg and Taylor, 2005). Another double pulsar system, SR J0737-3039 A and B, allows additional tests
of GR that were not available prior to its discovery (Kramer et al., 2006). In that system, the orbital period derivative is
consistent with GR at the 0.3 % level, and the Shapiro delay agrees to within 0.05 % with the predictions of GR (Kramer
and Wex, 2009).

However, the gravitational fields responsible for the orbital motion in known binary pulsars are not much stronger than
those in the Solar System: the semimajor axis of the orbit of PSR 1913+16 is about 1.4 R�. Such weak fields limit the
ability of binary pulsars to probe nonlinear GR dynamics. They do provide important tests of strong-field static gravity,
as the redshift at the surface of a neutron star is of order 0.2.

eLISA observations of coalescing massive black hole binaries, or of stellar-mass compact objects spiralling into mas-
sive black holes, will allow us to confront GR with precision measurements of physical regimes and phenomena that are
not accessible through Solar System or binary pulsar measurements. The merger of comparable-mass black hole binaries
produces an enormously powerful burst of gravitational radiation, which eLISA will be able to measure with amplitude
SNR as high as a few hundred, even at cosmological distances.

In the months prior to merger, eLISA will detect the gravitational waves emitted during the binary inspiral; from that
inspiral waveform, the masses and spins of the two black holes can be determined to high accuracy. Given these physical
parameters, numerical relativity will predict very accurately the shape of the merger waveform, and this can be compared
directly with observations, providing an ideal test of pure GR in a highly dynamical, strong-field regime.
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Stellar-mass compact objects spiralling into massive black holes will provide a qualitatively different test, but an
equally exquisite one. The compact object travels on a near-geodesic of the spacetime of the massive black hole. As
it spirals in, its emitted radiation effectively maps out the spacetime surrounding the massive black hole. Because the
inspiralling body is so small compared to the central black hole, the inspiral time is long and eLISA will typically be able
to observe of order 105 cycles of inspiral waveform, all of which are emitted as the compact object spirals from 10 horizon
radii down to a few horizon radii. Encoded in these waves is an extremely high precision map of the spacetime metric just
outside the central black hole. Better opportunities than these for confronting GR with actual strong-field observations
could hardly be hoped for.

The LIGO and Virgo detectors should come online around 2015, and their sensitivity is large enough that they should
routinely observe stellar mass black hole coalescences, where the binary components are of roughly comparable mass.
However, even the brightest black hole mergers that LIGO and Virgo should observe will still have an amplitude SNR
about 10 to 100 times smaller than the brightest massive black hole coalescences that eLISA will observe. The precision
with which eLISA can measure the merger and ringdown waveforms will correspondingly be better by the same factor
when compared to ground-based detectors. The situation is similar for the EMRI described in the previous section: while
ground-based detectors may detect binaries with mass ratios of about 10−2 (e.g., a neutron star spiralling into a 100 M�
black hole), in observations lasting approximately 102 – 103 cycles, the precision with which the spacetime can be mapped
in such cases is at least two orders of magnitude worse than what is achievable with eLISA’s EMRI sources. Thus eLISA
will test our understanding of gravity in the most extreme conditions of strong and dynamical fields, and with a precision
that is two orders of magnitude better than that achievable from the ground.

GR has been extraordinarily fruitful in correctly predicting new physical effects, including gravitational lensing, the
gravitational redshift, black holes and gravitational waves. GR also provided the overall framework for modern cosmol-
ogy, including the expansion of the Universe. However, our current understanding of the nonlinear, strong gravity regime
of GR is quite limited. Exploring gravitational fields in the dynamical, strong-field regime could reveal new objects that
are unexpected, but perfectly consistent with GR, or even show violations of GR.

The best opportunity for making such discoveries is with an instrument of high sensitivity. Ground-based detectors
like LIGO and Virgo will almost certainly always have to detect signals by extracting them from deep in the instrumental
noise, and they will therefore depend on prior predictions of waveforms. eLISA, on the other hand, will have enough
sensitivity that many signals will show themselves well above noise; unexpected signals are much easier to recognize
with such an instrument.

2 Testing strong-field gravity: The inspiral, merger, and ringdown of massive black hole bina-
ries

eLISA’s strongest sources are expected to be coalescing black hole binaries where the components have roughly
comparable masses, 0.1 < m2/m1 < 1. Their signal at coalescence will be visible by eye in the data stream, standing out
well above the noise, as illustrated in figure 23.

As discussed in section 8, black hole binary coalescence can be schematically decomposed into three stages (inspiral,
merger, and ringdown), all of which will be observable by eLISA for a typical source. The inspiral stage is a relatively
slow, adiabatic process, well described by the analytic PN approximation. The inspiral is followed by the dynamical
merger of the two black holes, that form a single, highly distorted black hole remnant. Close to merger, the black hole
velocities approach v/c ∼ 1/3 and the PN approximation breaks down, so the waveform must be computed by solving
the full Einstein equations via advanced numerical techniques. The distorted remnant black hole settles down into a
stationary rotating solution of Einstein’s equations (a Kerr black hole) by emitting gravitational radiation. This is the
so called “ringdown” phase, where the gravitational wave signal is a superposition of damped exponentials QNM, and
therefore similar to the sound of a ringing bell.

While numerical relativity is required to understand the gravitational radiation emitted during merger, the post-merger
evolution – i.e., the black hole “quasinormal ringing” – can be modelled using black hole perturbation theory. The final
outcome of the ringdown is the Kerr geometry, with a stationary spacetime metric that is determined uniquely by its mass
and spin, as required by the black hole“no-hair” theorem.

For equal-mass black hole binaries with total mass M in the range 2 × 105 M� < M(1 + z) < 2 × 106 M�, where z is
the cosmological redshift of the source, the inspiral SNR and post-inspiral (merger plus ring-down) SNR are within an
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order of magnitude of each other. From a typical eLISA observation of the inspiral part of the signal, it will be possible to
determine the physical parameters of the binary to extremely high accuracy. Using these parameters, numerical relativity
can predict very precisely the merger and ringdown waves. Measurements of the individual masses and spins will allow
us to predict the mass and the spin of the remnant black hole (Rezzolla et al., 2008b), which can be directly tested against
the corresponding parameters extracted from the ringdown. The merger and ringdown waveforms will typically have an
SNR of 102 – 103 for binary black holes with total mass 105 M� < M(1 + z) < 6 × 108 M� at z = 1, so an extremely clean
comparison will be possible between the observed waveforms and the predictions of GR.

The inspiral stage: comparing inspiral rate with predictions of General Relativity

With orbital velocities v/c typically in the range 0.05 – 0.3, most of the inspiral stage can be well described using high-
order PN expansions of the Einstein equations. The inspiral waveform is a chirp: a sinusoid that increases in frequency
and amplitude as the black holes spiral together. Depending on the source parameters, eLISA will be able to observe
the final stages of the inspiral, for up to one year in some favourable cases. To give a practical reference, when the
gravitational-wave frequency sweeps past 0.3 mHz, the time remaining until merger is approximately

t = 106.8 days
(

0.25
η

) (
M(1 + z)

2 × 105 M�

)−5/3 (
f

0.3 mHz

)−8/3

(9)

where, as above, M = m1 + m2 is the total mass of the binary and η = m1m2/M
2 is the symmetric mass ratio. eLISA

will observe the last 102 – 104 gravitational wave inspiral cycles, depending on the total mass and distance of the source.
Since the inspiral signal is quite well understood theoretically, matched filtering can be used to recognise these inspirals
up to a year before the final merger, at a time when the total SNR is still small. Moreover, as the total SNR in the inspiral
is quite large in many cases, and such signals are long lived, matched filtering based on the inspiral waveform alone can
determine the system parameters to very high accuracy. Both masses can be determined to within a fractional error of
about 10−2 – 10−1, and the spin of the primary black hole can be measured to an accuracy of 10 % or better.

The nonlinear structure of GR (and possible deviations from GR) could be encoded in a phenomenological way by
considering hypothetical modifications of the gravitational wave amplitude and phasing, as proposed by different authors
(Arun et al., 2006, Yunes and Pretorius, 2009). The relatively large strength of the inspiral gravitational wave signal will
allow a sensitive test of GR by comparing the rate of the observed inspiral (phase evolution) to predictions of the PN
approximation to GR (Cornish et al., 2011, Huwyler et al., 2011, Li et al., 2011, Mishra et al., 2010).

The merger stage: spectacular bursts

The inspiral is followed by a dynamical merger that produces a burst of gravitational waves. This is a brief event,
comprising a few cycles lasting about 5×103 s

(
M/106 M�

)
(0.25/η), yet very energetic: during the merger the gravitational

wave luminosity is LGW ∼ 1023 L�, emitting more power than all the stars in the observable Universe. The final merger of
massive binaries occurs in the very strong-field, highly nonlinear and highly dynamical regime of GR, and is the strongest
gravitational wave source that eLISA is expected to see. eLISA will be able to see the merger of two 104 M� black hole
beyond redshift z = 20, and for mergers of two 106 M� black hole at z = 1 the SNR will be about 2000. As mentioned
above, eLISA observations of the inspiral yield a good measurement of the masses and spins of the black holes. With
these in hand, numerical relativity will make a very specific prediction for the merger and ringdown radiation from the
system. Comparison with the waveform that eLISA actually observes will allow us to confront the predictions of GR with
an ultra-high precision measurement in the fully nonlinear and dynamical regime of strong gravity for the first time.

