CRYogenic Orbital TEstbed
Ground Test Article Thermal Analysis

TFAWS
August 13th-17th, 2012

David Piryk, a.i. Solutions (KSC)
Paul Schallhorn, Launch Services Program (KSC)
Laurie Walls, Launch Services Program (KSC)
Benny Stopnitzky, United Launch Alliance
Noah Rhys, Yetispace Inc. (MSFC)
Mark Wollen, Innovative Engineering Solutions

TFAWS 2012 – August 13th-17th, 2012
Agenda

- Introduction
- GTA Analysis Goals
- Test Facility
- Post-Test Modeling
- Post-Test Results/Correlation Efforts
- Questions/Discussion
Introduction

- CRYogenic Orbital TEstbed

Ground Test Article

- Multi Layer Insulation designed and applied to GTA to simulate Tank/LN2 on-orbit radiation-only environments
 - KSC Cryogenics Test Laboratory
- Purpose of GTA test is to measure heat loads on tank/fluid during unsteady and steady state
- GTA fitted with thermocouples at various locations
- Unique opportunity to anchor thermal model against test data
- Testing at MSFC in progress
GTA Thermal Analysis Goals

- Objectives:
 - Provide thermal performance analysis on CRYOTE GTA (e.g. analytical prediction of LN$_2$ boil off rates)
 - Correlate heat loads to LN$_2$
 - Correlate temperature responses throughout GTA
 - Evaluate MLI performance
Thermal Networks

- Thermal Networks
 - MLI and Cone
 - ESPA Ring and Cone
 - MLI and Tank
 - Cone and Tank
 - 4 titanium attach points

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012. This package may only be with the aforementioned review.
Environments

- Vacuum Chamber Environments
 - Temp proposed to be held at a constant 292K
 - Pressure proposed to be held constant
 - Effective emissivity associated with MLI surfaces
 - \(e^* = \frac{1}{(1/e_o + 1/e_i - 1)} \times \frac{1}{(N+1)} \) = theoretical \(e^* \)

2 Radiation Analysis Groups in TD Model

- Exterior Radiation Analysis Group
 - ESPA ring and outer MLI surface only
 - Exposed to vacuum chamber environments
 - Temperature set to BC of 292°F

- Interior Radiation Analysis Group
 - Cone, inner MLI surfaces and tank
Test Facility

Exploration Systems Test Facility (ESTF) at MSFC
Test Facility

Vacuum Chamber
9' diam. x 20' long
10-8 Torr

Cryogenic Test Bed
6' x 6'

Multipurpose Hydrogen Test Bed
10' x 10'

Test Tank Pressure Ctrl & boil off measurement

LN2 Feed, Drain, Vent

LN2 Dewar
240 Liter

TFAWS 2012 – August 13th-17th, 2012

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012. This package may only be with the aforementioned review.
• Testing commenced 11-18-2011
• CRYOTE GTA was initially filled to ~90% full w/LN2
• LN2 was conditioned to 18psia before steady state measurements (tank @ 14.7psia during fill)
• Received ‘Fill’ and ‘Steady State’ data sets from test team on 12-1-2011
Post-Test Thermal Desktop Modeling
Post-Test TD Modeling

• Pre-test modeling very useful for finding heat loads to LN2 but not necessarily much else
 – Due to low fidelity nature of baseline model
 – Extremely difficult to assign broad surface temperatures to thermocouple locations

• Refined goals were to capture thermal gradients along:
 – Skirt surfaces
 – Tank surfaces

• Refined goals required refined modeling
Post-Test Modeling

Thermal Mesh Quality Refinements - Skirt

Pre-Test Model:
-72 TD/RC Nodes
-6 Angular Sections

Post-Test Model:
-1504 TD/RC Nodes
-32 Angular Sections
Post-Test Modeling

Thermal Mesh Quality and Surface Refinements - MLI

Pre-Test Modeling:
- Represented as a single surface
- "Overall" effective emissivity value used
- 72 TD/RC Nodes

Post-Test Modeling:
- Represented as 4 separate sub-blankets
 (per Johnson's MLI blanket sketches)
- 5024 TD/RC Nodes
Fill and Vent Lines Added:
- Use of FLOWCAD Pipes
- Set to BCs for fill modeling

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012—This package may only be with the aforementioned review
Post Test Modeling

Pre-Test Tank Model:
- 24 TD/RC Nodes
- 2 Lumps (liquid/vapor)

Post-Test "Fill" Tank Model:
- 704 TD/RC Nodes
- Divided into 20 equal sections/surface areas
- 20 Lumps (Core)
- AKA "The Beast"

Post-Test "Steady State" Tank Model:
- 704 TD/RC Nodes
- Divided into 20 equal sections/surface areas
- Reduced to 2 Lumps (Liquid/Vapor) to decrease analysis time

