ESTIMATING THE RISK OF VECTOR-BORNE INFECTIOUS DISEASE & ACUTE RESPIRATORY INFECTIONS USING SATELLITE DATA

Presented by Radina P. Soebiyanto\(^1,2\) on behalf of Richard Kiang\(^1\)

\(^1\)NASA Goddard Space Flight Center, Code 610.2, Greenbelt, MD
\(^2\)Goddard Earth Sciences Technology & Research (GESTAR), Universities Space Research Association, Columbia, MD
AGENDA

- Malaria in Thailand, Afghanistan and Korea
- Dengue in Indonesia
- Avian Influenza in Indonesia
- Seasonal Influenza in New York, Arizona and Hong Kong
MALARIA

- **Cause:**
 - *Plasmodium* spp (protozoan)
 - Carried by *Anopheles* mosquito

- **Burden:**
 - 250 million cases each year
 - 1 million deaths annually
 - Every 30 seconds a child dies from malaria in Africa
 - Cost ~ 1.3% of annual economic growth in high prevalence countries

- **High Risk Group:** Pregnant women, children and HIV/AIDS co-infection

- **Treatment and Prevention:**
 - Vector Control
 - *Artemisinin*-based Combination Therapy
 - Indoor spraying
 - Bed nets

- Transmission through female *Anopheles* bite

Images: Nat’l Geographic, Nature, WHO
MALARIA

Malaria Distribution

Malaria, countries or areas at risk of transmission, 2010

Role of climatic and environmental determinants

<table>
<thead>
<tr>
<th>Determinants</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Parasite + Vector: development and survival</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Vector breeding habitat</td>
</tr>
<tr>
<td>Land-use, NDVI</td>
<td>Vector breeding habitat</td>
</tr>
<tr>
<td>Altitude</td>
<td>Vector survival</td>
</tr>
<tr>
<td>ENSO</td>
<td>Vector development, survival and breeding habitat</td>
</tr>
</tbody>
</table>

This map is intended as a visual aid only and not as a definitive source of information about malaria endemicity.
- Leading cause of morbidity and mortality in Thailand
- ~50% of population live in malarious area
- Most endemic provinces are bordering Myanmar & Cambodia
 - Significant immigrant population
 - Mae La Camp
 - Largest refugee camp
 - >30,000 population
Satellite-observed meteorological & Environmental Parameters for 4 Thailand seasons

- Surface Temperature
 MODIS Measurements

- Vegetation Index
 AVHRR & MODIS Measurements

- Rainfall
 TRMM Measurements
Neural Network training and validation accuracy

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden Layer</th>
<th>Hidden Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>t, T, P, P (lag 1), H, V</td>
<td>1</td>
</tr>
<tr>
<td>Model 2</td>
<td>t, P, P (lag 1), H, V</td>
<td>1</td>
</tr>
<tr>
<td>Model 3</td>
<td>t, T, P, P (lag 1), H, V</td>
<td>1</td>
</tr>
<tr>
<td>Model 4</td>
<td>t, T, P, P (lag 1), H, V</td>
<td>1</td>
</tr>
</tbody>
</table>

\[t = \text{time}, \ T = \text{temperature}, \ P = \text{precipitation}, \ H = \text{humidity}, \ V = \text{NDVI} \]
MALARIA IN AFGHANISTAN

Provinces included in the study

TRMM

MODIS-LST

NDVI

Adimi et al. Malaria Journal 2010, 9: 125
MALARIA IN AFGHANISTAN

- NDVI and temperature were a strong indicator for malaria risk
- Precipitation is not a significant factor → Malaria risk is mainly due to irrigation as implied from the significant contribution from NDVI
- Average R^2 is 0.845
- Short malaria time series (<2 years) pose a challenge for modeling and prediction
Identification of potential larval habitat (irrigation and drainage ditches)

- US Army’s Camp Greaves in South Korea (N. Kyunggi Province)
- 43 sample sites with predominant habitats of rice fields (26 sites) and ditches (13 sites)
- Classification using pan-sharpened 1-m resolution IKONOS data on a 3.2 x 3.2 km test site
DENGUE

- Endemic in more than 110 countries
 - Tropical, subtropical, urban, peri-urban areas
- Annually infects 50 – 100 million people worldwide
- 12,500 – 25,000 deaths annually
- Symptoms: fever, headache, muscle and joint pains, and characteristic skin rash (similar to measles)
- Primarily transmitted by Aedes mosquitoes
 - Live between 35°N - 35°S latitude, >1000m elevation
- Four serotypes exist
 - Infection from one serotype may give lifelong immunity to that serotype, but only short-term to others
 - Secondary infection increases the severity risk

Source: CDC
DENGUE IN INDONESIA

- **Environmental variables used**
 - Temperature, dew point, wind speed, TRMM, NDVI

- **Modeling method**
 - ARIMA – Auto Regressive Integrated Moving Average
 - Classical time series regression
 - Accounts for seasonality

- **Result**
 - Best-fit model uses TRMM and Dew Point as inputs
 - Peak timing can be modeled accurately up to year 2004
 - Vector control effort by the local government started in the early 2005
The problem

- First appeared in Hong Kong in 1996-1997, HPAI has spread to approximately 60 countries. More than 250 million poultry were lost.
- 35% of the human cases are in Indonesia. Worldwide the mortality rate is 53%, but 81% in Indonesia. In Indonesia, 80% of all fatal cases occurred in 3 adjacent provinces.
- Co-infection of human and avian influenza in humans may produce deadly strains of viruses through genetic reassortment.
- HPAI H5N1 was found in Delaware in 2004.
- The risk of an H5, H7 or H9 pandemic is not reduced or replaced by the 2009 H1N1 pandemic.
Indonesia has 35% of the world’s human cases with 81% mortality. For the rest of the world, mortality is 53%.
AVIAN INFLUENZA