The ringdown stage: black hole spectroscopy

Although numerical relativity waveforms from colliding holes naturally include the ringdown waves, these waves are also
well understood analytically. GR predicts, as a consequence of the “no-hair” theorem, that every excited black hole emits
gravitational waves until it reaches a time-independent state characterised entirely by its mass and spin. These ringdown
waves consist of a set of superposed black hole QNM waves with exponentially damped sinusoidal time dependence, plus
a far weaker “tail”. The modes are strongly damped as their energy is radiated away to infinity, so the final ringdown stage
is brief, lasting only a few cycles.
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The QNM of Kerr black hole can be computed using perturbation theory: the spacetime metric is written as the Kerr
metric plus a small perturbation, and Einstein’s equations are expanded to first-order in that perturbation. The solutions
can be decomposed into a sum of damped exponentials with complex eigenfrequencies (Chandrasekhar and Detweiler,
1975) that can be computed to essentially arbitrary accuracy (Leaver, 1985).

While there are infinitely many modes (corresponding to the angular order and overtone number of the perturbation
from the stationary state), the lowest-order modes are the most readily excited and the least strongly damped, so in practice
only a few modes are likely to be observed.

The frequencies and damping times of these ringdown QNM (tabulated in Berti et al., 2009) are completely determined
by the mass and the spin of the remnant black hole.

A data analysis strategy based on multi-mode searches will be necessary for an accurate estimation of the mass and
spin of the final black hole (Berti et al., 2007, 2006). Furthermore, if we can measure at least two different QNM in a
ringdown signal, the ringdown radiation itself will provide a strong-field test of the hypothesis that the central massive
objects in galactic nuclei are indeed Kerr black holes. The reason is that a two-mode signal contains four parameters (the
frequencies and damping times of each mode), which must all be consistent with the same mass and spin values (Dreyer
et al., 2004). Just like we can identify chemical elements via spectroscopic measurements, we can uniquely identify a
black hole (determine its mass and spin) from the spectrum of its ringdown radiation.

If GR is correct but the observed radiation is emitted from a different source (exotic proposals include boson stars
and gravastars, among others), the spectrum would most certainly be inconsistent with the QNM spectrum of Kerr black
holes in GR (Berti and Cardoso, 2006, Chirenti and Rezzolla, 2007, Pani et al., 2009, Yoshida et al., 1994). The same
should occur if GR does not correctly describe gravity in the extremes of strong fields and dynamical spacetimes. The
fact that black hole oscillations should produce different radiation spectra in different theories of gravity is true in general
(Barausse and Sotiriou, 2008), and the spectrum was studied in some specific extensions of GR, such as Einstein-dilaton-
Gauss-Bonnet gravity (Pani and Cardoso, 2009). The possibility of testing the no-hair theorem with QNM depends on the
accuracy with which frequencies and damping times can be measured, which in turn depends on the SNR of the ringdown
signal. As shown in (Berti, 2006, Berti et al., 2007), SNR larger than 50 should be sufficient to identify the presence
of a second mode and use it for tests of the no-hair theorem. This is only marginally achievable with advanced Earth-
based detectors, but SNR of this order should be the norm for the black hole mergers detectable by eLISA. Furthermore,
recent work showed that multi-mode ringdown waveforms could encode information on parameters of the binary before

merger, such as the binary’s mass ratio (Kamaretsos et al., 2011), and this would provide further consistency checks on
the strong-field dynamics of general relativity.

3 Extreme mass ratio inspirals: precision probes of Kerr spacetime

EMRI are expected to be very clean astrophysical systems, except perhaps in the few percent of galaxies containing
accreting massive black holes, where interactions with the accretion disk could possibly affect the EMRI dynamics. Over
timescales of the order of a day, the orbits of the smaller body are essentially geodesics in the spacetime of the massive
black hole. On longer timescales, the loss of energy and angular momentum due to gravitational-wave emission causes
the smaller body to spiral in; i.e., the geodesic’s “constants” of motion change slowly over time. Over a typical eLISA
observation time (years), EMRI orbits are highly relativistic (radius smaller than 10 Schwarzschild radii) and display
extreme forms of periastron and orbital plane precession due to the dragging of inertial frames by the massive black hole’s
spin. Figure 24 shows two sample waveforms, corresponding to short stretches of time.

Given the large amount of gravitational wave cycles collected in a typical EMRI observation (about 105), a fit of the
observed gravitational waves to theoretically calculated templates will be very sensitive to small changes in the physical
parameters of the system. As mentioned above, this sensitivity makes the search computationally challenging, but it
allows an extremely accurate determination of the source parameters, once an EMRI signal is identified. Assuming that
GR is correct and the central massive object is a black hole, eLISA should be able to determine the mass and spin of the
massive black hole to fractional accuracy of about 10−4 – 10−3 for gravitational wave signals with an SNR of 20 (Barack
and Cutler, 2004).

This level of precision suggests that we can use EMRI as a highly precise observational test of the “Kerr-ness” of
the central massive object. That is, if we do not assume that the larger object is a black hole, we can use gravitational
waves from an EMRI to map the spacetime of that object. The spacetime outside a stationary axisymmetric object is
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Figure 24: Segments of generic EMRI waveforms (Drasco and Hughes, 2006). These are the plus-polarised waves
produced by a test mass orbiting a 106M� black hole that is spinning at 90 % of the maximal rate allowed by general
relativity, a distance D from the observer. Top panel: Slightly eccentric and inclined retrograde orbit modestly far from
the horizon. Bottom panel: Highly eccentric and inclined prograde orbit much closer to the horizon. The amplitude
modulation visible in the top panel is mostly due to Lense-Thirring precession of the orbital plane. The bottom panel’s
more eccentric orbit produces sharp spikes at each pericentre passage.
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fully determined by its mass moments Ml and current multipole moments S l. Since these moments fully characterise the
spacetime, the orbits of the smaller object and the gravitational waves it emits are determined by the multipolar structure of
the spacetime. By observing these gravitational waves with eLISA we can therefore precisely characterise the spacetime
of the central object. Extracting the moments from the EMRI waves is analogous to geodesy, in which the distribution of
mass in the Earth is determined by studying the orbits of satellites. Black hole geodesy, also known as holiodesy, is very
powerful because Kerr black holes have a very special multipolar structure. A Kerr black hole with mass M• and spin
parameter a• (in units with G = c = 1) has multipole moments given by

Ml + iS l = (ia•)lMl+1
• (10)

Thus, M0 = M•, S 1 = a•M
2
• , and M2 = −a2

•M
3 , and similarly for all other multipole moments; they are all completely

determined by the first two moments, the black hole mass and spin. This is nothing more than the black hole “no-hair”
theorem: the properties of a black hole are entirely determined by its mass and spin.

For inspiraling trajectories that are slightly eccentric and slightly non-equatorial, in principle all the multipole mo-
ments are redundantly encoded in the emitted gravitational waves (Ryan, 1995), through the time-evolution of the three
fundamental frequencies of the orbit: the fundamental frequencies associated with the r, θ, and φ motions (Drasco and
Hughes, 2004), or, equivalently, the radial frequency and the two precession frequencies.

The mass quadrupole moment M2 of a Kerr black hole can be measured to within ΔM2 ≈ 10−2 M•
3 − 10−4 M•

3 for
signals with an SNR of 30 (Barack and Cutler, 2004), At the same time ΔM•/M• and ΔS 1/M

2
• will be estimated to an

accuracy of 10−4 – 10−3.

Any inconsistency with the Kerr multipole structure could signal a failure of GR, the discovery of a new type of
compact object, or a surprisingly strong perturbation from some other material or object. For a review of the different
hypotheses regarding the nature of the central object see (Babak et al., 2011, Sopuerta, 2010).

Other tests of the Kerr nature of the central massive object have also been proposed. EMRI signals can be used to
distinguish definitively between a central massive black hole and a boson star (Kesden et al., 2005). In the black hole case
the gravitational wave signal “shuts off” shortly after the inspiraling body reaches the last stable orbit (and then plunges
through the event horizon), while for a massive boson star, the signal does not fade, and its frequency derivative changes
sign, as the body enters the boson star and spirals toward its centre. Similarly, if the central object’s horizon is replaced by
some kind of membrane (this is the case for the so-called gravastars) the orbital radiation produced by the orbiting body
could resonantly excite the QNM of the gravastar, with characteristic signatures in the gravitational wave energy spectrum
that would be detectable by eLISA (Pani et al., 2009).

Other studies within GR considered axisymmetric solutions of the Einstein field equations for which the multipole
moments can differ from the Kerr metric, such as the Manko-Novikov solution. These studies revealed ergodic orbital
motion in some parts of the parameter space (Gair, 2009b) as a result of the loss of the third integral of motion. A similar
study suggested that the inspiralling body could experience an extended resonance in the orbital evolution when the ratio
of intrinsic frequencies of the system is a rational number (Lukes-Gerakopoulos et al., 2010). If detected, these features
would be a robust signature of a deviation from the Kerr metric.

These and similar studies of “bumpy” Kerr black holes – spacetime metrics with a multipolar stucture that deviates
from the Kerr spacetime by some “tunable” amount (Collins and Hughes, 2004, Glampedakis and Babak, 2006, Hughes,
2006, Ryan, 1995, Vigeland et al., 2011, Vigeland and Hughes, 2010) – focussed on understanding whether the best fit
to eLISA data is consistent with the Kerr solution within general relativity. However, an even more exciting prospect is
that modifications in EMRI waveforms might arise because the true theory of gravity is in fact different from GR. For
example, black holes in dynamical Chern-Simons theory (a parity-violating, quantum-gravity inspired extension of GR)
deviate from Kerr black holes in the fourth multipole moment � = 4. This affects geodesic motion, and therefore the
phasing of the gravitational wave signal (Pani et al., 2011, Sopuerta and Yunes, 2009).