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012. This package may only be with the aforementioned review.
Post-Test Results/Correlation Efforts

1.) Fill Operations
 a.) Tank Temperature Gradients
 b.) Fill Data
 c.) Skirt Temperature Gradients

2.) ‘Steady State’ Operations
 a.) Boil Off Rate of LN2
 b.) Skirt Temperature Gradients

TFAWS 2012 – August 13th-17th, 2012
Tank Gradients

- Located in this directory, open the .avi file named: “Tank Temperature Gradients - 75% Fill”
LN2 Mass in CRYOTE Tank

LN2 Mass in CRYOTE Tank, % Full by Mass

Test Data - % Full by Mass
Fill Model - % Full by Mass

TFAWS 2012 – August 13th-17th, 2012
Located in this directory, open the .avi file named: "Skirt Temperature Gradients - 75% Fill"
TC07 Test/Model Correlation

Note: Min/max skirt temps correspond to min/max temps seen from TC07-TC11.

TFAWS 2012 – August 13th-17th, 2012

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012. This package may only be with the aforementioned review.
TC08 Test/Model Correlation

Max Skirt Temp

Min Skirt Temp

Scaled Temp

Time, hrs

Test Data TC08
Model Data TC08

Note: Min/max skirt temps correspond to min/max temps seen from TC07-TC11

TFAWS 2012 – August 13th-17th, 2012

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012– This package may only be with the aforementioned review
TC09 Test/Model Correlation

Increased ΔT due to LN2 still in fill line

TC09 (Located within 1" of Fill Line)

Note: Min/max skirt temps correspond to min/max temps seen from TC07-TC11

TFAWS 2012 – August 13th-17th, 2012

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012—This package may only be with the aforementioned review
TC11 Test/Model Correlation

Max Skirt Temp

Scaled Temp

Min Skirt Temp

Time, hrs

Test Data TC11 Model Data TC11

Note: Min/max skirt temps correspond to min/max temps seen from TC07-TC11

TFAWS 2012 – August 13th-17th, 2012

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012- This package may only be with the aforementioned review
Skirt Gradients

• Located in this directory, open the .avi file named: “Skirt Temperature Gradients - Fill to Steady State”
LN2 Boil Off Correlation

Percent Boil Off Rate of LN2 in CRYOTE GTA Tank

Test Data Boil Off Rate Model Data Boil Off Rate
TFAWS 2012 – August 13th-17th, 2012

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012– This package may only be used with the aforementioned review
Boil Off vs. LN2 Fill Level

Analytical Trade Study:
Steady State Boil Off vs. Percent Full by Liquid Volume

Point where LN2 level reaches tank-to-skirt interface (~40% full by volume)

Surface area wetted at tank–skirt interface

Darkest blue represents liquid level

TFAWS 2012 – August 13th-17th, 2012
Skirt Material Props Parametric

TC07 Correlation - Skirt Material Properties

Note: Min/max skirt temps correspond to min/max temps seen from TC07-TC11

Test Data TC07 = G-10 Skirt Material Props = IM7/977-2 Skirt Material Props = Mx: k = G-10 Props and Cp = IM7/977-2 Props

TC07 - Correlation - Skirt Material Properties

TC07 Correlation - Skirt Material Properties

TFAWS 2012 – August 13th-17th, 2012

This package is part of the LSP CRYOTE Thermal and Fluids Analysis Final Peer Review held on 10 February 2012. This package may only be with the aforementioned review.
Conclusions & Recommendations

- Pre-test modeling gave accurate prediction for steady state heat loads to tank and LN2
 - Due to granularity of model surfaces, not appropriate for correlating temperature at specified thermocouple locations
- Post-test modeling provided fidelity necessary to make appropriate correlations throughout CRYOTE GTA
 - Should use caution when looking at unsteady state predictions
 - Thermophysical properties used for composite skirt were approximated as G10 props
 - Actual skirt was constructed out of a LOX compatible resin – combination of G-10 and IM7-977-2 props
- As long as fill level stays above ~35% by volume, steady state heat leak should remain relatively the same
Conclusions & Recommendations

• Modeling 4 separate MLI sub-blankets proved successful
 – e^* values used were based on: $e^* = \frac{1}{(1/e_0 + 1/e_i -1) \times [1/(N+1)]}
 - e^* value used for inner 3 blankets was lower
 - e^* value used for outer blanket was higher
 - Due to outer Beta cover (assumed to be part of 4th outer blanket)

• Validated contact conductance coefficients used for tank flange-to-composite skirt interfaces
 – Pre-test modeling assumed contact surface areas were rough in texture
 - Estimated contact conductance values were between 0.02 to 0.15 BTU/hr-R
 – Final correlated contact conductance value was in above range
 – Final HTC from tank to composite skirt to was slightly higher
 - Additional conductance from length of tank flange to tank
Questions?