- **H5N1 Transmission Pathways**

- **POULTRY TRADE**
 - poultry, products, feed, waste, personnel, equipment

- **BIRD TRADE**
 - wild birds
domestic birds
ducks & geese

- **MIGRATORY BIRDS**
 - LPAI spill over
 - HPAI spill back

- **POULTRY**
 - Sectors 1&2
 - Sectors 3&4

- **HUMANS**
 - human flu virus
 - reassortment
 - pandemic strain

- Human flu virus can spill over from poultry, leading to reassortment, and eventually to a pandemic strain.
AVIAN INFLUENZA

- NAMRU-2 Bird surveillance sites on Java

- Buffer zones can be established to limit the spread of H5N1 around wetlands and nearby farmlands

- EU’s & UK’s Practice:
 - 3 km protection zone
 - 10 km surveillance zone
 - Larger restricted zone

ASTER image showing NAMRU-2 bird surveillance site around Muara Cimanuk estuary
Poultry and human outbreaks in Greater Jakarta

Distance from outbreaks

- Primary road
- Secondary road
- Wet market
- Distribution center
- River
- Water body

Cases vs Meteorological factors
SEASONAL INFLUENZA

- Worldwide annual epidemic
 - Infects 5 – 20% of population with 500,000 deaths
- Economic burden in the US
 - ~US$87.1 billion
- Spatio-temporal pattern of epidemics vary with latitude
 - Role of environmental and climatic factors
- Temperate regions: distinct annual oscillation with winter peak
- Tropics: less distinct seasonality and often peak more than once a year

Source: Viboud et al., 2006
Factors implicated in influenza

<table>
<thead>
<tr>
<th>Influenza Process</th>
<th>Factors</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Survivorship</td>
<td>Temperature</td>
<td>Inverse</td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>Inverse</td>
</tr>
<tr>
<td></td>
<td>Solar irradiance</td>
<td>Inverse</td>
</tr>
<tr>
<td>Transmission Efficiency</td>
<td>Temperature</td>
<td>Inverse</td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>Inverse</td>
</tr>
<tr>
<td></td>
<td>Vapor pressure</td>
<td>Inverse</td>
</tr>
<tr>
<td></td>
<td>Rainfall</td>
<td>Proportional</td>
</tr>
<tr>
<td></td>
<td>ENSO</td>
<td>Proportional</td>
</tr>
<tr>
<td></td>
<td>Air travels and holidays</td>
<td>Proportional</td>
</tr>
<tr>
<td>Host susceptibility</td>
<td>Sunlight</td>
<td>Inverse</td>
</tr>
<tr>
<td></td>
<td>Nutrition</td>
<td>Varies</td>
</tr>
</tbody>
</table>

Ex Vivo study showing efficient transmission at dry and cold condition [Lowens et al., 2007]

- High temperature (30°C) blocks aerosol transmission *but not contact transmission*
Seasonal Influenza

<table>
<thead>
<tr>
<th></th>
<th>Hong Kong, China</th>
<th>Maricopa County, AZ</th>
<th>New York City, NY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Lat.</td>
<td>22° N</td>
<td>33° N</td>
<td>40° N</td>
</tr>
<tr>
<td>Climate</td>
<td>Sub-Tropical</td>
<td>Sub-Tropical</td>
<td>Temperate</td>
</tr>
<tr>
<td>General Condition</td>
<td>Hot & humid during summer. Mild winter, average low of 6°C</td>
<td>Dry condition. Mean winter low is 5°C, and summer high is 41°C</td>
<td>Cold winter, average low of -2°C. Mean summer high is 29°C</td>
</tr>
</tbody>
</table>
SEASONAL INFLUENZA

DATA

- Weekly lab-confirmed influenza positive
- Daily environmental data were aggregated into weekly
- Satellite-derived data
 - TRMM 3B42
 - LST - MODIS
- Ground station data
Several techniques were employed, including:

ARIMA (AutoRegressive Integrated Moving Average)
- Classical time series regression
 - Accounts for autocorrelation and seasonality properties
- Climatic variables as covariates
- Previous week(s) count of influenza is included in the inputs
- Results published in PLoS ONE 5(3): 9450, 2010

Neural Network (NN)
- Artificial intelligence technique
- Widely applied for
 - approximating functions,
 - Classification, and
 - pattern recognition
- Takes into account nonlinear relationship
- Radial Basis Function NN with 3 nodes in the hidden layer
- Only climatic variables and their lags as inputs/predictors
NN models show that ~60% of influenza variability in the US regions can be accounted by meteorological factors.

ARIMA model performs better for Hong Kong and Maricopa:
- Previous cases are needed
- Suggests the role of contact transmission

Temperature seems to be the common determinants for influenza in all regions.
ACKNOWLEDGMENT

- NAMRU-2
- Wetlands International Indonesia Programme
- Cobbs Indonesia
- USDA APHIS
- WHO SEARO
- WRAIR
- AFRIMS
- Thailand Ministry of Public Health

- NDVECC
- Mahidol University, Faculty of Tropical Medicine
- Safi Najibullah – Formerly at National Malaria and Leishmaniasis Control Programme, Afghan Ministry of Public Health
- CDC Influenza Division
THANK YOU