Gravitational wave observations of black hole-black hole binaries cannot discriminate between GR and scalar-tensor
theories of gravity. The reason is that black holes do not support scalar fields; i.e., they have no scalar hair. However,
eLISA could place interesting bounds on scalar-tensor theories using observations of neutron stars spiralling into massive
black holes (Berti et al., 2005, Yagi and Tanaka, 2010). These limits will be competitive with – but probably not much
more stringent than – Solar System and binary pulsar measurements (Esposito-Farèse, 2004).

Finally, eLISA observations of compact binaries could provide interesting bounds on Randall-Sundrum inspired
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braneworld models (McWilliams, 2010, Yagi et al., 2011). A general framework to describe deviations from GR in
different alternative theories and their imprint on the gravitational wave signal from EMRI can be found in (Gair and
Yunes, 2011).

Most high-energy modifications to GR predict the existence of light scalar fields (axions). If such scalar fields exist,
as pointed out long ago by Detweiler and others (Detweiler, 1980), rotating black holes could undergo a superradiant
“black hole bomb” instability for some values of their spin parameter. Depending on the mass of axions, string-theory
motivated “string axiverse” scenarios predict that stable black holes cannot exist in certain regions of the mass/angular
momentum plane (Arvanitaki and Dubovsky, 2011). Furthermore, this superradiant instability could produce a surprising
result: close to the resonances corresponding to a superradiant instability the EMRI would stop, and the orbiting body
would float around the central black hole. These “floating orbits” (for which the net gravitational energy loss at infinity
is entirely provided by the black hole’s rotational energy) are potentially observable by eLISA, and they could provide a
smoking gun of high-energy deviations from general relativity (Cardoso et al., 2011, Yunes et al., 2011).

In conclusion we remark that, if GR must be modified, the “true” theory of gravity should lead to similar deviations in
all observed EMRI. For this reason, statistical studies of EMRI to test GR would alleviate possible disturbances that may
cause deviations in individual systems, such as interactions with an accretion disk (Barausse and Rezzolla, 2008, Barausse
et al., 2007, Kocsis et al., 2011), perturbations due to a second nearby black hole (Yunes et al., 2011) or by a near-by star,
which could allow us to investigate different models of how stars distribute around a massive black hole (Amaro-Seoane
et al., 2012).

4 Intermediate mass ratio binaries

A loud gravitational wave source for eLISA would be the IMRI of binaries comprising a middleweight (or equivalently
intermediate-mass) black hole, with mass in the range of a few times 102 M� to a few times 104 M�, along with either a
massive black hole (106 M�) or a solar-mass black hole. Currently there is no fully convincing evidence for the existence
of intermediate-mass black holes, primarily due to the enormous observational difficulties of resolving the central region
of dwarf galaxies and/or globular clusters, the two most likely places where they might reside. eLISA is one of the most
promising observatories for discovering these middleweight black holes.

The strength of the gravitational wave signal from an IMRI lies between that of massive black hole binaries and EMRI,
and the signal itself carries features of both limiting types, including a relatively fast frequency evolution and compara-
ble contribution of several harmonics to the total strength of the signal. According to the proposed eLISA sensitivity,
IMRI could be seen up to redshift z ∼ 4. There are good reasons to expect that IMRI orbits may have measurable ec-
centricity (Amaro-Seoane, 2006, Amaro-Seoane et al., 2010b, Amaro-Seoane and Freitag, 2006b, Amaro-Seoane et al.,
2009, Amaro-Seoane and Santamaría, 2010, Sesana, 2010). It may also be possible in some cases to observe the grav-
itational spin-spin coupling between the two black holes (equivalent to the Lense-Thirring effect). The precision in the
measurements of the source parameters will lie between that of EMRI and comparable-mass binaries.

5 The mass of the graviton

In GR, gravitational waves travel with the speed of light and the graviton is hence massless. Alternative theories with a
massive graviton predict an additional frequency-dependent phase shift of the observed waveform. The dominant effect
can be expressed at 1-PN order, and would change the PN coefficient ψ2 in the stationary-phase approximation to the
Fourier transform of the waveform as follows:

ψ2 → ψ2 −
128π2

3
Gη3/5M

c2

D

λ2
g(1 + z)

, (11)

where η is again the symmetric mass ratio. This term alters the time of arrival of waves of different frequencies, causing
a dispersion, and a corresponding modulation in the phase of the signal that depends on the Compton wavelength λg and
the distance D to the binary. Hence, by tracking the phase of the inspiral waves, eLISA should set bounds in the range
λg ∈ [2 × 1016 km, 1018 km] on the graviton Compton wavelength (Berti et al., 2011, Huwyler et al., 2011), improving
current Solar System bound on the graviton mass, mg < 4 × 10−22 eV (λg > 3 × 1012 m) by several orders of magnitude.
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Statistical observations of an ensemble of black hole coalescence events could be used to yield stringent constraints
on other theories whose deviations from GR are parametrized by a set of global parameters: examples considered so far in
the literature include theories with an evolving gravitational constant (Yunes et al., 2010), massive Brans-Dicke theories
(Alsing et al., 2011) and Lorentz-violating modifications of GR (Mirshekari et al., 2011).

7 Cosmology

1 New physics and the early Universe

Gravitational waves penetrate all of cosmic history, which allows eLISA to explore scales, epochs, and new physical
effects not accessible in any other way (see figure 25). Indeed a detectable gravitational wave background in the eLISA
band is predicted by a number of new physical ideas for early cosmological evolution (Hogan, 2006, Maggiore, 2000).
Two important mechanisms for generating stochastic backgrounds are phase transitions in the early Universe and cosmic
strings.

Gravitational waves produced after the Big Bang form a fossile radiation: expansion prevents them from reaching
thermal equilibrium with the other components because of the weakness of the gravitational interaction. Important infor-
mation on the first instants of the Universe is thus imprinted in these relics and can be decoded. The mechanical effect of
expansion is simply to redshift the corresponding frequency. Assuming that the wavelength is set by the apparent horizon
size c/H∗ = ca/ȧ at the time of production (when the temperature of the Universe is T∗), the redshifted frequency is

f0 = ȧ(t) ≈ 10−4 Hz

√
H∗(t) ×

1 mm
c
≈ 10−4 Hz

(
kBT∗
1 TeV

)
(12)

Thus, the eLISA frequency band of about 0.1 mHz to 100 mHz today corresponds to the horizon at and beyond the
Terascale frontier of fundamental physics. This allows eLISA to probe bulk motions at times about 3 × 10−18 – 3 × 10−10

seconds after the Big Bang, a period not directly accessible with any other technique. Taking a typical broad spectrum
into account, eLISA has the sensitivity to detect cosmological backgrounds caused by new physics active in the range of
energy from 0.1 TeV to 1000 TeV, if more than a modest fraction ΩGW of about 10−5 of the energy density is converted to
gravitational radiation at the time of production.

Various sources of gravitational wave background of cosmological origin are presented in detail in Binétruy et al.
(2012). Here we will only briefly summarize the main mechanisms leading to the potentially observable backgrounds.

A standard example of new physics is a first-order phase transition resulting in bubble nucleation and growth, and sub-
sequent bubble collisions and turbulence. Phase transitions also often lead to the formation of one-dimensional topologi-
cal defects known as cosmic strings. Among possible topological defects, cosmic strings are unique from a cosmological
point of view because, whereas their energy density should grow with the expansion, they interact and form loops which
decay into gravitational waves. Thus cosmic strings tend to form networks with a typical scaling behaviour, losing energy
mainly through gravitational radiation with a very broad and uniquely identifiable spectrum. Besides topological defects,
cosmic strings could also find their origin among the fundamental objects of string theory, the theory that is aiming at
providing a unified framework for all particles and forces of nature. Indeed, although fundamental strings were devised
as submicroscopic objects, it has been progressively realized (Copeland et al., 2004) that some of these strings could
be stretched to astronomical size by the cosmic expansion. eLISA will be our most sensitive probe for these objects by
several orders of magnitude and so offers the possibility of detecting direct evidence of fundamental strings.

In order to distinguish backgrounds of gravitational waves from those waves emitted by point sources, it is essential
to make use of the successive positions of eLISA around the Sun, and thus to wait a sufficient amount of time (of the
order of a few months). It is more difficult to disentangle an isotropic cosmological (or astrophysical) background from
an instrumental one, all the more because the eLISA “Mother-Daughter” configuration, providing only two measurement
arms, does not allow to use Sagnac calibration (Hogan and Bender, 2001). Luckily, in the case of phase transitions as
well as cosmic strings, the spectral dependence of the signal is well predicted and may allow to distinguish cosmological
backgrounds as long as they lie above the eLISA sensitivity curve.
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Figure 25: The observed (redshifted) frequency of wave-generating phenomena is shown as a function of cosmic scale
factor a, with the present epoch at the right. The redshifted Hubble rate (horizon scale) is shown in black for a stan-
dard Grand Unified Theory (GUT) and a lower temperature Terascale (TeV) inflationary cosmology. Blue regions are
accessible to electromagnetic (EM) observations: the Universe since recombination (right box) and cosmic microwave
background (CMB) fluctuations (left box). The red bar shows the range of cosmic history accessible through eLISA from
processes within the horizon up to about 1000 TeV.
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First-order cosmological phase transitions: Bulk motion from bubble nucleation, cavitation, collisions, turbulence

Abundant evidence suggests that the physical vacuum was not always in its current state, but once had a significantly
higher free energy. This idea is fundamental and general: it underlies symmetry breaking in theories such as the Standard
Model and its supersymmetric extensions, and cosmological models including almost all versions of inflation. Common
to all these schemes is the feature that a cold, nearly uniform free energy contained in the original (false) vacuum is
liberated in a phase transition to a final (true) vacuum, and eventually converted into thermal energy of radiation and hot
plasma.

In many theories beyond the Standard Model, the conversion between vacuum states corresponds to a first-order phase
transition. In an expanding Universe this leads to a cataclysmic process. After supercooling below the critical temperature
T∗ for the transition, a thermal or quantum jump across an energy barrier leads to the formation of bubbles of the new
phase. The bubbles rapidly expand and collide. The internal energy is thus converted to organised flows of mass-energy,
whose bulk kinetic energy eventually dissipates via turbulence and finally thermalises. The initial bubble collision and
subsequent turbulent cascade lead to relativistic flows and acceleration of matter that radiate gravitational waves on a scale
not far below the horizon scale (Caprini et al., 2009, Hogan, 1986, Huber and Konstandin, 2008, Kamionkowski et al.,
1994, Witten, 1984).

The gravitational wave energy densityΩGW typically depends on two parameters: H∗/β is the duration of the transition
in Hubble units and α is the fraction of energy density available in the source (false vacuum, relativistic motion). Typically
ΩGW ∼ Ωrad (H∗/β)2 (κ α)2/(1 + α)2, where Ωrad is the the fraction of radiation energy today, and κ the fraction of vacuum
energy which is converted into bulk kinetic energy during the phase transition. Strong first order phase transitions are
obtained for α  1 but, in the context of specific models, increasing α may increase β as well.

Dynamics of warped sub-millimetre extra dimensions

Superstring theory provides examples of strong first order phase transitions in the Terascale region. It requires, for mathe-
matical consistency, several extra dimensions. The sizes of these dimensions, their shapes, and how they are stabilised are
yet to be determined. If they exist, gravity can penetrate into them, so they must be small or warped – with a size below
the sub-millimetre scale limit set by direct laboratory tests of the gravitational inverse-square law. The scales probed
by Standard Model particles and fields are much smaller than this, but fields other than gravity might be confined to a
3-dimensional subspace or (mem)brane plunged in the higher dimensional space.

Since the the Hubble length at the Terascale is about a millimetre, the current threshold where possible new effects
of extra dimensions might appear happens to be about the same for experimantal gravity in the laboratory as for the
cosmological regime accessible to eLISA. It is even possible that new properties of gravity on this scale are related to
cosmic dark energy, whose energy density is about (0.1 mm)−4 in particle physics units.

The dynamics associated with the stabilisation of extra dimensions at a certain size or warp radius might introduce
a source of free internal energy released coherently on a mesoscopic, i.e. sub-millimetre to nanometre scale, leading to
a detectable background (Hogan, 2000, Randall and Servant, 2007). If the extra dimensions are much smaller than the
Hubble length when the stabilisation occurs, the behaviour of the extra dimensions is nearly equivalent to scalar field
behaviour as viewed in conventional 3-dimensional space, with effects similar to the phase transitions discussed above
(see figure 26).

Backgrounds, bursts, and harmonic notes from cosmic strings

As we have seen above, models of physics and cosmology based on string theory, as well as their field-theory counterparts,
often predict the cosmological formation of cosmic superstrings (Copeland et al., 2004) that form after inflation and are
stretched to enormous length by the cosmic expansion. In equivalent field-theory language, cosmic strings arise from
certain types of phase transitions, and stable relics of the high-energy phase persist as topological defects: in the form of
one-dimensional strings that resemble flux tubes or trapped vortex lines.

The primordial network of strings produces isolated, oscillating loops that ultimately radiate almost all of their energy
into gravitational waves. Their gravitational radiation is mainly governed by a single dimensionless parameter Gμ/c4

reflecting the fundamental physics of the strings, where G is Newton’s constant and μ is the energy per unit length, or
tension. This parameter is known to be very small, as current limits on gravitational wave backgrounds already indicate
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Figure 26: Predictions for the holographic phase transition (Konstandin et al., 2010) corresponding to the model of Randall
and Sundrum with a TeV brane stabilized. In black, the sensitivity curve of eLISA expressed in terms of the gravitational
wave background density ΩGW. In red, signals corresponding to a phase transition temperature of 102 GeV. In dashed
blue, a transition temperature of 104 GeV. From top to bottom, curves correspond to β/H∗ = 6 and β/H∗ = 15.
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Figure 27: Typical string background expected for eLISA (whose sensitivity curve is in red) in the large loop scenario in
blue (α determines the loop size as a fraction of the horizon size) and in the small loop scenario in dashed (ε ≡ α/(50Gμ)).
See Binétruy et al. (2012) for more details.

that if cosmic strings exist, they must be so light that they would have few observable effects apart from their gravitational
radiation.

Figure 27 compares eLISA sensitivity (in red) with predicted stochastic background spectra in two distinct scenarios:
large loops in blue (where newly formed loops are about α = 0.1 times the horizon size) for two values of Gμ/c4 spanning
a range of scenarios motivated by brane world inflation, and small loops in dashed (with α = 50εGμ) for one value
of Gμ/c4. We note that the spectrum from cosmic strings is distinguishably different from that of phase transitions or
any other predicted source: it has nearly constant energy per logarithmic frequency interval over many decades at high
frequencies, and falls off after a peak at low frequencies, since large string loops are rare and radiate slowly. In the
small loop scenario, the peak frequency shifts to lower values when increasing ε, whereas the amplitude decreases with
Gμ/c4. This allows an interesting interplay between measurements at eLISA, ground interferometers and millisecond
pulsar arrays: depending on the parameters, one may have detection of the string background at one, two or three of these
different types of detectors. In the large loop scenario, eLISA sensitivity in terms of Gμ/c4 is several orders of magnitude
deeper than even the best possible future sensitivity from pulsar timing.

If the strings are not too much lighter than Gμ/c4 ∼ 10−10, occasional distinctive bursts might be seen from loops,
produced by a sharply bent bit of string moving at nearly the speed of light (Damour and Vilenkin, 2005, Siemens et al.,
2006). These rare events, known as kinks or cusps, are recognisable, if they are intense enough to stand out above the
background, from their universal waveform which derives just from the geometry of the string. Cusps are localized in time
whereas kinks are propagating along the strings. In the case of fundamental strings, the presence of junctions between
strings leads to a proliferation of kinks (Binétruy et al., 2010, Bohé, 2011).

Although individual burst events, if detected, give the clearest signature of a string source, the first detectable sign of
a superstring loop population is likely their integrated stochastic background as shown in figure 27.
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Terascale inflationary reheating

Inflation represents an extraordinarily coherent behaviour of an energetic scalar field that is nearly uniform across the
observable Universe. After inflation, the internal potential energy of this field is converted into a thermal mix of relativistic
particles, in a process known as reheating. The reheating temperature might be as cool as 1 TeV, especially in some brane-
world models where the Planck scale is itself not far above the Terascale.

There is no reason to assume a quiet, orderly reheating process: the decay of the inflaton energy may be violently
unstable. In many scenarios, the conversion begins with macroscopically coherent but inhomogeneous motions that even-
tually cascade to microscopic scales. Quantum coherent processes such as preheating transform the energy into coherent
classical motions that can generate backgrounds on the order of 10−3 or more of the total energy density (Dufaux et al.,
2007, 2009, Easther and Lim, 2006, Garcia-Bellido and Figueroa, 2007, Khlebnikov and Tkachev, 1997). The character-
istic frequency of the background can fall in the eLISA band if the final reheating occurred at 0.1 TeV to 1000 TeV.

Exotic inflationary quantum vacuum fluctuations

The amplification of quantum vacuum fluctuations during inflation leads to a background of primordial gravitational
waves. An optimistic estimate of this background in the case of conventional inflation limits these to less than about
10−10 of the CMB energy density, far below eLISA’s sensitivity; in many inflation models it is much less (Chongchitnan
and Efstathiou, 2006). However, some unconventional versions of inflation, particularly pre-Big-Bang or bouncing brane
scenarios, predict possibly detectable backgrounds in the eLISA band (see e.g. Brustein et al., 1995, Buonanno, 2003,
Buonanno et al., 1997). Although some key parameters remain unknown, which limits the predictive power of these
models, they are significantly constrained by gravitational wave backgrounds. If such a background is detected, its
spectrum also contains information about the Universe at the time perturbations re-enter the horizon (the second horizon
intersection in figure 25).

2 Cosmological measurements with eLISA

As discussed in section 4 we can probe the assembly of cosmic structures through observations of black hole binaries up
to high redshifts. In addition to that, gravitational wave sources could serve as standard sirens for cosmography (Holz and
Hughes, 2005), because chirping binary systems allow direct measurements of the luminosity distance to the source. The
principle is elegant and simple (Schutz, 1986): the chirping time τ of an inspiral/merger event, together with its orbital
frequency ω and strain h, gives the absolute luminosity distance to the source, DL ∼ c/(ω2τh), with a numerical factor
depending on details of the system that are precisely determined by the measured waveform. However, eLISA cannot
independently determine the redshift of a source, since in gravitational wave astronomy, the measured source frequency
and chirp time are always combined with cosmic redshift ω = ωsource/(1 + z), τ = (1 + z)τsource, i.e., the redshift is
degenerate with the source intrinsic parameters. An independent measurement of redshift is therefore needed. This may
be accomplished by getting the optical redshift to the host galaxy, for instance by identifying an electromagnetic radiation
counterpart to the event.

In the last decade, several mechanisms producing electromagnetic counterparts to black hole binary coalescences have
been proposed (e.g., Armitage and Natarajan, 2002, Milosavljević and Phinney, 2005, Phinney, 2009); an exhaustive re-
view can be found in (Schnittman, 2011). While there are still uncertainties in the nature and strength of such counterparts,
we might expect some of them to be observable at least in the local Universe (say, z ≤ 1). Our parameter estimation sim-
ulations show that, at low redshift, we could expect to localize at least 50 % of the inspiralling black holes to better than
400 square degrees and about 11 % to better than 10 square degrees. Merger and ringdown (if observed) should further
improve those numbers. As a practical example, wide area surveys like LSST (LSST Science Collaborations et al., 2009)
in optical or the VAST project using the Australian Square Kilometer Array Pathfinder (Johnston et al., 2007) in radio
will have the capability of covering such large area in the sky to high depth several times per day during and right after
the merger event, looking for distinctive transients. Any identified counterpart will provide precise measurements of the
source redshift and sky location. We can use this information to perform directional search (fixing the sky location of the
gravitational wave source) in the eLISA data and the resulting uncertainty in the luminosity distance drops to less than 1 %
for 60 % (5 % for 87 %) of the sources. Those numbers are comparable with (or even lower than) the weak lensing error
at these low redshifts (Wang et al., 2002). Ultra-precise measurements of the redshift and the luminosity distance will
allow us to cross–check the SNIa measurements (Perlmutter and Riess, 1999, Riess et al., 1998), and because of the very
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different systematics from the usual cosmological distance ladder estimates, will be a strong check on hidden systematic
errors in these measurements. This will improve the estimation of cosmological parameters, such as H0 and w.

Without electromagnetic identification of the host, we can check statistical consistency between all the possible hosts
detected within the measurement error box, to infer cosmological parameters as suggested in (Petiteau et al., 2011). To
realize this scheme one needs a rather good source sky location and distance determination, which is possible with eLISA
only at low redshifts (z < 2). In the local Universe, the same technique applied to EMRI will allow precision measurement
of H0 (MacLeod and Hogan, 2008) at a level of a few percent.

8 Conclusions: science and observational requirements

In this document we have presented the science that eLISA will be able to do, which ranges from ultra-compact binaries
to cosmology and tests of GR.

In particular, we note that eight of the known ultra-compact binaries will be detected by eLISA as verification binaries.
Upcoming wide-field and synoptical surveys will most likely discover more verification binaries before eLISA’s launch.
eLISA will detect about 3,000 double white dwarf binaries individually. Most have orbital periods between 5 and 10
minutes and have experienced at least one common-envelope phase, so they will provide critical tests of physical models of
the common-envelope phase. These sources are exactly the population which has been proposed as progenitors of normal
as well as peculiar (type Ia) supernovae. eLISA will tell us if the formation of all ultra-compact binaries is enhanced in
globular clusters by dynamical interactions. The millions of ultra-compact binaries that will not be individually detected
by eLISA will form a detectable foreground from which the global properties of the whole population can be determined.
The binaries detected by eLISA will improve our knowledge of tidal interactions in white dwarfs, mass-transfer stability
and white dwarf mergers. eLISA will unravel the Galactic population of short-period neutron star and black hole binaries,
and thus determine their local merger rate. eLISA will measure the sky position and distance of several hundred binaries,
constraining the mass distribution in the Galaxy and providing an independent distance estimate to the Galactic centre.
The level and shape of the Galactic foreground will constrain the relative contributions of thin disc, thick disc and halo
populations and their properties. For several hundred sources the orbital inclination will be determined to better than 10
degrees, allowing to test if binaries are statistically aligned with the Galactic disc.

One of the most promising science goals of the mission are supermassive black holes, which appear to be a key
component of galaxies. They are ubiquitous in near bright galaxies and share a common evolution. The intense accretion
phase that supermassive black holes experience when shining as QSOs and AGN erases information on how and when the
black holes formed. eLISA will unravel precisely this information. Very massive black holes are expected to transit into
the mass interval to which eLISA is sensitive along the course of their cosmic evolution. eLISA will then map and mark
the loci where galaxies form and cluster, using black holes as clean tracers of their assembly by capturing gravitational
waves emitted during their coalescence, that travelled undisturbed from the sites where they originated. On the other
hand, middleweight black holes of 105 M� are observed in the near universe, but our knowledge of these systems is rather
incomplete. eLISA will investigate a mass interval that is not accessible to current electromagnetic techniques, and this is
fundamental to understand the origin and growth of supermassive black holes. Due to the transparency of the universe to
gravitational waves at any redshift, eLISA will explore black holes of 105 M� – 107 M� out to a redshift z � 20, tracing
the growth of the black hole population.

eLISa will also shed light on the path of black holes to coalescence in a galaxy merger. This is a complex process, as
various physical mechanisms involving the interaction of the black holes with stars and gas need to be at play and work
effectively, acting on different scales (from kpc down to 10−3 pc). Only at the smallest scales gravitational waves are the
dominant dissipative process driving the binary to coalescence. eLISA will trace the last phase of this evolution. Dual
AGN, i.e. active black holes observed during their pairing phase, offer the view of what we may call the galactic precursors
of black hole binary coalescences. They are now discovered in increasing numbers, in large surveys. By contrast, evidence
of binary and recoiling AGN is poor, as the true nature of a number of candidates is not yet fully established. eLISA only
will offer the unique view of an imminent binary merger by capturing its loud gravitational wave signal.

There exist major uncertainties in the physical mechanism(s) conducive to the gravitational collapse of a star (or per-
haps of a very massive quasi-stars) leading to the formation of the first black holes in galaxies. The mass of seed black
holes ranges from a few hundred to a few thousand solar masses. Seed black holes later grow, following different evolu-
tions according to their different formation path and clustering inside dark matter halos, and eLISA aims at disentangling
different routes of evolution. eLISA will considerably reduce uncertainties on the nature of the seed population, as the
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number of observed mergers and the inferred masses will allow to decide among the different models or, in the case of
concurrent models, determine their prevalence.

According to the theoretical findings we have presented, massive black hole masses and spins evolve through coales-
cence and accretion events. Black hole spins offers the best opportunity to determine whether accretion episodes prior to
coalescence are coherent or chaotic. Masses and spins are directly encoded into the gravitational waves emitted during the
the merger process. eLISA will measure the masses and spins of the black holes prior to coalescence, offering unprece-
dented details on how black hole binaries have been evolving via mergers and accretion along cosmic history. At present,
coalescence rates, as a function of redshift and in different mass bins, can only be inferred theoretically, using statistical
models for the hierarchical build-up of cosmic structures. These models, firmly anchored to low redshift observations,
indicate that the expected detection rates for eLISA range between few and few hundred per year.

Current electromagnetic observations are probing only the tip of the massive black hole distribution in the universe,
targeting black holes with large masses, between 107 M� − 109 M�. Conversely, eLISA will be able to detect the gravita-
tional waves emitted by black hole binaries with total mass (in the source rest frame) as small as 104 M� and up to 107 M�,
out to a redshift as remote as z ∼ 20. eLISA will detect fiducial sources out to redshift z � 10 with SNR � 10 and so it will
explore almost all the mass-redshift parameter space relevant for addressing scientific questions on the evolution of the
black hole population. Redshifted masses will be measured to an unprecedented accuracy, up to the 0.1–1% level, whereas
absolute errors in the spin determination are expected to be in the range 0.01–0.1, allowing us to reconstruct the cosmic
evolution of massive black holes. eLISA observations hence have the potential of constraining the astrophysics of massive
black holes along their entire cosmic history, in a mass and redshift range inaccessible to conventional electromagnetic
observations.

On smaller scales, eLISA will also bring a new revolutionary perspective, in this case relative to the study of galactic
nuclei. eLISA will offer the deepest view of galactic nuclei, exploring regions to which we are blind using current
electromagnetic techniques and probing the dynamics of stars in the space-time of a Kerr black hole, by capturing the
gravitational waves emitted by stellar black holes orbiting the massive black hole. EMRI detections will allow us to infer
properties of the stellar environment around a massive black hole, so that our understanding of stellar dynamics in galactic
nuclei will be greatly improved. Detection of EMRIs from black holes in the eLISA mass range, that includes black holes
similar to the Milky Way’s, will enable us to probe the population of central black holes in an interval of masses where
electromagnetic observations are challenging. eLISA’s EMRIs can be detected up to z � 0.5 − 0.7 allowing to explore a
volume of several tens of Gpc3 and discover massive black holes in dwarf galaxies that are still elusive to electromagnetic
observations. eLISA may also measure the mass of stellar-mass black holes. This will provide invaluable information on
the mass spectrum of stellar black holes, and on the processes giving rise to compact stars. eLISA will detect EMRI events
out to redshift z ∼ 0.7, in normal galaxies with high SNR, and in the mass interval, 104 M� � M � 5 × 106 M�. eLISA
will measure the mass and spin of the large, massive black hole with a precision to better than a part in 104. This will
enable us to characterise the population of massive black holes in nuclei in an interval of masses where electromagnetic
observations are poor, incomplete or even missing, providing information also on their spins. eLISA will also measure
with equivalent precision the mass of the stellar black hole in the EMRI event, and also the orbital eccentricity at plunge.
These observations will provide insight on the way stars and their remnants are forming and evolving in the extreme
environment of a galactic nucleus. The estimated detection rates based on the best available models of the black hole
population and the EMRI rate per galaxy, are about 50 events with a two year eLISA mission, with a factor of � 2
uncertainty from the waveform modelling and lack of knowledge about the likely system parameters (larger uncertainties
are of astrophysical nature). Even with a handful of events, EMRIs will be a powerful astrophysical probe of the formation
and evolution of massive and stellar black holes. We also note that the detection with eLISA of even a single coalescence
event involving two intermediate mass black holes in colliding star clusters, present in the very local universe, would be
a major discovery, and it would have a strong impact in the field of stellar dynamics and stellar evolution in star forming
regions.

General Relativity has been extensively tested in the weak field regime both in the solar system and by using binary
pulsars. eLISA will provide a unique opportunity of confronting GR in the highly dynamical strong field regime of massive
black holes. eLISA will be capable of detecting inspiral and/or merger plus ring-down parts of the gravitational wave
signal from coalescing massive black holes binaries of comparable mass. For the nearby events (z ∼ 1) the last several
hours of the gravitational wave signal will be clearly seen in the data, allowing direct comparison with the waveforms
predicted by GR. The inspiral phase could be observed by eLISA up to a year before the final merger with relatively large
SNR. Comparison of the observed inspiral rate with the predictions of GR will provide a valuable test of the theory in the
regime of strong, dynamical gravitational fields.

The merger of two black holes could be observed by eLISA throughout the Universe if it falls into the detector band.
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The observation of the merger could be confronted directly with the predictions of GR and, if the inspiral is also observed,
could be used for a consistency check between the two parts of the gravitational wave signal. According to GR the merger
leads to a single ringing Kerr black hole characterised by its mass and spin. Detecting two or more quasinormal modes
(the individual damped exponential components of the so-called ringdown radiation) will allow us to check whether the
final object indeed is described only by two parameters in accord with the no-hair theorem of GR. eLISA will give us a
unique opportunity to observe middleweight mass black holes in the local Universe. If observed, these systems would
provide an additional testbed for GR.

eLISA will be capable of setting an upper limit on the mass of graviton that is at least four orders of magnitude better
than the current limit based on observations in the Solar System. The discovery of coalescing binary black holes, sign-
posts of (pre-)galactic mergers, will test, albeit indirectly, the hypothesis which is at the heart of the current paradigm of
galaxy formation, i.e. their assembly in a bottom-up fashion. Furthermore coalescing binary black holes can be regarded
as standard sirens, and they may allow a direct measurement of the luminosity distance to the source. If coalescence
is accompanied by an electromagnetic signal that permits the measurement of the optical redshift of the source eLISA
will improve upon the estimation of cosmological parameters, such as the Hubble constant and the dark-energy param-
eter w. eLISA will have unique capabilities in detecting signatures from (or setting meaningful constraints on) a wide
range of cosmological phenomena and fundamental physics. Gravitational radiation backgrounds are predicted in cosmo-
logical models that include first order phase transitions, late-ending inflation, and dynamically active mesoscopic extra
dimensions. eLISA will provide the most sensitive direct probes of such phenomena near TeV energies.

We state now the eLISA science requirements (SR) which summarize the research needed to fulfill the eLISA ob-
jectives. For each science requirement, one or more observational requirements (OR) are defined. The observational
requirements are stated in terms of observable quantities necessary to meet the science requirements, and in terms of the
precision with which such quantities must be measured.

• Galactic binaries

– SR 1.1 : Elucidate the formation and evolution of Galactic stellar-mass compact binaries and thus constrain

the outcome of the common envelope phase and the progenitors of (type Ia) supernovae.

∗ OR 1.1.1 : eLISA shall have the capability to detect at least 1000 binaries at SNR > 10 with orbital periods
shorter than approximately six hours and determine their period. eLISA shall maintain this detection
capability for at least one year.
∗ OR 1.1.2 : eLISA shall detect all neutron star and black hole binaries in the Milky Way with periods

shorter than 35 minutes if they exist.
∗ OR 1.1.3 : eLISA shall have the capability to measure the level of the unresolved Galactic foreground.

eLISA shall maintain this detection capability for at least one year.

– SR 1.2 : Determine the spatial distribution of stellar mass binaries in the Milky Way.

∗ OR 1.2.1 : eLISA shall have the capability to determine the position of at least 500 sources with better
than ten square degree angular resolution and the frequency derivative to a fractional uncertainty of 10
%.
∗ OR 1.2.2 : eLISA shall measure the inclination of at least 500 binaries to better than 10 degrees.

– SR 1.3 : Improve our understanding of white dwarfs, their masses, and their interactions in binaries, and

enable combined gravitational and electromagnetic observations.

∗ OR 1.3 : eLISA shall have the capability to measure the frequency derivative of all detected binary
systems with gravitational wave frequencies above 10 mHz to better than 10 %.

• Massive black hole binaries

– SR 2.1 : Trace the formation, growth and merger history of massive black hole with masses 105M� − 107M�
during the epoch of growth of QSO and widespread star formation (0 < z < 5) through their coalescence in

galactic halos.

∗ OR 2.1.1 : eLISA shall have the capability to detect the mergers of similar masses massive black hole
(mass ratio m2/m1 > 0.1) with total mass in the range 105 M� < m1 +m2 < 107 M� up to redshift z = 20.
The SNR of those sources with redshift z < 5 should be sufficient to enable determination of the massive
black hole masses (relative errors smaller than 1 %) and the spin of the largest massive black hole (error
smaller than 0.1) and an estimation of the luminosity distance (relative error smaller than 50 %).
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∗ OR 2.1.1 : eLISA shall have the capability to detect the mergers of massive black hole with total mass in
the range 105M� < m1 + m2 < 107M� and mass ratio m2/m1 about 0.01 up to redshift z = 8. The SNR
of those sources with redshift z < 5 shall be sufficient to enable determination of the massive black hole
masses (relative errors smaller than a few percents).

– SR 2.2 : Capture the signal of coalescing massive black hole binaries with masses 2× 104 M� − 105 M� in the

range of 5 < z < 10 when the universe is less than 1 Gyr old.

∗ OR 2.2.1 : eLISA shall have the capability to detect the mergers of comparable mass massive black hole
(mass ratio m2/m1 > 0.1) with total mass in the range 2 × 104 M� < m1 + m2 < 105 M� beyond redhift
z = 5 and up to z = 15 for equal mass systems with sufficient SNR to enable determination of the massive
black hole masses (relative errors smaller than 1 %) and the spin of the largest massive black hole (error
smaller than 0.1) and an estimation of the luminosity distance (relative error smaller than 50 %).
∗ OR 2.2.2 : eLISA shall have the capability to detect some of the mergers of massive black hole with total

mass in the range 2 × 104 M� < m1 + m2 < 105 M� and mass ratio 0.01 < m1/m2 < 0.1 beyond redshift
z = 5 with sufficient SNR to enable determination of the massive black hole masses with relative errors
smaller than a few percent.

• Extreme (and intermediate) mass ratio inspiral

– SR 3.1 : Characterise the immediate environment of massive black hole in z < 0.7 galactic nuclei from EMRI

capture signals.

∗ OR 3.1 : eLISA shall have the capability to detect gravitational waves emitted during the last two years
of inspiral for a stellar-mass compact object (m2 ∼ 5 M� − 20 M�) orbiting a massive black hole (m1 ∼
105 M� − 106 M�) up to z = 0.7 with an SNR > 20 . The detection of those sources shall be sufficient
to determine the mass of the massive black hole with an relative error smaller than 0.1 %, the spin of the
massive black hole with an error smaller than 10−3, and the mass of the compact object with a relative
error smaller than 0.1 %, as well as the orbital eccentricity before the plunge with an error smaller than
10−3.

– SR 3.2 : Discovery of intermediate-mass black holes from their captures by massive black hole.

∗ OR 3.2 : eLISA shall have the capability to detect gravitational waves emitted by a 102 M� − 104M�
intermediate-mass black hole spiralling into an massive black hole with mass 3 × 105M� − 107M� out to
z ∼ 2 − 4 (for a mass ratio around 10−2 to 10−3).

• Confronting General Relativity with Precision Measurements of Strong Gravity

– SR 4.1 : Detect gravitational waves directly and measure their properties precisely.

∗ OR 4.1.1 : eLISA shall have capability to detect and study three or more optically observable verification
binaries between 1 mHz and 10 mHz with SNR > 10 in two years of mission lifetime.
∗ OR 4.1.2 : eLISA shall be capable of observing the gravitational waves from at least 50 % of all z ∼ 2

coalescing binary systems consisting of compact objects with masses between 105 M� and 106 M� and
mass ratios between 1 : 1 and 1 : 3. eLISA shall detect these systems with SNR ≥ 5 in each of five
equal logarithmic frequency bands between 0.1 mHz (or the lowest observed frequency) and the highest
inspiral frequency.

– SR 4.2 Test whether the central massive objects in galactic nuclei are consistent with the Kerr black holes of

General Relativity.

∗ OR 4.2 : eLISA shall have the capability to detect gravitational waves emitted during the last year of
inspiral for a 10 M� black hole orbiting a 105 M� and 106 M� black hole up to z = 0.7 with SNR >
20. eLISA shall have a science mission duration with adequate observation time for extreme mass-ratio
inspirals (EMRIs) to sweep over a range of r/M to map space-time.

– SR 4.3 : Perform precision tests of dynamical strong-field gravity.

∗ OR 4.3.1 : eLISA shall have the capability to observe the inspiral radiation from massive black hole
with masses between 105 M� − 106 M� and mass ratio m2/m1 > 1/3 to z ≤ 5 with an average SNR >
30, measuring the mass to better than 1 % and spin parameters to better than 0.1. The SNR should be
sufficient to check consistency of the inspiral waveform with the predictions of the General Theory of
Relativity.
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∗ OR 4.3.2 : eLISA shall have the capability to observe the merger and ring-down radiation from massive
black hole with masses between 105 M� − 106 M� and mass ratio m2/m1 > 1/3 to z ≤ 8 with an average
SNR > 60, measuring the mass to better than 1 % and spin parameters to better than 0.3. The SNR
should be sufficient to check consistency with the predictions of the General Theory of Relativity based
on inspiral measurements.

• Cosmology

– SR 5.1 : Measure the spectrum of cosmological backgrounds, or set upper limits on them in the 10−4Hz −
10−1Hz band.

∗ OR 5.1 : eLISA shall be capable of setting an upper limit on the spectrum of a stochastic gravitational
wave background in the 10−4Hz − 10−1Hz band.

– SR 5.2 : Search for gravitational wave bursts from cosmic string cusps and kinks.

∗ OR 5.2 : eLISA shall be capable of detecting gravitational wave bursts from cusps or kinks, or of setting
cosmologically interesting constraints on cosmic (super-)strings.

• Discovery

– SR 6.1 : Search for unforeseen sources of gravitational waves

∗ OR 6.1 : eLISA shall be sensitive over discovery space for unforeseen effects (e.g. even at frequencies
where we cannot predict likely signals from known classes of astrophysical sources). eLISA shall allow
for reliable separation of real strain signals from instrumental and environmental artifacts.

Acknowledgements

The following scientists contributed significantly through work regarding the previous study (in alphabetical order): Be-
rangere Argence (APC), Stuart Aston (Birmingham), Gerard Auger (APC), John Baker (GSFC), Simon Barke (AEI),
Matthew Benacquista (UTB), Iouri Bykov (AEI), Martin Caldwell (RAL), Jordan Camp (GSFC), John Conklin (Stan-
ford), Dan deBra (Stanford), Luciano Di Fiore (Naples), Christian Diekmann (AEI), Juan Jose Esteban Delgado (AEI),
Roland Fleddermann (AEI), Antonio Garcia (AEI), Catia Grimani (Urbino) Felipe Guzman (AEI/GSFC), Hubert Hal-
loin (APC), Tupper Hyde (GSFC), Ian Harris (JPL), Gerhard Heinzel (AEI), Martin Hewitson (AEI) Steven Hochman (U
Florida), Daniel Hollington (Imperial College), Nick Jedrich (GSFC), Mac Keiser (Stanford), Christian Killow (Glasgow),
William Klipstein (JPL), Joachim Kullmann (AEI), Jeffrey Livas (GSFC), Achmed Mansoor (GSFC), Kirk McKenzie
(JPL), Stephen Merkowitz (GSFC), Shawn Mitryk (U Florida), Anneke Monsky (AEI), Guido Müller (U Florida), Miquel
Nofrarias (AEI), Kenji Numata (GSFC), Frank Ohme (AEI), Eric Plagnol (APC), Moshe Pniel (JPL), Scott Pollack (Uni-
versity of Washington), Alix Preston (UF), Volker Quetschke (UTB), Emma Robinson (AEI), Dave Robertson (Glasgow),
Albrecht Rüdiger (AEI), Josep Sanjuan (IEEC Barcelona), B. Sathyaprakash (U Cardiff), Daniel Shaddock (ANU), Diana
Shaul (Imperial College), Ben Sheard (AEI), Robert Spero (JPL), Frank Steier (AEI), Ke-Xun Sun (Stanford), Dylan
Sweeney (U Florida), David Tanner (UF), Michael Troebs (AEI), Glenn de Vine (JPL), Vinzenz Wand (AEI), Gudrun
Wanner (AEI), Brent Ware (JPL), Peter Wass (U Trento/Imperial College), Bill Weber (U Trento), Yinan Yu (U Florida),
Alberto Vecchio (U Birmingham), and Andreas Zoellner (Stanford).

We acknowledge the rest of the members of the former joint science team for LISA, whose work constituted a crucial
starting point for our article, even if they are not included in the authorship list of this paper: Thomas A Prince (JPL), Peter
Bender (JILA), Sasha Buchman (Stanford University), Joan Centrella (NASA GFSC), Massimo Cerdonio (INFN Padua),
Mike Cruise (University of Birmingham), Curt J Cutler (JPL), Lee Sam Finn (PennState University), Jens Gundlach
(University of Washington), Craig Hogan (Fermilab), Jim Hough (University of Glasgow), Scott A. Hughes (MIT), Piero
Madau (UC Santa Cruz), Yannick Mellier (IAP), Sterl Phinney (Caltech), Douglas O. Richstone (University of Michigan),
Kip Thorne (Caltech), and Jean-Yves Vinet (Observatoire de Côte d’Azur).

It is a pleasure for P.A.S to thank Antón for the very interesting discussions about black holes and astrophysics. This
work has been supported by the Transregio 7 “Gravitational Wave Astronomy” financed by the Deutsche Forschungs-
gemeinschaft DFG (German Research Foundation). E.Berti was supported by NSF Grant PHY-0900735 and by NSF
CAREER Grant PHY-1055103. A. Klein was supported by the Swiss National Science Foundation. T. B. Littenberg was
supported by NASA Grant 08-ATFP08-0126. R. N. Lang was supported by an appointment to the NASA Postdoctoral
Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with
NASA. M. Vallisneri performed this work at the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration.

64 of 81



eLISA: Astrophysics and cosmology in the millihertz regime

References
Abel, T., Bryan, G. L., and Norman, M. L. (2002). The Formation of the First Star in the Universe. Science, 295:93–98.
Alexander, T. (2005). Stellar processes near the massive black hole in the Galactic center [review article]. Phys. Rep.,

419:65–142.
Aller, M. C. and Richstone, D. (2002). The Cosmic Density of Massive Black Holes from Galaxy Velocity Dispersions.

AJ, 124:3035–3041.
Alsing, J., Berti, E., Will, C., and Zaglauer, H. (2011). Gravitational radiation from compact binary systems in the massive

Brans-Dicke theory of gravity. ArXiv e-prints.
Amaro-Seoane, P. (2006). Gravitational waves from coalescing massive black holes in young dense clusters. In

S. M. Merkovitz & J. C. Livas, editor, Laser Interferometer Space Antenna: 6th International LISA Symposium, volume
873 of American Institute of Physics Conference Series, pages 250–256.

Amaro-Seoane, P., Brem, P., Cuadra, J., and Armitage, P. J. (2012). The Butterfly Effect in the Extreme-mass Ratio
Inspiral Problem. ApJ Letts, 744:L20.

Amaro-Seoane, P., Eichhorn, C., Porter, E. K., and Spurzem, R. (2010a). Binaries of massive black holes in rotating
clusters: dynamics, gravitational waves, detection and the role of eccentricity. MNRAS, 401:2268–2284.

Amaro-Seoane, P., Eichhorn, C., Porter, E. K., and Spurzem, R. (2010b). Binaries of massive black holes in rotating
clusters: dynamics, gravitational waves, detection and the role of eccentricity. MNRAS, 401:2268–2284.

Amaro-Seoane, P. and Freitag, M. (2006a). Intermediate-Mass Black Holes in Colliding Clusters: Implications for Lower
Frequency Gravitational-Wave Astronomy. ApJ, 653:L53–L56.

Amaro-Seoane, P. and Freitag, M. (2006b). Intermediate-Mass Black Holes in Colliding Clusters: Implications for Lower
Frequency Gravitational-Wave Astronomy. ApJ Letts, 653:L53–L56.

Amaro-Seoane, P., Gair, J. R., Freitag, M., Miller, M. C., Mandel, I., Cutler, C. J., and Babak, S. (2007). TOPICAL
REVIEW: Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using
LISA. Class. Quantum Grav., 24:113–+.

Amaro-Seoane, P., Miller, M. C., and Freitag, M. (2009). Gravitational Waves from Eccentric Intermediate-Mass Black
Hole Binaries. ApJ Letts, 692:L50–L53.

Amaro-Seoane, P. and Preto, M. (2011). The impact of realistic models of mass segregation on the event rate of extreme-
mass ratio inspirals and cusp re-growth. Class. Quantum Grav., 28(9):094017–+.

Amaro-Seoane, P. and Santamaría, L. (2010). Detection of IMBHs with Ground-based Gravitational Wave Observatories:
A Biography of a Binary of Black Holes, from Birth to Death. ApJ, 722:1197–1206.

Armitage, P. J. and Natarajan, P. (2002). Accretion during the Merger of Supermassive Black Holes. ApJ, 567:L9–L12.
Armitage, P. J. and Natarajan, P. (2005). Eccentricity of Supermassive Black Hole Binaries Coalescing from Gas-rich

Mergers. ApJ, 634:921–927.
Arun, K. G., Babak, S., Berti, E., Cornish, N., Cutler, C., Gair, J., Hughes, S. A., Iyer, B. R., Lang, R. N., Mandel, I.,

Porter, E. K., Sathyaprakash, B. S., Sinha, S., Sintes, A. M., Trias, M., Van Den Broeck, C., and Volonteri, M. (2009).
Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce. Class. Quantum Grav.,
26(9):094027–+.

Arun, K. G., Iyer, B. R., Qusailah, M. S. S., and Sathyaprakash, B. S. (2006). Probing the nonlinear structure of general
relativity with black hole binaries. Phys. Rev. D, 74(2):024006–+.

Arvanitaki, A. and Dubovsky, S. (2011). Exploring the string axiverse with precision black hole physics. Phys. Rev. D,
83(4):044026–+.

Babak, S., Baker, J. G., Benacquista, M. J., Cornish, N. J., Larson, S. L., Mandel, I., McWilliams, S. T., Petiteau, A.,
Porter, E. K., Robinson, E. L., Vallisneri, M., Vecchio, A., Data Challenge Task Force, t. M. L., Adams, M., Arnaud,
K. A., Błaut, A., Bridges, M., Cohen, M., Cutler, C., Feroz, F., Gair, J. R., Graff, P., Hobson, M., Shapiro Key, J.,
Królak, A., Lasenby, A., Prix, R., Shang, Y., Trias, M., Veitch, J., Whelan, J. T., and participants, t. C. . (2010). The
Mock LISA Data Challenges: from challenge 3 to challenge 4. Class. Quantum Grav., 27(8):084009–+.

Babak, S., Gair, J. R., Petiteau, A., and Sesana, A. (2011). Fundamental physics and cosmology with LISA. Class. Quan-

tum Grav., 28(11):114001–+.
Bahcall, J. N. and Wolf, R. A. (1976). Star distribution around a massive black hole in a globular cluster. ApJ, 209:214–

232.
Bahcall, J. N. and Wolf, R. A. (1977). The star distribution around a massive black hole in a globular cluster. II Unequal

star masses. ApJ, 216:883–907.
Baker, J. G., Boggs, W. D., Centrella, J., Kelly, B. J., McWilliams, S. T., Miller, M. C., and van Meter, J. R. (2008).

Modeling Kicks from the Merger of Generic Black Hole Binaries. ApJ, 682:L29–L32.
Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M., and van Meter, J. (2006). Gravitational-Wave Extraction from an

65 of 81



eLISA: Astrophysics and cosmology in the millihertz regime

Inspiraling Configuration of Merging Black Holes. Phys. Rev. Lett., 96(11):111102–+.
Ballo, L., Braito, V., Della Ceca, R., Maraschi, L., Tavecchio, F., and Dadina, M. (2004). Arp 299: A Second Merging

System with Two Active Nuclei? ApJ, 600:634–639.
Barack, L. and Cutler, C. (2004). LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter

estimation accuracy. Phys. Rev. D, 69:082005–+.
Barausse, E. and Rezzolla, L. (2008). Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio

inspirals. Phys. Rev. D, 77(10):104027–+.
Barausse, E., Rezzolla, L., Petroff, D., and Ansorg, M. (2007). Gravitational waves from extreme mass ratio inspirals in

nonpure Kerr spacetimes. Phys. Rev. D, 75(6):064026–+.
Barausse, E. and Sotiriou, T. P. (2008). Perturbed Kerr Black Holes can probe deviations from General Relativity.

Phys.Rev.Lett., 101:099001.
Barclay, T., Ramsay, G., Hakala, P., Napiwotzki, R., Nelemans, G., Potter, S., and Todd, I. (2011). Stellar variability on

time-scales of minutes: results from the first 5 yr of the Rapid Temporal Survey. MNRAS, 413:2696–2708.
Bardeen, J. M. (1970). Kerr Metric Black Holes. Nature, 226:64–65.
Bardeen, J. M. and Petterson, J. A. (1975). The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. ApJ,

195:L65+.
Barrows, R. S., Lacy, C. H. S., Kennefick, D., Kennefick, J., and Seigar, M. S. (2011). Unusual double-peaked emission

in the SDSS quasar J093201.60 + 031858.7. NewA, 16:122–127.
Barth, A. J., Ho, L. C., Rutledge, R. E., and Sargent, W. L. W. (2004). POX 52: A Dwarf Seyfert 1 Galaxy with an

Intermediate-Mass Black Hole. ApJ, 607:90–102.
Barth, A. J., Strigari, L. E., Bentz, M. C., Greene, J. E., and Ho, L. C. (2009). Dynamical Constraints on the Masses of

the Nuclear Star Cluster and Black Hole in the Late-Type Spiral Galaxy NGC 3621. ApJ, 690:1031–1044.
Begelman, M. C., Blandford, R. D., and Rees, M. J. (1980). Massive black hole binaries in active galactic nuclei. Nature,

287:307–309.
Begelman, M. C. and Shlosman, I. (2009). Angular Momentum Transfer and Lack of Fragmentation in Self-Gravitating

Accretion Flows. ApJ, 702:L5–L8.
Begelman, M. C., Volonteri, M., and Rees, M. J. (2006). Formation of supermassive black holes by direct collapse in

pre-galactic haloes. MNRAS, 370:289–298.
Bekki, K. and Graham, A. W. (2010). On the Transition from Nuclear-cluster- to Black-hole-dominated Galaxy Cores.

ApJ, 714:L313–L317.
Belczynski, K., Benacquista, M., and Bulik, T. (2010). Double Compact Objects as Low-frequency Gravitational Wave

Sources. ApJ, 725:816–823.
Belczynski, K., Kalogera, V., and Bulik, T. (2002). A Comprehensive Study of Binary Compact Objects as Gravitational

Wave Sources: Evolutionary Channels, Rates, and Physical Properties. ApJ, 572:407–431.
Bell, E. F., Phleps, S., Somerville, R. S., Wolf, C., Borch, A., and Meisenheimer, K. (2006). The Merger Rate of Massive

Galaxies. ApJ, 652:270–276.
Benacquista, M. and Holley-Bockelmann, K. (2006). Consequences of Disk Scale Height on LISA Confusion Noise from

Close White Dwarf Binaries. ApJ, 645:589–596.
Berczik, P., Merritt, D., and Spurzem, R. (2005). Long-Term Evolution of Massive Black Hole Binaries. II. Binary

Evolution in Low-Density Galaxies. ApJ, 633:680–687.
Berczik, P., Merritt, D., Spurzem, R., and Bischof, H. (2006). Efficient Merger of Binary Supermassive Black Holes in

Nonaxisymmetric Galaxies. ApJ, 642:L21–L24.
Berti, E. (2006). LISA observations of massive black hole mergers: event rates and issues in waveform modelling.

Class. Quantum Grav., 23:785–+.
Berti, E., Buonanno, A., and Will, C. M. (2005). Estimating spinning binary parameters and testing alternative theories

of gravity with LISA. Phys. Rev. D, 71:084025–+.
Berti, E., Cardoso, J., Cardoso, V., and Cavaglià, M. (2007). Matched filtering and parameter estimation of ringdown

waveforms. Phys. Rev. D, 76(10):104044–+.
Berti, E. and Cardoso, V. (2006). Supermassive black holes or boson stars? Hair counting with gravitational wave

detectors. Int.J.Mod.Phys., D15:2209–2216.
Berti, E., Cardoso, V., and Starinets, A. O. (2009). TOPICAL REVIEW: Quasinormal modes of black holes and black

branes. Class. Quantum Grav., 26(16):163001.
Berti, E., Cardoso, V., and Will, C. M. (2006). Gravitational-wave spectroscopy of massive black holes with the space

interferometer LISA. Phys. Rev. D, 73:064030–+.
Berti, E., Gair, J., and Sesana, A. (2011). Graviton mass bounds from space-based gravitational-wave observations of

massive black hole populations. ArXiv e-prints.

66 of 81



eLISA: Astrophysics and cosmology in the millihertz regime

Berti, E. and Volonteri, M. (2008). Cosmological Black Hole Spin Evolution by Mergers and Accretion. ApJ, 684:822–
828.

Bertone, S., De Lucia, G., and Thomas, P. A. (2007). The recycling of gas and metals in galaxy formation: predictions of
a dynamical feedback model. MNRAS, 379:1143–1154.

Bhattacharya, D. and van den Heuvel, E. P. J. (1991). Formation and evolution of binary and millisecond radio pulsars.
Phys. Rep., 203:1–124.

Bildsten, L. (1998). Gravitational Radiation and Rotation of Accreting Neutron Stars. ApJ, 501:L89+.
Binétruy, P., Bohé, A., Caprini, C., and Dufaux, J.-F. (2012). Cosmological Backgrounds of Gravitational Waves and

eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources. ArXiv e-prints.
Binétruy, P., Bohé, A., Hertog, T., and Steer, D. A. (2010). Gravitational wave signatures from kink proliferation on

cosmic (super-) strings. Phys. Rev. D, 82(12):126007–+.
Blanchet, L. (2006). Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living

Reviews in Relativity, 9(4).
Blecha, L., Cox, T. J., Loeb, A., and Hernquist, L. (2011). Recoiling black holes in merging galaxies: relationship to

active galactic nucleus lifetimes, starbursts and the MBH-σ∗ relation. MNRAS, 412:2154–2182.
Blecha, L. and Loeb, A. (2008). Effects of gravitational-wave recoil on the dynamics and growth of supermassive black

holes. MNRAS, 390:1311–1325.
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